Regret of Narendra Shapiro Bandit Algorithms

S. Gadat

Toulouse School of Economics
Joint work with F. Panloup and S. Saadane.

Inra Auzeville, September, 18 2015



| - Introduction
I - 1 Motivations - Examples of Bandit problems
| - 2 Stochastic multi-armed bandit model
| - 3 Regret of Stochastic multi-armed bandit algorithms
| - 4 Roadmap



| - 1 Motivations - Stochastic Bandit Games

Problem : You want to earn as much as possible in casino

» You are in a casino and want to play with slot machines
» Each one can give you a potential gain, but these gains are not equivalent

> You sequentially play with one of the arms of the bandit machine

How to design a good policy to sequentially optimize the gain?



| - 1 Motivations - Dynamic Ressource Allocation

Problem : Optimization of a sequence of clinical trials

Imagine you are a doctor :

> A sequence of patients visit you sequentially (one after another) for a given
disease

v

You choose one treatment/drug among (say) 5 availables

v

The treatments are not equivalent

v

You do not know where is the best drug, but you observe the effect of the
prescribed treatment on each patient

v

You expect to find the best drug despite some uncertainty on the effect of each
treatment

How can we design a good sequence of clinical trials ?



| - 1 Motivations - Dynamic Ressource Allocation

Problem : “Fast fashion” retailer

Source : Farias & Madan, Operation Research, Vol. 9, No 2, 2011
Imagine you are a firm solding clothes :

> A population of customers visit you sequentially (one after another) each
week /day

> You observe weekly/daily sales and measure item’s popularity
> You want to restock popular items and weed out unpopular ones on-line
> You expect to maximize your benefit while finding the best items

How can we design a good sequence of fast-fashion operations ?



| - 1 Motivations - Dynamic Ressource Allocation

Problem : “Web design”
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Imagine you want to select a web page design
> A population of customers visit you sequentially (one after another)

You randomly propose two designs a and b and measure design’s popularity
through the signups you obtain

v

v

You want to propose the popular design to maximize your benefit

How can we build a good sequence of webpage propositions ?



| - 1 Motivations - Dynamic Ressource Allocation

Other motivating examples
> Pricing a product with uncertain demand to maximize revenue
» Trading (sequentially allocate a ratio of fund to the more efficient trader)

» Recommender systems :

> advertisement
> website optimization
> news, blog posts

Jor Website Optimization

OREILLY* Jobn s White

» Computer experiments
> A code can be simulated in order to optimize a criterion
> This simulation depends on a set of parameters
> Simulation is costly and only few choices of parameters are possible



| - 1 Motivations - Exploration vs. Exploitation

Scientist view : Explore new ideas

Businessman view : Exploit best idea found so far

$cis



| - 2 Stochastic multi-armed bandit model

Environment :

» At your disposal : d arms with unknown parameters 61,...,0,.
> For any time t, your choice is described by a variable I; € {1...,d}

» For anyu time ¢, you receive a reward, that depends on your choice I :
1
Ayt

For example :

> it corresponds to the money obtained by sampling one specific slot machine in a Casino,
the number of the machine is I;.

> it corresponds to the size of a tumor after choosing to test one drug on a patient.
Reward distribution :

» Of course, the rewards cannot be reasonnably assumed to be deterministic
(otherwise | won't be there to talk about it!)

» For a fixed choice of one arm ¢, the rewards are i.i.d.
(AD)t=0 ~ vo,.

> Important assumption : the reward distributions vy belong to a parametric family
of probability distributions (Exponential, Poisson, ...)



| - 2 Stochastic multi-armed bandit model
In this talk, we study the simplest case of Bernoulli rewards v}, = B(p) :

» you obtain a gain of 1 with probability p
» 0 otherwise (with probability 1 — p).

What is unknown, the several probability of success : (p1,...,pq)-
Without l.o.g., we assume that the first arm is the best one :

1 > max i
Pz iz

Admissible policy :

» The agent’s action follow a dynamical strategy, which is defined on-line :
_ I I
Iy =m (A .. A7)

It means that at step ¢, we can use all the informations gathered from time 1 to
time t — 1 to make our decision I.
> The decision Iy can be driven either by

* a deterministic function
> a random function

of the information from 1 to ¢ — 1.

