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Matrix factorisation in data processing

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorisation in data processing

for dimensionality reduction (coding, low-dimensional embedding)
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Matrix factorisation in data processing

for unmixing (source separation, latent topic discovery)
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Matrix factorisation in data processing

for interpolation (collaborative filtering, image inpainting)
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Nonnegative matrix factorisation
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I data V and factors W, H have nonnegative entries.

I nonnegativity of W ensures interpretability of the dictionary, because
patterns wk and samples vn belong to the same space.

I nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)

12



49 images among 2429 from MIT’s CBCL face dataset
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PCA dictionary with K = 25

red pixels indicate negative values

14



NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)
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NMF for latent semantic analysis
(Lee and Seung, 1999; Hofmann, 1999)
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
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the relative frequency of each word within a feature. Right, the eight most frequent words
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.

Received 24 May; accepted 6 August 1999.

1. Palmer, S. E. Hierarchical structure in perceptual representation. Cogn. Psychol. 9, 441–474 (1977).
2. Wachsmuth, E., Oram, M. W. & Perrett, D. I. Recognition of objects and their component parts:

responses of single units in the temporal cortex of the macaque. Cereb. Cortex 4, 509–522 (1994).
3. Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621

(1996).
4. Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94,

115–147 (1987).
5. Ullman, S. High-Level Vision: Object Recognition and Visual Cognition (MIT Press, Cambridge, MA,

1996).
6. Turk, M. & Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991).
7. Field, D. J. What is the goal of sensory coding? Neural Comput. 6, 559–601 (1994).
8. Foldiak, P. & Young, M. Sparse coding in the primate cortex. The Handbook of Brain Theory and

Neural Networks 895–898 (MIT Press, Cambridge, MA, 1995).
9. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse

code for natural images. Nature 381, 607–609 (1996).
10. Lee, D. D. & Seung, H. S. Unsupervised learning by convex and conic coding. Adv. Neural Info. Proc.

Syst. 9, 515–521 (1997).
11. Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemometr. Intell. Lab.

37, 23–35 (1997).
12. Nakayama, K. & Shimojo, S. Experiencing and perceiving visual surfaces. Science 257, 1357–1363

(1992).
13. Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. The ‘‘wake-sleep’’ algorithm for unsupervised neural

networks. Science 268, 1158–1161 (1995).
14. Salton, G. & McGill, M. J. Introduction to Modern Information Retrieval (McGraw-Hill, New York,

1983).
15. Landauer, T. K. & Dumais, S. T. The latent semantic analysis theory of knowledge. Psychol. Rev. 104,

211–240 (1997).
16. Jutten, C. & Herault, J. Blind separation of sources, part I: An adaptive algorithm based on

neuromimetic architecture. Signal Proc. 24, 1–10 (1991).
17. Bell, A. J. & Sejnowski, T. J. An information maximization approach to blind separation and blind

deconvolution. Neural Comput. 7, 1129–1159 (1995).
18. Bartlett, M. S., Lades, H. M. & Sejnowski, T. J. Independent component representations for face

recognition. Proc. SPIE 3299, 528–539 (1998).
19. Shepp, L. A. & Vardi, Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans.

Med. Imaging. 2, 113–122 (1982).
20. Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55–59

(1972).
21. Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 74, 745–754

(1974).
22. Dempster, A. P., Laired, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM

algorithm. J. Royal Stat. Soc. 39, 1–38 (1977).
23. Saul, L. & Pereira, F. Proceedings of the Second Conference on Empirical Methods n Natural Language

Processing (eds Cardie, C. & Weischedel, R.) 81–89 (Morgan Kaufmann, San Francisco, 1997).

Acknowledgements
We acknowledge the support of Bell Laboratories and MIT. C. Papageorgiou and T. Poggio
provided us with the database of faces, and R. Sproat with the Grolier encyclopedia corpus.
We thank L. Saul for convincing us of the advantages of EM-type algorithms. We have
benefited from discussions with B. Anderson, K. Clarkson, R. Freund, L. Kaufman,
E. Rietman, S. Roweis, N. Rubin, J. Tenenbaum, N. Tishby, M. Tsodyks, T. Tyson and
M. Wright.

