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Cell biology revolution

® The cell has been discovered in
the 17th century

® Cells are the basic unit of
structure and function in living
organisms

® Physiology emerges as the
meta-cellular science
(interaction between cells)

Statistics for single cell data analysis F. Picard



Brief

00®0000000000

Cell sorting and the investigation of between-cell variations
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Cell biology is going molecular

Visualization of Single RNA Transcripts in Situ

Andrea M. Femino, Fredric S. Fay,i Kevin Fogarty,
Robert H. Singer*

Fluorescence in situ hybridization (FISH) and digital imaging microscopy were modified
to allow detection of single RNA molecules. Oligodeoxynucleotide probes were syn-
thesized with five fluorochromes per molecule, and the light emitted by a single probe
was calibrated. Points of light in exhaustively deconvolved images of hybridized cells
gave fluorescent intensities and distances between probes consistent with single mes-
senger RNA molecules. Analysis of B-actin transcription sites after serum induction
revealed synchronous and cyclical transcription from single genes. The rates of tran-
scription initiation and termination and messenger RNA processing could be determined
by positioning probes along the transcription unit. This approach extends the power of
FISH to yield quantitative molecular information on a single cell.

30-50 probes labeled on 3" end

Positions selected to optimize GC content

—_— —y —) — — —f — ) mrn) e

Open reading frame of target mRNA

SCIENCE  VOL. 280 * 24 APRIL 1998 ¢ www.sciencemag.org

Statistics for single cell data analysis Picard



Brief
0000000000000

Cell biology goes genome-wide

® (Classify cells into distinct cell
types

® Shape, location, interactions,
function

® Recent technological
breakthroughs allow the
molecular characterization of
cells

2-’ a17.Neurons (5
a08VLMCs [2]

The single-cell rule

if IT exists, there is a single-cell version of IT (sooner or later)
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The RT-gPCR version
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BIRT + preamplification BioMark

® Precise for a small number of genes
® not too expensive (100 cells)
® pros and cons of RT-qPCR are well known

F. Picard
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The Sequencing version [6]
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The UMI version [6]
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® up to 20,000 genes analyzed
® static snapshot

® expensive (for hundreds of cells)
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The split version [12]

in'situ Reverse
Transcription
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UMI, and PCR Handle

m
Ligation of 2° Well
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® up to 20,000 genes analyzed
e for millions of cells
® cheap
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Template Switch
Reverse Transcription
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A timeline: technologies [15]

Timeline of Single Cell Sequencing Milestones
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The Moore's law of single cell [10]

1,000,000 © SCRNA-Seq studies
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The human cell Atlas project There are
37 trillion ceIIs

in the human body

The Human Cell Atlas will create a ‘Google map’
of the human body. This is a global effort.

® comprehensive reference catalog of all f
human cells . ;

® use stable properties, transient
features, locations and abundances.

® describe each human cell by a defined
set of molecular markers

® based on DNA variations, RNA,
Epigenome at the single-cell resolution

Statistics for single cell data analysis F. Picard
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Single-Cell from a statistician’s perspective

Single-Cell Analysis , / * -
) - -
- P
ey

Single-Cell input

Reveals heterogeneity
and subpopulation

3 Each cell type has a distinct expression variability of
2 expression profile thousands of cells
L]
Bulk Analysis
I
Bulk RNA input Average gene expression Cellular heterogeneity
from all cells masked

From 10X Genomics
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@® Differential Expression Analysis for sequencing data

Statistics for single cell data analysis F. Picard



DEA-Seq scDEA LinDimR NonLinDimRed Conclusions Re

) 000000000000 O

Let's adopt the ANOVA framework

Yijr : expression (continuous) for gene i in condition j at replicate r

Perform DE between conditions using model

Yijr ~ N (E(Yjjr), 0°)

E(Yikr) = pij = pp+ o + Bj + ((1;‘3’),-1-

® The parameters of the model are interpreted as :
® «; : mean expression of gene i (across conditions),
® [(; : mean expression in condition j (across genes),
® (afB); : interaction effect gene x condition

Allows to integrate normalization while testing

Statistics for single cell data analysis F. Picard
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Testing framework

