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I - 1 Motivations - Stochastic Bandit Games

Problem : You want to earn as much as possible in casino

§ You are in a casino and want to play with slot machines

§ Each one can give you a potential gain, but these gains are not equivalent

§ You sequentially play with one of the arms of the bandit machine

How to design a good policy to sequentially optimize the gain ?



I - 1 Motivations - Dynamic Ressource Allocation

Problem : Optimization of a sequence of clinical trials

Imagine you are a doctor :

§ A sequence of patients visit you sequentially (one after another) for a given
disease

§ You choose one treatment/drug among (say) 5 availables

§ The treatments are not equivalent

§ You do not know where is the best drug, but you observe the effect of the
prescribed treatment on each patient

§ You expect to find the best drug despite some uncertainty on the effect of each
treatment

How can we design a good sequence of clinical trials ?



I - 1 Motivations - Dynamic Ressource Allocation

Problem : “Fast fashion” retailer

Source : Farias & Madan, Operation Research, Vol. 9, No 2, 2011
Imagine you are a firm solding clothes :

§ A population of customers visit you sequentially (one after another) each
week/day

§ You observe weekly/daily sales and measure item’s popularity

§ You want to restock popular items and weed out unpopular ones on-line

§ You expect to maximize your benefit while finding the best items

How can we design a good sequence of fast-fashion operations ?



I - 1 Motivations - Dynamic Ressource Allocation

Problem : “Web design”

Imagine you want to select a web page design

§ A population of customers visit you sequentially (one after another)

§ You randomly propose two designs a and b and measure design’s popularity
through the signups you obtain

§ You want to propose the popular design to maximize your benefit

How can we build a good sequence of webpage propositions ?



I - 1 Motivations - Dynamic Ressource Allocation

Other motivating examples

§ Pricing a product with uncertain demand to maximize revenue

§ Trading (sequentially allocate a ratio of fund to the more efficient trader)
§ Recommender systems :

§ advertisement
§ website optimization
§ news, blog posts

§ Computer experiments
§ A code can be simulated in order to optimize a criterion
§ This simulation depends on a set of parameters
§ Simulation is costly and only few choices of parameters are possible



I - 1 Motivations - Exploration vs. Exploitation

Scientist view : Explore new ideas

Businessman view : Exploit best idea found so far



I - 2 Stochastic multi-armed bandit model

Environment :

§ At your disposal : d arms with unknown parameters θ1, . . . , θd.

§ For any time t, your choice is described by a variable It P t1 . . . , du

§ For anyu time t, you receive a reward, that depends on your choice It :

AItt

For example :
§ it corresponds to the money obtained by sampling one specific slot machine in a Casino,

the number of the machine is It.
§ it corresponds to the size of a tumor after choosing to test one drug on a patient.

Reward distribution :

§ Of course, the rewards cannot be reasonnably assumed to be deterministic
(otherwise I won’t be there to talk about it !)

§ For a fixed choice of one arm i, the rewards are i.i.d.

pAitqtě0 „ νθi .

§ Important assumption : the reward distributions νθ belong to a parametric family
of probability distributions (Exponential, Poisson, . . . )



I - 2 Stochastic multi-armed bandit model
In this talk, we study the simplest case of Bernoulli rewards νp “ Bppq :

§ you obtain a gain of 1 with probability p

§ 0 otherwise (with probability 1´ p).

What is unknown, the several probability of success : pp1, . . . , pdq.
Without l.o.g., we assume that the first arm is the best one :

p1 ą max
2ďjďd

pj .

Admissible policy :

§ The agent’s action follow a dynamical strategy, which is defined on-line :

It “ π
´

A
It´1
t´1 . . . , AI11

¯

.

It means that at step t, we can use all the informations gathered from time 1 to
time t´ 1 to make our decision It.

§ The decision It can be driven either by
§ a deterministic function
§ a random function

of the information from 1 to t´ 1.

Final goal : Maximize (in expectation) the cumulative rewards :

E

«

n
ÿ

t“1

AItt

ff

.



I - 3 Regret of Stochastic multi-armed bandit algorithms

Regret of an algorithm
Given an horizon n, we are naturally driven to minimize the expected regret Rn :

ErRns “ E max
1ďjďd

n
ÿ

t“1

Ajt ´ E
n
ÿ

t“1

AItt “ E max
1ďjďd

n
ÿ

t“1

pAjt ´A
It
t q.