Correspondence and requests for materials should be addressed to H.S.S.

court
government
council
culture
supreme
constitutional
rights
justice

president
served
governor
secretary
senate
congress
presidential
elected

flowers
leaves
plant
perennial
flower
plants
growing
annual

disease
behaviour
glands
contact
symptoms
skin
pain
infection

Encyclopedia entry:
'Constitution of the

United States'

× ≈

president (148)
congress (124)
power (120)
united (104)
constitution (81)
amendment (71)
government (57)
law (49)

metal process method paper ... glass copper lead steel

person example time people ... rules lead leads law

Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.

vn W hn

reproduced from (Lee and Seung, 1999)

16



NMF for hyperspectral unmixing
(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

2

Fig. 1. Hyperspectral imaging concept.

I. INTRODUCTION

Hyperspectral cameras [1]–[11] contribute significantly to earth observation and remote sensing [12],

[13]. Their potential motivates the development of small, commercial, high spatial and spectral resolution

instruments. They have also been used in food safety [14]–[17], pharmaceutical process monitoring and

quality control [18]–[22], and biomedical, industrial, and biometric, and forensic applications [23]–[27].

HSCs can be built to function in many regions of the electro-magnetic spectrum. The focus here is

on those covering the visible, near-infrared, and shortwave infrared spectral bands (in the range 0.3µm

to 2.5µm [5]). Disregarding atmospheric effects, the signal recorded by an HSC at a pixel is a mixture

of light scattered by substances located in the field of view [3]. Fig. 1 illustrates the measured data.

They are organized into planes forming a data cube. Each plane corresponds to radiance acquired over a

reproduced from (Bioucas-Dias et al., 2012)
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NMF for audio spectral unmixing
(Smaragdis and Brown, 2003)

11 

Non-Negative Matrix Factorization 

! All factors are positive-valued:  
! Resulting reconstruction is additive 
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reproduced from (Smaragdis, 2013)
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Outline

Generalities
Matrix factorisation in data processing
Nonnegative matrix factorisation

Maximum marginal likelihood estimation
Definition
Algorithms

Experiments
Toy example
Text retrieval
Audio spectral decomposition
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Traditional NMF

Minimise a measure of fit between V and WH, subject to nonnegativity :

min
W,H≥0

D(V|WH) =
∑

fn

d([V]fn|[WH]fn),

where d(x |y) is a scalar cost function, e.g.,

I squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)

I generalised KL divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)

I Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)

I α-divergence (Cichocki et al., 2008)

I β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

I Bregman divergences (Dhillon and Sra, 2005)

I and more in (Yang and Oja, 2011)

Regularisation terms often added to D(V|WH) for sparsity, smoothness,
dynamics, etc.
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Probabilistic viewpoint

I Let V ∼ p(V|WH) such that
(1) p(V|WH) =

∏
fn p(vfn|[WH]fn)

(2) E[V|WH] = WH

I then the following correspondences apply with

D(V|WH) = − log p(V|WH) + cst

data support distribution/noise divergence examples

real-valued additive Gaussian squared Euclidean many

integer multinomial weighted KL word counts

integer Poisson generalised KL photon counts

nonnegative
multiplicative
Gamma

Itakura-Saito spectral data

generally non-
negative

Tweedie β-divergence
generalises
above models

I NMF sometimes cast as maximum likelihood estimation of W and H.
I ill-posed estimation, because the number of parameters grows with data

(one hn for every vn)
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Maximum marginal likelihood estimation
(Dikmen and Févotte, 2011, 2012)

I treat W as a deterministic variable.

I treat H as a random latent variable with prior p(H).

I optimise the marginal likelihood of V and W :

min
W≥0
− log p(V|W) = − log

∫

H

p(V|WH)p(H)dH.

+ better-posed than traditional NMF (fixed number of parameters)

+ better-behaved with respect to scales

+ self-regularisation of the rank observed in practice

/ hard-to-obtain estimator that mingles optimisation and integration steps

Background

I inspired by ICA & sparse coding, latent Dirichlet allocation (LDA),
statistical estimation with nuisance parameters

I fully-Bayesian methods treat both W and H as random parameters and
aim at p(W,H|V)
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Maximum marginal likelihood estimation
(Dikmen and Févotte, 2011, 2012)

Expectation-Maximisation : complete data V with H and optimise

Q(W|W̃) = −
∫

H

log p(V,H|W)p(H|V, W̃)dH

p(H|V, W̃) not available in most models.