Final goal : Maximize (in expectation) the cumulative rewards :

E [é A{f] .



| - 3 Regret of Stochastic multi-armed bandit algorithms

Regret of an algorithm
Given an horizon n, we are naturally driven to minimize the expected regret R,, :

E[R,] = E max Z Al —E Z Alt—E max Z (AT — Al

Isj<d t=1

> R, is the maximal gain that could have been obtained minus our gain following
our policy (I)t<n.
» The expectation of the maximum makes the regret difficult to handle, but. ..

Pseudo-Regret of an algorithm

Proposition (Pseudo-regret)
If we define Ry := max;<;j<qE [Z (AJ Aft)] , one has

_ _ nlogd
Rn SERn < Rn +4/ 725

2

Advantage of the pseudo-regret : from a mathematical point of view, we know what
arm is better than others, making R, easier than R, to handle.



| - 3 Regret of Stochastic multi-armed bandit algorithms

What kind of performances to expect?

» Of course, E[R,] and R, increase with n!

> If our strategy fails to discover the best arm, it means that
It #1 infinitely often as t — +00.

It leads to

n x (p1 —maxp;) < Rn,
=2
which is linear with n.

» We can expect much more better results if the strategy discovers the best arm.

» Proposition (Lower bound - (Auer, Cesa-Bianchi,Freund,Schapire 2002))

Uniformly among all policies m and among all Bernoulli distribution rewards :

Vnd
min max ER, ; = .
™ sup pj < p1 20
2<j<d

This two propositions show that a strategy such that
Rn < Cd\/ﬁ

is a good one (Cy ~ V/d).



| - 4 Roadmap

In this talk, we will :

> Briefly describe a standard old-fashioned method

Xev1 = Xt +ve+1h(Xe) + ve+1AMey 1

> Introduce a new one whose regret will be studied :

VYn € N* Rn < C+/n?
> Provide an asymptotic limit of this penalized bandit up to a correct scaling

w¥
ﬁn(Xn_(Sl) —>

n—+o00

» Describe ergodic properties of the rescaled process (PDMP)
Important features of efficient algorithms :
» Fast decision from ¢ to £+ 1 to do not slow down motion of the sequential rewards

» Adaptive with the horizon time : good strategies should no depend on the a fixed
horizon time n and may be fully recursive.

> Efficient regret rate
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[1 - 0 Some already existing method - e-greedy'98

Widely used e-greedy algorithm

» Consider € > 0 and an initial guess of the ability of each arm :
$;(0) is a prior information on Dj

If no information, take pick each p; at random for example.
» Stepttot+1:

» With probability 1 — €, use (one of) the best arm
» With probability €/d, pick an arm uniformly among all possibles.
> Upgrade the estimators of the Bernoulli parameters with the empirical means p; (¢t + 1).

» Usually, e = 0.1.



[ - 0 Some already existing method - e-greedy’98
With 5 Bernoulli reward probabilities : [0.1,0.1,0.1,0.1,0.9]

Accuracy of the Epsilon Gready Algorithm

Probabilty of Selecting Best Arm

o
Time

» € = 0.1 : Businessman and

»> Learns slowly
> Does well at the end

» € = 0.5 : Scientist and
> Learns quickly
> Does not exploit at the end

Whatever € is, linear regret with n.



[1 - 0 Some already existing method - Upper-confidence bounds'85
Popular methods that rely on the heuristic principle of optimism.