§ Rn is the maximal gain that could have been obtained minus our gain following
our policy pItqtďn.

§ The expectation of the maximum makes the regret difficult to handle, but. . .

Pseudo-Regret of an algorithm

Proposition (Pseudo-regret)
If we define R̄n :“ max1ďjďdE

”

řn
t“1pA

j
t ´A

It
t q

ı

, one has

R̄n ď ERn ď R̄n `

c

n log d

2
.

Advantage of the pseudo-regret : from a mathematical point of view, we know what
arm is better than others, making R̄n easier than Rn to handle.



I - 3 Regret of Stochastic multi-armed bandit algorithms
What kind of performances to expect ?

§ Of course, ErRns and R̄n increase with n !

§ If our strategy fails to discover the best arm, it means that

It ‰ 1 infinitely often as t ÝÑ `8.

It leads to
nˆ pp1 ´max

jě2
pjq À R̄n,

which is linear with n.

§ We can expect much more better results if the strategy discovers the best arm.

§ Proposition (Lower bound - (Auer, Cesa-Bianchi,Freund,Schapire 2002))
Uniformly among all policies π and among all Bernoulli distribution rewards :

min
π

$

’

&

’

%

max
sup

2ďjďd
pj ă p1

ERn

,

/

.

/

-

ě

?
nd

20
.

This two propositions show that a strategy such that

R̄n À Cd
?
n

is a good one (Cd „
?
d).



I - 4 Roadmap

In this talk, we will :

§ Briefly describe a standard old-fashioned method

Xt`1 “ Xt ` γt`1hpXtq ` γt`1∆Mt`1

§ Introduce a new one whose regret will be studied :

@n P N˚ R̄n ď C
?
n?

§ Provide an asymptotic limit of this penalized bandit up to a correct scaling

βnpXn ´ δ1q
w˚
ÝÑ

nÑ`8
µ

§ Describe ergodic properties of the rescaled process (PDMP)

Important features of efficient algorithms :

§ Fast decision from t to t` 1 to do not slow down motion of the sequential rewards

§ Adaptive with the horizon time : good strategies should no depend on the a fixed
horizon time n and may be fully recursive.

§ Efficient regret rate
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II - 0 Some already existing method - ε-greedy’98

Widely used ε-greedy algorithm

§ Consider ε ą 0 and an initial guess of the ability of each arm :

p̂jp0q is a prior information on pj

If no information, take pick each pj at random for example.
§ Step t to t` 1 :

§ With probability 1´ ε, use (one of) the best arm
§ With probability ε{d, pick an arm uniformly among all possibles.
§ Upgrade the estimators of the Bernoulli parameters with the empirical means p̂jpt` 1q.

§ Usually, ε “ 0.1.



II - 0 Some already existing method - ε-greedy’98

With 5 Bernoulli reward probabilities : r0.1, 0.1, 0.1, 0.1, 0.9s

§ ε “ 0.1 : Businessman and
§ Learns slowly
§ Does well at the end

§ ε “ 0.5 : Scientist and
§ Learns quickly
§ Does not exploit at the end

Whatever ε is, linear regret with n.



II - 0 Some already existing method - Upper-confidence bounds’85
Popular methods that rely on the heuristic principle of optimism.

Strategy :
§ Build a confidence bound around each empirical estimation of the probability of

success
p̂iptq P rliptq;uiptqs,@1 ď i ď d

§ at time t, select the arm with the highest upper confidence bound :

It “ arg maxuiptq.

§ Get the reward, and update the empirical estimator and the confidence bounds

p̂ipt` 1q P rlipt` 1q;uipt` 1qs

UCB-like algorithm are shown to be optimal and satisfy

lim sup
nÝÑ`8

ER̄n
logn

ď
ÿ

păp1

1

2pp1 ´ pq
.

and

@pp1, . . . , pdq P r0, 1s
d R̄n À

b

d logpdqn



II - 1 An historical algorithm’69

The so-called Narendra-Shapiro bandit algorithm (NSa for short) defines a probability
vector of Sd

Xt “ pX
1
t , . . . , X

d
t q |

d
ÿ

j“1

Xj
t “ 1.

Idea : Use Xt to sample one arm at step t and then upgrade this probability Xt.

§ In the two-armed situation with p2 ă p1, denote Xt “ pxt, 1´ xtq

§ Xtp1q “ xt is the probability to choose the first arm at step t.

§ Xtp2q “ 1´ xt is the probability to choose the second arm at step t.