Resort to

I variational EM : q(H) ≈ p(H|V, W̃)

QVB(W|W̃) = −
∫

H

log p(V,H|W)q(H)dH

I Monte-Carlo EM : H(i) ∼ p(H|V, H̃)

QMC(W|W̃) = −
∑

i

log p(V,H(i)|W)
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24



Setup

Models

Gamma-Poisson Gamma-Exponential

p(V|WH)
∏

fn Pois(vfn|[WH]fn)
(Poisson)

∏
fn Exp(vfn|[WH]fn)

(multiplicative exponential noise)

p(H|β)
∏

kn G(hkn|αk , βk)

Estimators

I Maximum marginal likelihood estimation (MMLE)

CML(W,β) = − log p(V|W,β)

Optimisation with variational EM or MC-EM.
Estimation of H given Ŵ in a second step by MAP.

I Maximum joint likelihood estimation (MJLE)

CJL(W,H,β) = − log p(V,H|W,β) = − log p(V|WH)− log p(H|β)

Equivalent to penalised NMF.
Optimisation with state-of-the-art majorisation-minimisation.
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Scales

Let Λ be a nonnegative diagonal matrix.

MMLE is scale-invariant

CML(WΛ−1,Λβ) = CML(W,β)

We may set βk = 1 and let W free.

MJLE is not scale-invariant

CJL(WΛ−1,ΛH,Λβ) = CJL(W,H,β) + N
∑

k

log λk

⇒ degenerate solutions ‖W‖ → ∞, ‖H‖ → 0, ‖β‖ → 0.

if αk > 1, we may set βk = 1 and let W, H free.
if αk ≤ 1 the norm of W needs to be controlled.
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swimmer data
Gamma-Exponential model

Swimmer dataset corrupted by multiplicative exponential noise.

(a) pure samples

(b) marginal log-likelihoods (c) joint log-likelihoods
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swimmer data
Gamma-Exponential model

data samples ŴMMLE ŴMJLE

MMLE returns four null columns in Ŵ (self-regularisation of rank).
MJLE overfits.
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musiXmatch data
Gamma-Poisson model

I lyrics of 10, 000 songs.

I bag-of-words representation of each song using the 5, 000 most frequent
(stemmed) words.

I semantic analysis with MMLE and MJLE.

I K = 200.

I # occurrences of word f from topic k in song n is reconstructed by :

ĉk,fn =
ŵfk ĥkn
[WH]fn

vfn.

It follows that V =
∑

k Ĉk .

29



musiXmatch data
Gamma-Poisson model

Norms ‖Ĉk‖ of the components from the two estimators.
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MMLE cancels out about 50 of the components (self-regularisation of rank).
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musiXmatch data
Gamma-Poisson model

4 topics extracted by MMLE and their 5 most representative songs.

(a) hip-hop

11

TABLE I
MOST REPRESENTATIVE SONGS FOR FOUR OF THE COMPONENTS AND WORDS THAT APPEAR MOST FREQUENTLY.

(k = 2) get nigga the ya shit like fuck em got hit bitch up off yall ass they that cmon money and
UGK (Underground Kingz) - Murder i the to nigga my a you got murder and it is am from we so with they yo cuz
Big Punisher - Nigga Shit shit that nigga the i and my what to out am in on for love me with gettin you do
E-40 - Turf Drop [Clean] gasolin the my i hey to a it on you some fuck spit of what one ride nigga sick gold
Cam’Ron - Sports Drugs & Entertainment a the you i got yo stop shot is caus or street jump short wick either to on but in
Foxy Brown - Chyna Whyte the nigga and you shit i not yall to a on with bitch no fuck uh it money white huh

(k = 8) god of blood soul death die fear pain hell power within shall earth blind human bleed scream evil holi peac
Demolition Hammer - Epidemic Of Violence of pain death reign violenc and a kill rage vicious the to in down blue dead cold
Disgorge - Parallels Of Infinite Torture of the tortur by their within upon flow throne infinit are no they see life eye befor
Tacere - Beyond Silence silenc beyond a dark beauti i the you to and me it not in my is of your that do
Cannibal Corpse - Perverse Suffering to my pain of i me for agoni in by and from way etern lust tortur crave the not be
Showbread - Sampsa Meets Kafka to of no one die death loneli starv i the you and a me it not in my is your

(k = 26) she her girl beauti woman & queen sex sexi cloth herself doll shes pink gypsi bodi midnight callin dress hair
Headhunter - Sex & Drugs & Rock’N Roll & sex drug rock roll n is good veri inde and not my are all need dead bodi brain i
Holy Barbarians - She she of kind girl my is the a littl woman like world and gone destroy tiger me on an
X - Devil Doll devil doll her she and a the in is of eye bone & shoe rag batter you to on no
Kittie - Paperdoll her she you i now soul pain to is down want eat fit size and not in all dead bodi
Ottawan - D.I.S.C.O. is she oh disco i o s d c super incred a crazi such desir sexi complic special candi