Hypothesis : no expression difference between conditions

Ho : {(aB)y = (aB) ;)

The classical statistic for gene / is the Student statistic

T;:MX\/2R—2; T(2R —2)
g 0

Estimation of mean fixed effects is done by Maximum Likelihood

Multiple testing issues are assessed using the FDR control

Statistics for single cell data analysis F. Picard
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What about the estimation of the dispersion parameter 7

Refinements / difficulties concern the estimation of o, the

dispersion parameter
2

A common variance to all genes o : robust but lacks of power

A specific variance to every gene a,-z . powerful but sensitive to
outliers,

- Large sampling variance
- To be stabilized empirically

Groups of variances (combination of both)

Statistics for single cell data analysis F. Picard
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The Generalized Linear Model framework

Yjj- : the read count (positive integer), for gene i in condition j
Define the Generalized Linear Model (GLM) by setting

Vie ~ Pl
log E(Yjr) = log(pj) = p+ai+ B+ (af);

Parameters have the same interpretation

Testing hypotheses are similar : H{ : {(aB3);; = (aB):»}

Dispersion parameter ? Test statistics ?

Statistics for single cell data analysis F. Picard
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The Exponential family of distributions

Family of distributions that share common mathematical properties

The Exponential Family is one of the most widely used

Consider two types of parameters :

® ¢ the natural parameter, related to the location parameter
® ¢ the dispersion parameter

If Y belongs to the exponential family, its density is of the form

4 ¢

2

Gaussian o
_ y0—b(0) 8
p(yﬁ?(ﬁ)“exp( 2(9) ) Poisson  log(u) 1

Binomial logit(x) 1

Statistics for single cell data analysis F. Picard
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The Generalized Linear Model (GLM)

® Suppose that E(Y) = u linearly depends on some covariates X
g(E(Y)) = g(n) = Xp

® 1 = g(u) is often called the linear predictor
® Most of the time the canonical link is used g(u) = g(b'(8)) =0

g(u) V(p)
Gaussian 1 1
Poisson  log(u) 1

Binomial logit(p) (1 — p)

¢ In GLMs, overdispersion ¢ is not used (exponential dispersion family)

Statistics for single cell data analysis F. Picard
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Location / Dispersion relations

The first two moments of the exponential family are :

E[Y] = b(0)=pu
VY] = b(0) x a(¢)

The expectation y is a function of 0 only (location)

® The variance is a function of both (6, ¢) (location and dispersion)

b () is called the variance function (also denoted by V/(u)), and
describes how the variance relates to the mean

Gaussian : (exception!) a(¢) = 02 and b"() = 1 (cst curvature)

Poisson, Binomial : a(¢) =1 (no freedom)

Statistics for single cell data analysis F. Picard
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A matter of vocabulary

® Recall that V[Y] = a(¢) x V(u) where ¢ is the dispersion parameter
® The Poisson distribution has no dispersion parameter

® The only possible Discrete Exponential Dispersion model with a
disperson parameter are additive models such as Negative
Binomial or Poisson-Tweedie

® Parameter o may be called dispersion parameter

al¢)  V(w)
Poisson 1 I
QuasiPoisson o) ]
Negative Binomial 1 p+ K2
Tweedie Poisson 1 P

Statistics for single cell data analysis F. Picard
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Dealing with dispersion estimates

® If we choose the NB model, V(1) = u + rp?

® Then we can follow the same procedure compared with the Gaussian
case:

® Use genes as replicates to uncover the mean /variance relationship
(one gene=one point)

® perform a regression V(1) = i + KGlopaljt® to estimate K glopas that
would be common to every gene

® In Anders et al., the final “dispersion” estimate is for each gene :
max(Kglopal; ki) (little loss in power)

Statistics for single cell data analysis F. Picard
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Testing Strategies based on LRT

® Compare different models, for instance

log(nij) = p+ai+p5;
log(pjj) = p+ai+pBi+ (aﬁ)ij

® Use the Ratio of log likelihoods as a Statistics, which incorporates

all infos:

LRT = —2log (W) ~ Y2(AdF)
L, a,p) ) Ho

® This has been shown to be the best strategy on Sequencing data

Statistics for single cell data analysis F. Picard
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Conclusion: don't think Normal !