§ Upgrade formula

xt`1 “ xt `

$

’

&

’

%

γt`1p1´ xtq if player 1 is selected and wins

´γt`1xt if player 2 is selected and wins

0 otherwise

§ Common step size :

γt “ p1` t{Cq
´α , α P p0, 1q with large enough C.

§ Same idea :
§ If you win : reinforce the probability to sample It w.r.t. the remaining weights

pXjt qj‰It and decrease the probability to sample the other arms accordingly.

§ If you loose (A
It
t “ 0) : do nothing.



II - 1 An historical algorithm’69

§ Multi-armed situation, It : arm sampled at time t, AItt : obtained reward. Upgrade

@j P t1 . . . du Xj
t “ Xj

t´1 ` γt
”

1tIt“ju ´X
j
t´1

ı

AItt

§ To sum up :
§ If you win : reinforce the probability to sample It and decrease the probability of others.
§ If you loose (A

It
t “ 0) : do nothing.



II - 1 An historical algorithm’69

Few words about NSa :

§ Recursive stochastic
algorithm

§ Anytime policy

§ Involves nontrivial
mathematical difficulties

It can be written as mean drift + martingale increment

Xt`1 “ Xt ` γt`1hpXtq ` γt`1∆Mt`1.

In the 2-armed setting (p2 ă p1 and Xt “ pxt, 1´ xtq), the drift on xt is

hpxq “ pp1 ´ p2qxp1´ xq.



II - 1 An historical algorithm’69

Some keywords about this class of recursive algorithms ?

Xn`1 “ Xn ´ γnbpXnq ` γn∆Mn

A lot is known on these Robbins-Monro (Kiefer-Wolfowitz) algorithms when :

§ b is a deterministic drift and we are looking for the solution bpxq “ 0. Standard
applications : recursive quantile estimation.

§ b is a gradient of a convex function U and we are looking for a minimum of U .
Standard applications : Stochastic Gradient Descent (SGD).

What is known about this class of recursive algorithms ?

§ Old results (Robbins, Polyak, . . . ) : if U is strongly convex, we can expect some
non asymptotic upper bound

E rUpXnq ´minUs ď Cεn,

where εn is a rate that should be related to the step size sequence pγnqně1.

§ Woodroofe’72 : Large deviation inequalities for SGD.

§ Polyak averaging optimal (in the Cramer-Rao sense) of these methods.

Baseline assumption : strict convexity of U !



II - 1 An historical algorithm’69

Xt “ pxt, 1´ xtq

xt`1 “ xt`γt`1bpxtq ` γt`1∆Mt`1.

with
bpxq “ pp1 ´ p2qxp1´ xq

The drift b has 2 zeros. . . The energy function is far from being convex !

§ O.D.E. approximation 9x “ hpxq, local trap at t0u and stable equilibrium at t1u.
§ Robbins-Monro’s argument : convergence to a either t0u or t1u.
§ But : the conditional variance term vanishes at 0 and 1, making impossible the

use of Duflo’s argument about the escape of local traps.

§ Indeed, for any sequence γt “
´

C
t`C

¯α
, α P p0, 1q, the algorithm is fallible

P plimxt “ 0q ą 0 ùñ ERn Á Cn ąą
?
n



II - 2 Improvement through penalization

§ What’s wrong with NSa ?
Gittins, JRSS(B)’79 :

Good regret properties only occur with an exploration/exploitation trade-off...

§ NSa is almost a pure exploitation method : no exploration term to exit local traps.

§ Main idea : Introduce a penalty term [Lamberton & Pages, EJP’09]

§ In the 2-armed settings (p2 ă p1 and Xt “ pxt, 1´ xtq) :

Xt`1 “ Xt `

$

’

’

’

&

’

’

’

%

`γt`1p1´Xtq if arm 1 is selected and wins

´γt`1Xt if arm 2 is selected and wins

´ρt`1γt`1Xt if arm 1 is selected and loses

`ρt`1γt`1p1´Xtq if arm 2 is selected and loses

When one arm fails, decrease the
probability to sample it.