(k = 13) je et les le pas dan pour des cest qui de tout mon moi au comm ne sur jai
Veronique Sanson - Feminin cest comm le car de bien se les mai a fait devant heur du et une quon quelqu etre
Nevrotic Explosion - Heritage quon faut mieux pour nous qui nos ceux de la un plus tous honor parent ami oui
Kells - Sans teint de la se le san des est loin peur reve pour sa sang corp lumier larm
Stille Volk - Corps Magicien de les ell dan la se le du pass est sa par mond leur corp vivr lair voyag feu
Florent Pagny - Tue-Moi si plus que un tu mon mes jour souvenir parc

TABLE II
TEN HIGHEST CONTRIBUTING DICTIONARY COLUMNS FOR “DO YOU LOVE ME?" BY NICK CAVE AND THE BAD SEEDS. EACH COLUMN IS

REPRESENTED BY 15 MOST IMPORTANT WORDS. THE LAST ROW DISPLAYS THE CONTRIBUTION VALUE, lkn , FOR THE CORRESPONDING DICTIONARY
COLUMN. THESE 10 COLUMNS COVER 75% OF THE SONG.

the you love not i me she god was so
in your buy do am give her of would to
and can liar wanna myself tell girl blood could for
of if tender care like call beauti soul were now

world know dear bad know mmm woman death said here
with want instrument nobodi need show & die had again
they make mood anyth want beg queen fear thought wait
from when treasur want feel rescu sex pain wish long
as see emot worri caus teas sexi hell knew too
by yourself untru ai and squeez cloth power came home
at need surrend treat out everytim herself within made and
out with deeper but sorri knee doll shall told much
to feel sparkl know see strife shes earth took alon
into that sweetest money in contempl pink blind saw still
sky how diamond hurt swear guarante gypsi human then how
0.15 0.10 0.09 0.08 0.08 0.08 0.06 0.04 0.04 0.03

intuition for the pruning effect of MMLE. We can write that

CML(W ) =
N∑

n=1

log

∫

hn

p(vn|Whn)p(hn)dhn. (25)

Let Ĥ be the MAP estimation of H given W , i.e.,

Ĥ = argmax
H

log p(V , H|W )

Then, a Laplace approximation of CML(W ) around its mode
(which essentially consists in replacing the integrand in each
term of the sum in (25) by a quadratic function with same
mode and curvature at the mode) is given by

CML(W ) ≈

CJL(W , Ĥ)− 1

2

∑

n

log detAn +
KN

2
log 2π (26)

where

An = − ∇2
hn

log p(vn, hn|W )
∣∣
hn=ĥn

= W T Γ1,nW + Γ2,n

where Γ1,n and Γ2,n are the diagonal matrices defined by

Γ1,n = diag[vn.(Wĥ
.−2

n )]

Γ2,n = diag[(α− 1).ĥ
.−2

n ]

and where the ‘.’ denotes MATLAB-like entry-wise operations.
The penalty term L(W ) =

∑
n log det An in (26) will favor

solutions such that detAn is small, ideally zero. A detailed
analysis of L(W ), not presented here, reveals that it induces
group-sparsity at the column level. This for example evident
when αk = 1 and thus Γ2,n = 0. In this case, any zero column
in W leads to detAn = 0. While not giving a rigorous

(b) metal
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(k = 13) je et les le pas dan pour des cest qui de tout mon moi au comm ne sur jai
Veronique Sanson - Feminin cest comm le car de bien se les mai a fait devant heur du et une quon quelqu etre
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TABLE II
TEN HIGHEST CONTRIBUTING DICTIONARY COLUMNS FOR “DO YOU LOVE ME?" BY NICK CAVE AND THE BAD SEEDS. EACH COLUMN IS

REPRESENTED BY 15 MOST IMPORTANT WORDS. THE LAST ROW DISPLAYS THE CONTRIBUTION VALUE, lkn , FOR THE CORRESPONDING DICTIONARY
COLUMN. THESE 10 COLUMNS COVER 75% OF THE SONG.