® Use Generalized Linear Models to perform Count regression, and
not Gaussian regression on the log-counts

® |ncorporate effects in the model to perform a global analysis that
accounts for distributional characteristics

® Do not perform tests that imply Poisson distribution when data are
over-dispersed

® Use Likelihood Ratio Tests to compare models

e Qverdispersion leads to estimation issues due to numerical
problems

Statistics for single cell data analysis F. Picard



scDEA
©000000000

Outline

© Differential Expression Analysis for single cell data
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How bad is the situation in single cell data ?

High-magnitude
outlier

Overdispersion

Dropout events

Log,o(RPM) in cell 1

o 1 2 3 4
Log,o(RPM) in cell 2

Overdispersion is mainly biological because diversity is high between cells

[5]

Statistics for single cell data analysis F. Picard
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Expression is a stochastic bursty process: biological zeros

Promoter active periods
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The curse of Dropouts

® | ow starting amount of RNAs: transcripts will be missed during RT
e Amplification is needed (x10°), which creates distortions

® Stochasticity of gene expression (bursty process) sparsity of the
data, high proportion of zeros

® Dropout depends on cells (different in different wells),
® Lowly expressed genes : sampling / amplification issues

® Highly expressed genes: is more likely to indicate a burst

Statistics for single cell data analysis F. Picard
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Consequences for the analysis of multiple single cells

The data consist of a snapshot : all cells are not synchronized

No technical replicate per cell (invasive experiment)

A lot of zeros in the data : zero inflated count distributions

For cell r, gene i, condition j, the expression value is modelled by

Y,'jr ~ 7T,'(50 + (1 — F;)NB(,U,,'J',)

Difficulty to discriminate between low expression / no expression

m;i = f(E(Yjr))

Statistics for single cell data analysis F. Picard
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Two-component Generalized Linear Model [11]

J genes

Known sample-level covariates

Known gene-level covariates Unknown sample-level covariates

n samples " J L J K J
i L
= RS + i + w ks
J genes n n n
S — — S — —_— —_—_—r
logit = Observed Unknown Unknown Observed Unobserved ~ Unknown
random parameter parameter random random parameter
nsamples variable variable variable
X intercept acts as a Vintercept acts as a sample-
gene-specific scaling factor specific scaling factor
Statistics for single cell data analysis Picard
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Inference for ZINB models

® Optimization can be based on IRWLS (iterative) combined with the
EM algorithm

® EM is used to retrieve the ZI compartment

® Then IRWLS is used to estimate the parameters in the NB
compartement

® Quite challenging from the numerical point of view

® Use Bayesian strategies thanks to the Poisson-Gamma
representation of NB distributions

b
a+1

p~T(ab), Yiu~Pu), Y~ NB(a,

)

Model the sampling process of genes

Statistics for single cell data analysis F. Picard
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Normalizing single cell expression data

® Adjusts for effects related to distributional differences in read counts
between cells (sequencing depth)

® Scaling factor for cell r to rescale all cell specific measures on a
common scale

E(Yir) = sr X pjj
® How to estimate the scaling factor 7 RPKM 7?7

® Library size normalization can be dominated by a handful of highly
expressed genes, which can bias downstream analysis .

® Quantile matching ? but difficult to apply with zero Inflation

® Litterature suggests to use the trimmed means proposed by DESeq
[13]

Statistics for single cell data analysis F. Picard
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Normalizing single cell expression data [13]

Cell-specific  Gene-specific Not removed
effects effects by UMIs

Sequencing depth V4 V4
Amplification V4 /

Pteeny Y o
Gene length V4

GC content Ve V4 v

mRNA content V4 V4
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Hypothesis testing becomes more intricate

A Compartment model defined by (m, 1)

Testing hypotheses are similar : H{ : {(, ;) = (mjr, pjr)}

What is differential expression ? Differential dropout ?
Difficulty to define H;

Statistics for single cell data analysis F. Picard
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@ Linear Dimension reduction and data visualization
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An unprecedented challenge