Strategy :
» Build a confidence bound around each empirical estimation of the probability of
success
ﬁl(t) € [li(t);ui(t)],V]. <i<d
> at time ¢, select the arm with the highest upper confidence bound :
I = argmaxu;(¢).
> Get the reward, and update the empirical estimator and the confidence bounds
ﬁi(t + 1) € [ll(t + 1);ui(t + 1)]
UCB-like algorithm are shown to be optimal and satisfy

ER 1
lim sup - < Z _
n—+oo logn =t 2(p1 — p)

v(plv"'zpd) € [07 l]d Rn < \/dIOg(d)n

and



[1 - 1 An historical algorithm’69

The so-called Narendra-Shapiro bandit algorithm (NSa for short) defines a probability
vector of Sy

d
Xe=(X{,..., X{) | 2 Xl=1
j=1

Idea : Use X; to sample one arm at step ¢ and then upgrade this probability X;.
> In the two-armed situation with pa < pi1, denote Xy = (z¢,1 — x¢)
» X¢(1) = x¢ is the probability to choose the first arm at step ¢.

X¢(2) =1 — x¢ is the probability to choose the second arm at step ¢.

v

» Upgrade formula

Ye+1(1 — x¢) if player 1 is selected and wins
T4l = Tt + { —Ve4+1Tt if player 2 is selected and wins
0 otherwise

» Common step size :
v =(1+¢t/C)" <, a€ (0,1) with large enough C.

> Same idea :
> If you win : reinforce the probability to sample I; w.r.t. the remaining weights
(Xg)j#[t and decrease the probability to sample the other arms accordingly.

> If you loose (Af" = 0) : do nothing.



[1 - 1 An historical algorithm’69

» Multi-armed situation, Iy : arm sampled at time ¢, A{t : obtained reward. Upgrade
Vie{lo.d)  X] =X+ |Lamy - X0, | AL

» To sum up :
> If you win : reinforce the probability to sample I; and decrease the probability of others.
> If you loose (Aft = 0) : do nothing.




[1 - 1 An historical algorithm’69

Few words about NSa :

» Recursive stochastic g
algorithm |

> Anytime policy

> Involves nontrivial
mathematical difficulties Cig.
\
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It can be written as mean drift 4+ martingale increment 21
X1 = Xt +ve41h(Xt) + ve 1AM 1.
In the 2-armed setting (p2 < p1 and Xt = (z¢,1 — x¢)), the drift on x4 is

h(z) = (p1 — p2)z(1 — ).



[1 - 1 An historical algorithm’69

Some keywords about this class of recursive algorithms?
Xn+1 = Xn — ¥ab(Xn) + ynAMy,

A lot is known on these Robbins-Monro (Kiefer-Wolfowitz) algorithms when :

> b is a deterministic drift and we are looking for the solution b(z) = 0. Standard
applications : recursive quantile estimation.

> b is a gradient of a convex function U and we are looking for a minimum of U.
Standard applications : Stochastic Gradient Descent (SGD).

What is known about this class of recursive algorithms?

> Old results (Robbins, Polyak, ...) : if U is strongly convex, we can expect some
non asymptotic upper bound

E[U(Xn) —minU] < Cep,

where €, is a rate that should be related to the step size sequence (vn)n>1-
> Woodroofe'72 : Large deviation inequalities for SGD.

> Polyak averaging optimal (in the Cramer-Rao sense) of these methods.

Baseline assumption : strict convexity of U !



[1 - 1 An historical algorithm’69
Xt = (v, 1 — )

T4l = Te+Ye+10(xe) + Ye41 AMeyq.
with
b(z) = (p1 — p2)a(l — x)
The drift b has 2 zeros. .. The energy function is far from being convex!
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O.D.E. approximation & = h(x), local trap at {0} and stable equilibrium at {1}.
Robbins-Monro’s argument : convergence to a either {0} or {1}.

But : the conditional variance term vanishes at 0 and 1, making impossible the
use of Duflo's argument about the escape of local traps.

v

v

v

[e%
Indeed, for any sequence ¢ = <t+%> , a € (0,1), the algorithm is fallible



[l - 2 Improvement through penalization

> What's wrong with NSa ?
Gittins, JRSS(B)'79 :
Good regret properties only occur with an exploration/exploitation trade-off...
> NSa is almost a pure exploitation method : no exploration term to exit local traps.
> Main idea : Introduce a penalty term [Lamberton & Pages, EJP'09]
> In the 2-armed settings (p2 < p1 and X; = (z¢,1 — x¢)) :