LP’09 : Up to technical conditions on pρt, γtq : penalized 2-armed bandit is infallible
(a.s. convergence to the good target)



II - 3 Over-penalized NSa
This additional penalty term will be inefficient from the minimax regret point of view.
As a last resort : increase the penalty effect to reinforce the escape from local traps :

Xt`1 “ Xt `

$

’

’

’

&

’

’

’

%

`γt`1p1´Xtq´ρt`1γt`1Xt if arm 1 is selected and wins

´γt`1Xt`ρt`1γt`1p1´Xtq if arm 2 is selected and wins

´ρt`1γt`1Xt if arm 1 is selected and loses

`ρt`1γt`1p1´Xtq if arm 2 is selected and loses

Whatever happens with the selected arm, it is penalized (escape from local traps).

A multi-armed version :

Xj
t “ Xj

t´1 ` γt
”

1It“j ´X
j
t´1

ı

AItt

´γtρtX
It
t´1

„

1It“j ´
1´ 1It“j

d´ 1





II - 3 Over-penalized NSa and infallibility
Write Xt “ Xt´1 ` γtbpXtq ` γtρtκpXtq ` γt∆Mt. Drift :

bipx1, . . . , xdq “ xi

»

–p1´ xiqpi ´
ÿ

j‰i

xjpj

fi

fl ,@i P t1, . . . , du

Equilibria of 9X “ hpXq : Dirac masses on each arm. Stable one : p1, 0, . . . , 0q.
The Kushner-Clarck theorem Ñ a.s. convergence towards an equilibrium (which one ?)

Theorem (Infallibility of the Over-penalized NSa)
If pd ď pd´1 ď . . . ď p2 ă p1 and γt “ γ1t´α, ρt “ ρ1t´β , then

0 ď β ď α and α` β ď 1 ùñ lim
tÑ`8

Xt “ p1, 0 . . . , 0q a.s.

Sketch of proof : The penalty term induced by κ is

κipxq “ ´x2
i p1´ piq `

1

d´ 1

ÿ

j‰i

x2
j p1´ pjq,@i P t1, . . . , du

If X1
8 “ 0, κ1pX8q ą 0 and :

§

α ď β ùñ lim sup

ř

t γt∆Mt
ř

γtρt
ě 0

§

α` β ď 1 ùñ
ÿ

γtρt “ `8 ùñ
ÿ

γtρtκpXtq “ `8



II - 4 Non-asymptotic upper bound of the regret

We detail the picture for the two-armed over-penalized NSa

R̄n “ max
jPt1,2u

E
n
ÿ

t“1

Ajt ´A
It
t

“ E
n
ÿ

t“1

”

p1 ´ pX
1

t p1 ` p1´X
1

t qp2q

ı

“ pp1 ´ p2q

n
ÿ

t“1

ρt
1´X

1

t

ρt
looomooon

:“Yt

Xn`1 “ Xn ` γn∇UpXnq ` γn∆Mn`1,

In S.A., we expect a “Central Limit Theorem” for the renormalized sequence

?
γnpXn ´ arg minUq

w˚
ÝÑ

nÑ`8
N p0, σ2

U q.

A good news ? Be able to do the same for the sequence pYtqtě1 :

Yn
w˚
ÝÑ

nÑ`8
µ.



II - 4 Non-asymptotic upper bound of the regret

We detail the picture for the two-armed over-penalized NSa

R̄n “ max
jPt1,2u

E
n
ÿ

t“1

Ajt ´A
It
t

“ E
n
ÿ

t“1

”

p1 ´ pX
1

t p1 ` p1´X
1

t qp2q

ı

“ pp1 ´ p2q

n
ÿ

t“1

ρt
1´X

1

t

ρt
looomooon

:“Yt

If the measure µ has a finite first moment, we can expect

sup
ně1

EYn ă 8,

which implies in turn

R̄n À
n
ÿ

t“1

ρt.

Find β in ρt “ ρ1t´β as large as possible s.t. β ď α, α` β ď 1. Optimal calibration :

γt “
γ1
?
t

and ρt “
ρ1
?
t
.



II - 4 Non-asymptotic upper bound of the regret

We are turned to the random dynamical system induced by pYtqtě1. Again :

Yt`1 “ Yt ` γtϕtpYtq ` γt∆Mt`1.

Beyond the analytic formula of ϕt, a simple picture :

Figure : Drift for non penalized (left) and overpenalized (right) NSa when y P r0, ρ´1
t s.

To control the increments of Yt, the right situation is much better :

Large value of Yt are naturally decreased by ϕt



II - 4 Non-asymptotic upper bound of the regret
§ Difficulty : obtaining a uniform bound over all the values 0 ď p2 ă p1 ď 1.

§ Lyapunov arguments and painful computations lead to non asymptotic bound.