® Genomics was precursor for data representation and visualization

Publication cells tissue Seq. protocol clusters
Cadwell et al. (2016) 46  visual cortex Smart-seq? 2
Tasic et al. (2016) 1,679 visual cortex SMARTer 49
Macosko et al. (2015) 44,808 retina Drop-seq 39
10x Genomics 1,306,127  brain cells ~ 10x Gen.Chrom. 39

® We are far beyond the few clusters / some points

¢ Dimension reduction is mandatory for any analysis (clustering,
visualization, GRN inference, etc)

Statistics for single cell data analysis F. Picard
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High-dimensional count data

xjj = expression of gene j in cell i

Xoxp = Xjj : cells

genes

® High dimension: n grows but < p

e Count data with dropouts

Statistics for single cell data analysis F. Picard
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A quickie on PCA 1

® PCA represents multivariate data X, using projection in a lower
dimensional space of dimension K < p.

® PCA is non supervised in the sense that the projection is done
without guidance

® The strategy is global : there may exist correlations between
variables that could be used to summarized the data, and to
visualize X despite its dimensionality.

o PCA provides orthogonal principal components that best explain the
variability of the data globally.

® The key ingredient of PCA is then the empirical covariance matrix

1
Spxp = mXZXC

Statistics for single cell data analysis F. Picard
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A quickie on PCA 2

® PCs ty,...,tk, are defined s.t. tjy = Zf:l Wik Xij
® wj quantifies the weight of variable X ; in the constitution of PC k.

® wi,...,Wk are determined iteratively by finding the PCs that carry

most inertia
V(ty) = w] XT Xwy.

® Solve iteratively the following optimization problem:

W, =arg max {WTXCTXCW} , with t, = Xwy L tq,...tx_1.
weRP |jw||=1

® wi,...w, are the associated eigen vectors of wTXCTXCw associated
with eigen values A1, ...\,.

Statistics for single cell data analysis F. Picard
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A quickie on PCA 3

® A singular value decomposition is the decomposition of a matrix X,
such that X, = UDVT,
® D,,, = diag(dy,...0,) is the diagonal matrix of singular values of X..
® U is orthonormal, whose columns are eigen vectors of (X.X/)
® V is orthonormal whose columns are eigen vectors of (X[ X.)
® PCA can be rephrased as a minimization problem:
min X —UVT|2
uER” VERP, [luf|=||v]|=1
* with |A|[z = a7

Ij’

Statistics for single cell data analysis F. Picard
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Matrix factorization: X ~ UV’

Cells: U e R™K

G V e RPXK Low dimensional representation
enes: €

VT

Q

uv’

— Low-rank representation of X
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Approximation X ~ UV T?

Sense of the approximation? + .. . ;. .
1

uv’
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Approximation X ~ UV T?

Sense of the approximation 7 1 i »

i UvT

X U

Principal Component Analysis:
® Find a linear projection of X with maximum variance

® SVD algorithm: argmin HX — UVTHf_
UcR"™K VeRP*K

® |Least squares approximation

Statistics for single cell data analysis F. Picard
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RNA-seq data = Counts

|
Relation between geometry and underlying model
| - []2 <> Gaussian distribution

® First idea: Xjj ~ P(\)

® Highly expressed genes s
— large A .

T T T T T 1
i . . 160 180 200 220 240 260
< Gaussian approximation

Figure: P(200) empirical distribution
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RNA-seq data = Counts

|
Relation between geometry and underlying model
| - []2 <> Gaussian distribution

® First idea: Xjj ~ P(\)

3000

® Highly expressed genes

0 1000

— large A

— Gaussian approximation

Figure: P(2) empirical distribution
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Need for a probabilistic PCA

® Over-dispersion in RNA-seq data — Var(Xj;) > E[Xj]
® Single-cell data: zero-inflation — P(Xj; = 0) > e™*

|
Embed PCA with a probabilistic model

® Xj; ~ probability distribution in the exponential family
¢ Factorization of E[X] rather than X

® Replace || - ||2 approximation by likelihood-based approaches

Statistics for single cell data analysis F. Picard



LinDimRed NonLinDimRed Conclusions References
) 0O000000000@000 VOO )00 00

Generalized PCA[3] and Poisson NMF [§]