the you love not i me she god was so
in your buy do am give her of would to
and can liar wanna myself tell girl blood could for
of if tender care like call beauti soul were now

world know dear bad know mmm woman death said here
with want instrument nobodi need show & die had again
they make mood anyth want beg queen fear thought wait
from when treasur want feel rescu sex pain wish long
as see emot worri caus teas sexi hell knew too
by yourself untru ai and squeez cloth power came home
at need surrend treat out everytim herself within made and
out with deeper but sorri knee doll shall told much
to feel sparkl know see strife shes earth took alon
into that sweetest money in contempl pink blind saw still
sky how diamond hurt swear guarante gypsi human then how
0.15 0.10 0.09 0.08 0.08 0.08 0.06 0.04 0.04 0.03

intuition for the pruning effect of MMLE. We can write that

CML(W ) =
N∑

n=1

log

∫

hn

p(vn|Whn)p(hn)dhn. (25)

Let Ĥ be the MAP estimation of H given W , i.e.,

Ĥ = argmax
H

log p(V , H|W )

Then, a Laplace approximation of CML(W ) around its mode
(which essentially consists in replacing the integrand in each
term of the sum in (25) by a quadratic function with same
mode and curvature at the mode) is given by

CML(W ) ≈

CJL(W , Ĥ)− 1

2

∑

n

log detAn +
KN

2
log 2π (26)

where

An = − ∇2
hn

log p(vn, hn|W )
∣∣
hn=ĥn

= W T Γ1,nW + Γ2,n

where Γ1,n and Γ2,n are the diagonal matrices defined by

Γ1,n = diag[vn.(Wĥ
.−2

n )]

Γ2,n = diag[(α− 1).ĥ
.−2

n ]

and where the ‘.’ denotes MATLAB-like entry-wise operations.
The penalty term L(W ) =

∑
n log det An in (26) will favor

solutions such that detAn is small, ideally zero. A detailed
analysis of L(W ), not presented here, reveals that it induces
group-sparsity at the column level. This for example evident
when αk = 1 and thus Γ2,n = 0. In this case, any zero column
in W leads to detAn = 0. While not giving a rigorous

(c) girls
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TABLE I
MOST REPRESENTATIVE SONGS FOR FOUR OF THE COMPONENTS AND WORDS THAT APPEAR MOST FREQUENTLY.

(k = 2) get nigga the ya shit like fuck em got hit bitch up off yall ass they that cmon money and
UGK (Underground Kingz) - Murder i the to nigga my a you got murder and it is am from we so with they yo cuz
Big Punisher - Nigga Shit shit that nigga the i and my what to out am in on for love me with gettin you do
E-40 - Turf Drop [Clean] gasolin the my i hey to a it on you some fuck spit of what one ride nigga sick gold
Cam’Ron - Sports Drugs & Entertainment a the you i got yo stop shot is caus or street jump short wick either to on but in
Foxy Brown - Chyna Whyte the nigga and you shit i not yall to a on with bitch no fuck uh it money white huh

(k = 8) god of blood soul death die fear pain hell power within shall earth blind human bleed scream evil holi peac
Demolition Hammer - Epidemic Of Violence of pain death reign violenc and a kill rage vicious the to in down blue dead cold
Disgorge - Parallels Of Infinite Torture of the tortur by their within upon flow throne infinit are no they see life eye befor
Tacere - Beyond Silence silenc beyond a dark beauti i the you to and me it not in my is of your that do
Cannibal Corpse - Perverse Suffering to my pain of i me for agoni in by and from way etern lust tortur crave the not be
Showbread - Sampsa Meets Kafka to of no one die death loneli starv i the you and a me it not in my is your

(k = 26) she her girl beauti woman & queen sex sexi cloth herself doll shes pink gypsi bodi midnight callin dress hair
Headhunter - Sex & Drugs & Rock’N Roll & sex drug rock roll n is good veri inde and not my are all need dead bodi brain i
Holy Barbarians - She she of kind girl my is the a littl woman like world and gone destroy tiger me on an
X - Devil Doll devil doll her she and a the in is of eye bone & shoe rag batter you to on no
Kittie - Paperdoll her she you i now soul pain to is down want eat fit size and not in all dead bodi
Ottawan - D.I.S.C.O. is she oh disco i o s d c super incred a crazi such desir sexi complic special candi
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TABLE II
TEN HIGHEST CONTRIBUTING DICTIONARY COLUMNS FOR “DO YOU LOVE ME?" BY NICK CAVE AND THE BAD SEEDS. EACH COLUMN IS

REPRESENTED BY 15 MOST IMPORTANT WORDS. THE LAST ROW DISPLAYS THE CONTRIBUTION VALUE, lkn , FOR THE CORRESPONDING DICTIONARY
COLUMN. THESE 10 COLUMNS COVER 75% OF THE SONG.