§ Key quantity that induces the understanding of the good scaling

π “ p1 ´ p2.

Theorem (Upper bound of the regret : 2-armed over-penalized NSa)

@n P N sup
p2ăp1

R̄n ď 30
?

2n.

Optimal settings : γn “
9

10
?
n

and ρn “
1

3
?
n

.

Sketch of proof :

Define Z
prq
t “

p1´Xtq
r

γt
and exhibit a mean-reverting effect for r sufficiently large

ErZprqt`1|Fts “ Z
prq
t ` Pt,rpZ

prq
t q.

§ Find r such that Pt,r is negative on rCpγt, πq, γ
´1
t s where Cpγt, πq “ opγ´1

t q and

sup
tě0

ErZprqt s ă 8.

§ Exhibit a recursion between ErZprqt s and ErZpr´1q
t s for a result on suptě0 ErYts



II - 4 Numerical simulations

Figure : Evolution of n ÞÑ suppp1,p2qPr0,1s,p2ďp1

R̄n?
n

for over-penalized NSa (continuous

colored line) and penalized NSa (dashed colored line) and KL UCB (black line).

§ Over-penalization is important for a competitive regret
§ Practical : R̄n ď

?
n - Theoretical : R̄n ď 30

?
2n

§ Defeated by UCB-like algorithms for the regret point of view (R̄n ď
?
n{2)

§ Much more faster than MOSS or UCB-like algorithms (1/100 of time).



II - 4 Numerical simulations

Figure : Evolution of the probability of Arm 1 (best one) with respect to n while p1 ´ p2 “ 0.1.
Left : ρ1{γ1 is varying. Right : p2 is increasing.

Seems to behave quite particularly (maybe after a good rescaling ?)

§ Some jumps randomly distributed ? (more or less frequent according to the
parameters)

§ Almost deterministic evolution between jumps when n is large



II - 4 Numerical simulations

Time for a short movie . . .
5 arms, p “ r0.9, 0.88, 0.8, 0.75, 0.7s.

Let’s go back to the mathematics . . .
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III - 1 Rescaling

We fix p1 ą maxpp2, . . . , pdq, the “good” rescaling of what is left over by X1
n is

X̄n “
pX2

n, . . . , X
d
nq

ρn

Proposition
For any f P C2pRd´1,Rq :

E
“

fpX̄n`1q|Fn
‰

“ fpX̄nq ` γn`1LdpfqpX̄nq ` oP pγn`1q,

where Ld is the Markov generator given by

Ldpfqpx̄q “
d
ÿ

j“2

pj

g
x̄j

loomoon

jump rate

rfpx̄` g1jq ´ fpx̄qs
loooooooooooomoooooooooooon

jump size

`

d
ÿ

j“2

„

1´ p1

d´ 1
´ p1x̄j



Bjfpx̄q
looooooooooooooomooooooooooooooon

deterministic part

.

§ The amount of jump is low when g “ γ1
ρ1

is large (seen in simulations).

§ The size of jumps is large when g is large.



III - 1 Rescaling

As a tensorized process, it is enough to study the following Markov generator :

Lpfqpx̄q “ pa´ bx̄qf 1px̄q ` cxrfpx̄` gq ´ fpx̄qs

§ Family of Piecewise Deterministic Markov Process (PDMP for short)

§ Random dynamical systems with an increasing interest (encountered in many
modelisation problems)

§ Famous examples (among many others) :
§ Telegraph process [Kac, ’74]
§ Storage models [Roberts & Tweedie,’00]
§ Randomly switched ODE [Benäım et al.,’14] & Parrondo-like paradox
§ TCP models [Guillin, Malrieu et al.’13, Cloez & Hairer’13]

What the dynamic looks like exactly in the over-penalized NSa case ?

§ Set

a “
1´ p1

d´ 1
, b “ p1, cj “

pj

g
, g “

γ1

ρ1

§ Between jumps, the evolution is deterministic and follow a differential flow

9φpξ, tq “

„

1´ p1

d´ 1
´ p1ξ



Bξφpξ, tq

§ Poisson jumps with an instantaneous average push of
pj
g
x̄j ˆ g.

Here, the size of the jumps are deterministic.



III - 2 Trajectories of the rescaled over-penalized NSa

§ Ld acts as a tensorized Markov generator on each coordinate.