® Xjj ~ P(\jj) with the Poisson rate matrix A = [Aj]nxp
® Decompose E[X] = A such that \jj = >, Ui Vi

Bregman divergence vT
(Likelihood) T
P
1 j P 1 K
1 1
i A=UVT
X~ 2Z(N) U

Statistics for single cell data analysis F. Picard
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Pr

® Factors U,V become Gamma latent variables
® Marginal distribution is over-dispersed: Var(Xj) > E[Xj]

® D = drop-out event indicator

M(Bk,1, Bk,2)
e O
QRS
Q1 @/'

Mak1, ak2)

Statistics for single cell data analysis F. Picard
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Probabilistic variable selection with a spike and slab model

® Sparsity-inducing priors:

Vi ~ msog + (1 — ms)T(Bk,1, Bk,2)

Bl = selected genes (vi # 0) v’
1 . Jj P
St
«

1 J P 1 .. K
1 1
i o uv’

X u
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Model inference

Recover the posterior distributions U | X and V | X
Estimate the factors as U = E[U | X] and V = E[V | X]

® Posteriors are not explicit

® Variational inference: approximation of the posteriors

Statistics for single cell data analysis F. Picard
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Outline

@ Alternatives to PCA, non linear embedding methods
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Beyond Linear projections

Linear methods are powerful for planar structures

High dimensional datasets are characterized by multiscale properties
(local / global structures)

May not be the most powerful for manifolds

® Non Linear projection methods aim at preserving local
characteristics of distances

Genes

Statistics for single cell data analysis F. Picard
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Stochastic Neighbor Embedding 1 [14]

® (x1,...,xp) are the points in the high dimensional space RP,

o Consider a similarity between points:
exp(—|lxi — x%/207)
Pijj = . pi = (pij + Pjji) /2N
I S ep(—la —xgl2/203)" T
® o smooths the data (linked to the regularity of the target manifold)

® o is chosen such that the entropy of p is fixed to a given value of
the so-called perplexity

exp | — Y _ pjjlog(pj)
7

Statistics for single cell data analysis F. Picard
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Visual inspection of the influence of o[7]

a Perplexity = 50 b Perplexity =5 C Perplexity = 500
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eighbor Embedding 2

e Consider (y1,...,Yyn) are points in the low dimensional space R?

® Consider a similarity between points in the new representation:

G — exp(—llyi — yil%)
VY i ep(=llyk — yi1?)

® Robustify this kernel by using Student(1) kernels (ie Cauchy)

ar — Ll =)
b i@+ i = v

Statistics for single cell data analysis F. Picard
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Stochastic Neighbor Embedding 3

® Minimize the KL between p and g so that the data representation
minimizes:

Cly) = Z KL(py, qij)

® The cost function is not convex

20 S (s - i~ )

)

® \ery sensitive to starting values

Statistics for single cell data analysis F. Picard
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Stochastic Neighbor Embedding 4 [7]

a Macosko et al. 2015 b Shekhar et al. 2016 c Harris et al. 2018

8ga & o e
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Stochastic Neighbor Embedding 5 [7]

a N = 25000 b N=1306127

Statistics for single cell data analysis F. Picard



Brief LinDimRed NonLinDimRed Conclusions
)O000000 I 000000 0O )OO0OO 000000008000

Pro

® good at preserving local distances (intra-cluster variance)
® not so good for global representation (inter-cluster variance)

® hence good at creating clusters of points that are close, but bad at
positionning clusters wrt each other

® preprocessing very important : initialize with PCA and feature
selection plus log transform (non linear transform)

® percent of explained variance 7 interpretation of the g distribution ?
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Single-cell RNAseq example[9]
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Method pCMF

PCA

ZIFA

t-SNE

t-SNE

type

« CTX

« TAP

= aNSC1
+ aNSC2
= gNSC1
+ qNSC2

(after pCMF)

Exp. Dev. 70.3 %

34.8 %

26% /

/

Adj. Rl 38.3 %
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A taxonomy of Dimension Reduction Methods [4]
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Conclusions of a comparative study [4]

® |ocal methods suffer from the choice of the smoothing
(neighborhood) parameter

o Kernel PCA suffers from the choice of the Kernel to correctly
approximate the manifold.