+ye+1(1 — X¢) if arm 1 is selected and wins
—ver1 Xt if arm 2 is selected and wins
Xiy1 =Xt + T+ . .

if arm 1 is selected and loses

if arm 2 is selected and loses

LP’09 : Up to technical conditions on (p¢,~:) : penalized 2-armed bandit is
(a.s. convergence to the good target)



[l - 3 Over-penalized NSa

This additional penalty term will be inefficient from the minimax regret point of view.
As a last resort : increase the penalty effect to reinforce the escape from local traps :

+yt4+1(1 — X¢)—pe+17e+1X¢  if arm 1 is selected and wins
—Ye+1 Xt +pr+17e+1(1 — X¢) if arm 2 is selected and wins

Xi41 = Xt + . .
if arm 1 is selected and loses
if arm 2 is selected and loses

Whatever happens with the selected arm, it is penalized (escape from local traps).

A multi-armed version :
x{ = X+ [1&:3’ - thfl] At

1—17,-4
x! Ii=j
=Pt X1y {lft:j T4 —fl }



[l - 3 Over-penalized NSa and infallibility
Write Xy = Xt—1 + veb(Xt) + veper(Xe) + v¢ AMy. Drift :

b (x1,...,xq) = x; | (1 —x;)ps ijpj ,Vie{l,...,d}
J#i

Equilibria of X = h(X) : Dirac masses on each arm. Stable one : (1,0,...,0).

The Kushner-Clarck theorem — a.s. convergence towards an equilibrium (which one?)
Theorem (Infallibility of the Over-penalized NSa)

Ifpag <pag—1 <...<p2 <p1andy =y1t"%, py = p1t=F, then

0<B<a and a+ﬁ<1:>tli£_n X:=(1,0...,0) a.s.
—+00

Sketch of proof : The penalty term induced by & is

) 1 4
f{z(ﬂf):*qﬂ( pz)+d 1]%:7.27?(17pj)7V’L€{17...7d}

If X1 =0, k' (Xs) >0and:

Zt 'YtAMt >

a < = limsup 5
Ytpt

a+B <= vpt = +0 = ) yper(X¢) = +0



[l - 4 Non-asymptotic upper bound of the regret

We detail the picture for the two-armed over-penalized NSa

n
R = max E Al — Al
" je{1,2) ,;1 Lo

EY [pr— (Xepa+ (1= X, )po) |
t=1

1

w 1-X
= (p1—p2) ), ;e ¢
t=1 pt
—
=Yy

Xn+1 = Xn + WmVU(Xp) + 7nAMp 41,

In S.A., we expect a “Central Limit Theorem” for the renormalized sequence

*
VI (Xn —argminU) w—+)oo N(0,0%).
n—

A good news ? Be able to do the same for the sequence (Y3)¢>1 :

*
Y, 2>
n—+0o0



[l - 4 Non-asymptotic upper bound of the regret

We detail the picture for the two-armed over-penalized NSa

n
R max E Al — Al
noT B A A

= E) [ - (Xip+ (- X))
t=1

w 1-X

= (p—p2) ) e ¢
t=1 pt

=Yy

If the measure p has a finite first moment, we can expect

sup EY,, < o0,
n=1

which implies in turn

Rn < Pt

INgE

t=1

Find B in p; = p1t—# as large as possible s.t. 8 < a, @ + 3 < 1. Optimal calibration :

-

vt - P
Vi .

and pt = i



[l - 4 Non-asymptotic upper bound of the regret
We are turned to the random dynamical system induced by (Y%)¢>1. Again :

§/t+1 = 3/15 +"Yt§0t(y;£) +"YtAA{t+1.

Beyond the analytic formula of ¢¢, a simple picture :

0.3 1
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—0.3 R —0,2 R
—0.4 R —0.4 i
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FIGURE : Drift for non penalized (left) and overpenalized (right) NSa when y € [0, p; 1.