§ The problem is reduced to the study of the random dynamic system described by

Lpfqpx̄q “ pa´ bx̄qf 1px̄q ` cxrfpx̄` gq ´ fpx̄qs,

§ Examples of rescaled trajectories for several values of pa, b, c, gq

§ Asymptotic direction : a{b. Bottom left : transient behaviour when cg ą b . . . but
in the bandit algorithm

cg ´ b “ pj ´ p1 ă 0 p!q



III - 3 Ergodicity and Invariant measure

Ergodicity can be helpful to derive confidence bounds. It requires to obtain some
mixing properties around an/the invariant measure.

Lpfqpx̄q “ pa´ bxqf 1px̄q ` cxrfpx̄` gq ´ fpx̄qs,

For over-penalized NSa, the process should be studied only when cg ´ b ă 0.

Proposition (Invariant measure - rescaled over-penalized NSa)
The PDMP X̄t has a unique invariant measure µ supported by

„

1´ p1

p1pd´ 1q
,`8

„d´1

.

Sketch of proof : existence and uniqueness through a Lyapunov certificate :

LpIdq “ a´ pb´ cgqId.

But . . . Some real difficulties :

§ No explicit formula for µ . . . We are far from a standard CLT with a Gaussian
distribution and even far from the simplest case of the TCP process

§ Less is known about the smoothness of µ . . . Intricate situation as pointed by
[Bakhtin & Hurth & Mattingly ’14].



III - 4 Ergodicity and mixing rate

L is a non-reversible Markov operator, which is usual for this kind of kinetic models
The question : Obtaining an upper bound of the mixing rate :

dpLpXtq, µq ď εptq ÝÑ 0 as t ÝÑ `8.

§ Traditional distance

}LpXtq ´ µ}L2pµqý
“ sup
f : }f}L2pµq

“1
}ErfpX̄x

t qs ´ µpfq}L2pµq

Non-reversible generators : difficult to handle with the L2 distance, require
informations on µ (Modified norms [Villani,’09], Lie brackets [Gadat & Miclo’13])

§ Resort less sophisticated distances induced by trajectorial properties (instead of
functional ones)
Wasserstein distance :

Wppν1, ν2q “ inf
!

E ppX ´ Y qpqq
1
p |LpXq “ ν1, LpY q “ ν2

)

Total Variation distance :

dTV pν1, ν2q “ max
ΩĂE

|ν1pΩq ´ ν2pΩq|

§ Use some coupling techniques to derive quantiative bounds



III - 4 Ergodicity and mixing rate

The simple idea :

§ Build a non independent coupling pX̄t, Ytq such that X̄t and Yt follow the
dynamic given by L and Y0 „ µ

§ Try to make X̄t and Yt close to each others for the Wasserstein results

Theorem (Wasserstein ergodicity)
An explicit constant γp exists such that

WppLpX̄tq, µq ď γpe
´tπ{p,

where π “ p1 ´ p2 is the difference between the 2 probabilities of success of the 2
best arms

Optimal for W1. Open questions for Wp.

§ Try to make the two processes X̄t “ Yt stucked rapidly for the TV results

Theorem (Total Variation ergodicity)
Some explicit constants C and α exist such that

dTV pLpX̄tq, µq ď Ce´απt.

Suspected to be far from the optimal exponents.
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IV Conclusion

Statistics :

§ Standard NSa Algorithm is fallible . . .

§ Penalized bandits are infallible

§ Over-penalization : relevant for regret bounds

§ Over-penalization : traduces a vanishing repelling effect on each corner of the
simplex.

§ Minimax result in the two-armed case :

R̄n ď C
?

2n,

§ Much more faster than what is already existing in Bandit methods while
statistically competitive (not as good as KL UCB)

Probability :

§ Rescaled process as a PDMP.

§ Random jumps come from the binary rewards given by each arm.

§ Ergodic properties

Anecdotal :

§ Used in some trading firms in ! La Defense " . . .



IV Conclusion
Open questions :

§ Regret with d arms ? Numerical simulations lead to the conjecture

R̄n ď C
?
dn,

which is the known minimax rate for d-armed bandit.

Over-Penalized NSa seems to behave well . . .
§ What should be a generalization of Over-Penalized NSa for continuous rewards ?

What is the rescaled process (suspected to be a diffusion instead of a jump
process . . . )

§ Many challenging questions with the PDMP :
§ Spectral results and L2 convergence
§ Wasserstein lower bounds
§ Smoothness of the invariant measure

Thank you for your attention
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