® Setting the optimization problem is the key (convex or not), trivial
solutions, local optima, computationally feasible

® nonlinear techniques for dimensionality reduction are, despite their
large variance, often not capable of outperforming traditional linear
techniques such as PCA.
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® Conclusions
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What is missing 7

Clustering
® Trajectory inference

® Epigenomics

Networks

Statistics for single cell data analysis F. Picard



NonLinDim d Conclusions References

[1] Probablllstlc Count /\/Iatrlx Factorlzatlon for S/ng/e Ce// Expressron Data
Analysis, Lecture Notes in Computer Science, Berlin, Germany, 2018.
Springer.

[2] J. N. Campbell, E. Z. Macosko, H. Fenselau, T. H. Pers, A. Lyubetskaya,
D. Tenen, M. Goldman, A. M. Verstegen, J. M. Resch, S. A. McCarroll,
E. D. Rosen, B. B. Lowell, and L. T. Tsai. A molecular census of arcuate

hypothalamus and median eminence cell types. Nat. Neurosci.,
20(3):484-496, Mar 2017.

[3] Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. A
generalization of principal components analysis to the exponential family. In
Advances in Neural Information Processing Systems, pages 617-624, 2001.

[4] LJP Van der Maaten, EO Postma, and HJ Van den Herik. Dimensionality
reduction: A comparative review. TiCC, 2009.

[5] P. V. Kharchenko, L. Silberstein, and D. T. Scadden. Bayesian approach to
single-cell differential expression analysis. Nat. Methods, 11(7):740-742,
2014.

[6] T. Kivioja, A. Vaharautio, K. Karlsson, M. Bonke, M. Enge, S. Linnarsson,
and J. Taipale. Counting absolute numbers of molecules using unique
molecular identifiers. Nat. Methods, 9(1):72-74, Nov 2011.



Conclusions References

[7] Dmltry Kobak and Ph|I|pp Berens The art of using t-sne for smgle cell
transcriptomics. bioRxiv, 2018.

[8] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788-791, October
1999.

[9] Enric Llorens-Bobadilla, Sheng Zhao, Avni Baser, Gonzalo Saiz-Castro,
Klara Zwadlo, and Ana Martin-Villalba. Single-Cell Transcriptomics
Reveals a Population of Dormant Neural Stem Cells that Become Activated
upon Brain Injury. Cell Stem Cell, 17(3):329-340, September 2015.

[10] A. Regev, S. A. Teichmann, E. S. Lander, and I. et al. Amit. The Human
Cell Atlas. Elife, 6, 12 2017.

[11] D. Risso, F. Perraudeau, S. Gribkova, S. Dudoit, and J.-P. Vert. A general
and flexible method for signal extraction from single-cell RNA-seq data.
Nature Comm, 9(284), 2018.

[12] Alexander B Rosenberg, Charles Roco, Richard A Muscat, Anna Kuchina,
Sumit Mukherjee, Wei Chen, David J Peeler, Zizhen Yao, Bosiljka Tasic,
Drew L Sellers, Suzie H Pun, and Georg Seelig. Scaling single cell
transcriptomics through split pool barcoding. bioRxiv, 2017.

Statistics for single cell data analysis F. Picard



Conclusions  References

[13] C A VaIIeJos D Rlsso A Saaldone S. Dudont andJ C Marlom
Normalizing single-cell RNA sequencing data: challenges and opportunities.
Nat. Methods, 14(6):565-571, Jun 2017.

[14] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9(Nov):2579-2605, 2008.

[15] Y. Wang and N. E. Navin. Advances and applications of single-cell
sequencing technologies. Mol. Cell, 58(4):598-609, May 2015.

Statistics for single cell data analysis F. Picard



	Brief Presentation of single cell sequencing
	Differential Expression Analysis for sequencing data
	Differential Expression Analysis for single cell data
	Linear Dimension reduction and data visualization
	Alternatives to PCA, non linear embedding methods
	Conclusions
	References