To control the increments of Y%, the right situation is much better :

Large value of Y; are naturally decreased by ¢



[l - 4 Non-asymptotic upper bound of the regret

> Difficulty : obtaining a uniform bound over all the values 0 < p2 < p1 < 1.
» Lyapunov arguments and painful computations lead to non asymptotic bound.
» Key quantity that induces the understanding of the good scaling

T™=p1— P2
Theorem (Upper bound of the regret : 2-armed over-penalized NSa)

VneN sup R, < 30V2n.

p2<p1

Optimal settings : v, = # and p, = ﬁ
Sketch of proof :

Define Zt(r) = (1_7# and exhibit a mean-reverting effect for r sufficiently large

E[ZF) = 27 + P (2(7).

> Find r such that P, is negative on [C (¢, W),vt_l] where C (v, ) = o(wt_l) and

supIE[Z,ST)] < .

t=0

» Exhibit a recursion between ]E[Zt(r)] and E[Zfr_l)] for a result on sup,; - E[Y?]



Il - 4 Numerical simulations
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» Over-penalization is important for a competitive regret

» Practical : R,, < /n - Theoretical : R,, < 30v/2n

» Defeated by UCB-like algorithms for the regret point of view (R, < /n/2)
> Much more faster than MOSS or UCB-like algorithms (1/100 of time).



Il - 4 Numerical simulations

FIGURE : Evolution of the probability of Arm 1 (best one) with respect to n while p; — p = 0.1.

Left : p1/~v1 is varying. Right : pa is increasing.

Seems to behave quite particularly (maybe after a good rescaling ?)
» Some jumps randomly distributed ? (more or less frequent according to the

parameters)
> Almost deterministic evolution between jumps when n is large



Il - 4 Numerical simulations

Time for a short movie ...
5 arms, p = [0.9,0.88,0.8,0.75,0.7].

Let's go back to the mathematics ...



111 Weak limit of the Over-penalized NSa
Il - 1 Rescaling
Il - 2 Trajectories of the rescaled over-penalized NSa
Il - 3 Ergodicity and Invariant measure
Il - 4 Ergodicity and mixing rate



[1l - 1 Rescaling

We fix p1 > max(ps,...,pq), the “good” rescaling of what is left over by X} is

Xn — (X721,77Xg)
Pn

Proposition
For any f € C2(R%1,R) :

E [f(XnJrl)‘]:n] = f(Xn) + m+1La(f)(Xn) + 0op(Ynt1),

where L, is the Markov generator given by

d
_ Dpj _ _
@ = 3 Bay e rot) - s@)+ S [5 mim | oso.
%/—/ —
i=2 Hf—’ jump size i=2
Jjump rate deterministic part

> The amount of jump is low when g = Z—i is large (seen in simulations).

» The size of jumps is large when g is large.



[1l - 1 Rescaling

As a tensorized process, it is enough to study the following Markov generator :
L(f)(@) = (a—bx)f'(z) + ca[f(T + g) — f(2)]

» Family of Piecewise Deterministic Markov Process (PDMP for short)

» Random dynamical systems with an increasing interest (encountered in many
modelisation problems)
» Famous examples (among many others) :
> Telegraph process [Kac, '74]
Storage models [Roberts & Tweedie,’00]

* Randomly switched ODE [Benaim et al.,'14] & Parrondo-like paradox
> TCP models [Guillin, Malrieu et al."13, Cloez & Hairer'13]

What the dynamic looks like exactly in the over-penalized NSa case ?
> Set

= l_pl b:pl c-:ﬁ g:’y—1
d—1" 5 Cj g ) o1

» Between jumps, the evolution is deterministic and follow a differential flow

a

s —plé] ded(€,t)

R e

> Poisson jumps with an instantaneous average push of %:fj X g.

Here, the size of the jumps are deterministic.



[1l - 2 Trajectories of the rescaled over-penalized NSa

» L4 acts as a tensorized Markov generator on each coordinate.

» The problem is reduced to the study of the random dynamic system described by
L(f)(@) = (a = b2)f'(2) + cz[f(z + g) - f(2)],

» Examples of rescaled trajectories for several values of (a, b, c, g)

o]

» Asymptotic direction : a/b. Bottom left : transient behaviour when cg > b ...but
in the bandit algorithm

cg—b=p;—p1 <0 (1)



[l - 3 Ergodicity and Invariant measure

Ergodicity can be helpful to derive confidence bounds. It requires to obtain some
mixing properties around an/the invariant measure.

L(f) (@) = (a = bx) () + ca[f(z + g) — f(D)],
For over-penalized NSa, the process should be studied only when cg — b < 0.

Proposition (Invariant measure - rescaled over-penalized NSa)
The PDMP X; has a unique invariant measure i supported by

1_p1 |:d71
— 7 4w )
[pl(d— 1)

Sketch of proof : existence and uniqueness through a Lyapunov certificate :
L(Id) =a— (b—cg)ld.

But ...Some real difficulties :

> No explicit formula for i ... We are far from a standard CLT with a Gaussian
distribution and even far from the simplest case of the TCP process

> Less is known about the smoothness of p ... Intricate situation as pointed by
[Bakhtin & Hurth & Mattingly '14].



[l - 4 Ergodicity and mixing rate

L is a non-reversible Markov operator, which is usual for this kind of kinetic models
The question : Obtaining an upper bound of the mixing rate :

d(L(Xy¢),p) <e(t) — 0 as t—> +oo.

» Traditional distance

IL(Xe) = il o e = sup JELAXE)] = (D))
f "fH]LZ(“):l

Non-reversible generators : difficult to handle with the IL? distance, require
informations on p (Modified norms [Villani,’09], Lie brackets [Gadat & Miclo'13])

> Resort less sophisticated distances induced by trajectorial properties (instead of
functional ones)
Wasserstein distance :

1
Wy (v1,v2) = inf {E (X = Y)"))» | L(X) = 1, L(Y) = 2
Total Variation distance :
drv(vi,v2) = max [1(Q) — v2(Q)]

» Use some coupling techniques to derive quantiative bounds



[l - 4 Ergodicity and mixing rate

The simple idea :

» Build a non independent coupling (X¢,Y:) such that X; and Y; follow the
dynamic given by £ and Yy ~

» Try to make X: and Y; close to each others for the Wasserstein results

Theorem (Wasserstein ergodicity)
An explicit constant -y, exists such that

WP(L(Xt)yﬂ) < 'Ype_m/py
where m = p1 — p2 is the difference between the 2 probabilities of success of the 2
best arms
Optimal for Wi. Open questions for W,,.
> Try to make the two processes X: = Y: stucked rapidly for the TV results
Theorem (Total Variation ergodicity)

Some explicit constants C' and o exist such that

dry (L(Xy), 1) < Ce™ @7,

Suspected to be far from the optimal exponents.
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IV Conclusion

Statistics :

>

>

>

>

Standard NSa Algorithm is fallible ...
Penalized bandits are infallible
Over-penalization : relevant for regret bounds

Over-penalization : traduces a vanishing repelling effect on each corner of the
simplex.

Minimax result in the two-armed case :
R, < CV2n,

Much more faster than what is already existing in Bandit methods while
statistically competitive (not as good as KL UCB)

Probability :

>

>

>

Rescaled process as a PDMP.
Random jumps come from the binary rewards given by each arm.

Ergodic properties

Anecdotal :

>

Used in some trading firms in « La Defense » ...



[V Conclusion
Open questions :
> Regret with d arms? Numerical simulations lead to the conjecture

R, < CVdn,

which is the known minimax rate for d-armed bandit.

Euplution of the uniforn regret of (-F-B ith respect to the runbre of arws, r=1000

Rysart(n)

o 1 2 % R

o %0 W
Nunber: of arns

Over-Penalized NSa seems to behave well ...

> What should be a generalization of Over-Penalized NSa for continuous rewards ?
What is the rescaled process (suspected to be a diffusion instead of a jump
process ...)
> Many challenging questions with the PDMP :
> Spectral results and L? convergence
> Wasserstein lower bounds
> Smoothness of the invariant measure

Thank you for your attention
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