the you love not i me she god was so
in your buy do am give her of would to
and can liar wanna myself tell girl blood could for
of if tender care like call beauti soul were now

world know dear bad know mmm woman death said here
with want instrument nobodi need show & die had again
they make mood anyth want beg queen fear thought wait
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0.15 0.10 0.09 0.08 0.08 0.08 0.06 0.04 0.04 0.03

intuition for the pruning effect of MMLE. We can write that

CML(W ) =
N∑

n=1

log

∫

hn

p(vn|Whn)p(hn)dhn. (25)

Let Ĥ be the MAP estimation of H given W , i.e.,

Ĥ = argmax
H

log p(V , H|W )

Then, a Laplace approximation of CML(W ) around its mode
(which essentially consists in replacing the integrand in each
term of the sum in (25) by a quadratic function with same
mode and curvature at the mode) is given by

CML(W ) ≈

CJL(W , Ĥ)− 1

2

∑

n

log detAn +
KN

2
log 2π (26)

where

An = − ∇2
hn

log p(vn, hn|W )
∣∣
hn=ĥn

= W T Γ1,nW + Γ2,n

where Γ1,n and Γ2,n are the diagonal matrices defined by

Γ1,n = diag[vn.(Wĥ
.−2

n )]

Γ2,n = diag[(α− 1).ĥ
.−2

n ]

and where the ‘.’ denotes MATLAB-like entry-wise operations.
The penalty term L(W ) =

∑
n log det An in (26) will favor

solutions such that detAn is small, ideally zero. A detailed
analysis of L(W ), not presented here, reveals that it induces
group-sparsity at the column level. This for example evident
when αk = 1 and thus Γ2,n = 0. In this case, any zero column
in W leads to detAn = 0. While not giving a rigorous
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2

∑

n

log detAn +
KN

2
log 2π (26)

where

An = − ∇2
hn

log p(vn, hn|W )
∣∣
hn=ĥn
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Spectral data
Gamma-Exponential model

Log power data spectrogram

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

0 5 10 15 20 25 30 35 40
−1

0

1
Temporal data

I 40 seconds of God Only Knows by the Beach Boys.
I MMLE decomposition of the spectrogram vfn = |xfn|2 with K = 50

components.
I Gamma-Exponential model shown to be a valid generative model of the

spectrogram in (Févotte et al., 2009).

I component reconstruction ĉk,fn = ŵfk ĥkn
[WH]fn

xfn.
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Spectral data
Gamma-Exponential model
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Spectral data
Gamma-Exponential model

Time−frequency Wiener mask of component 13
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Spectral data
Gamma-Exponential model

Time−frequency Wiener mask of component 18
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Conclusions

I MMLE leads to a better-posed estimator than MAP/MJLE
I statistically well-posed (finite number of parameters)
I scale-invariant

I MMLE found empirically to self-regularise rank (for the two models
considered)
I surprising and very appealing result
I Laplace approximation of the marginal likelihood provides a start to explain

this phenomenon, see (Dikmen and Févotte, 2012)
I similar findings in Bayesian Matrix Factorisation in (Nakajima and Sugiyama,

2011; Nakajima et al., 2013), “model-induced regularisation”
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Additive Gaussian model
(Schmidt et al., 2009; Zhong and Girolami, 2009)

Generative model :

vfn = [WH]fn + εfn

εfn ∼ N(0, σ2)

Anti log-likelihood :

− log p(V|WH) =
1

σ2
DEUC (V|WH) + cst

with DEUC (X|Y) = ‖X− Y‖2
F .

Ill-posed model for nonnegative data as it may generate negative values in
large variance settings.
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Poisson model
(Canny, 2004; Buntine and Jakulin, 2006; Cemgil, 2009)

Generative model :

vfn ∼ Pois([WH]fn)

Domain : vfn ∈ N
Anti log-likelihood :

− log p(V|WH) = DGKL(V|WH) + cst

where DGKL(X|Y) =
∑

ij xij log
xij
yij
− xij + yij is the generalized

Kullback-Leibler divergence.

Application : relevant model for counts, long history in photon tomography,
text analysis.
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Multinomial model
(Hofmann, 1999; Blei et al., 2003)

Generative model

vn ∼ Mult(
∑

f

vfn,Whn)

where the columns of W and hn sum to 1.
Domain : vfn ∈ N
Anti log-likelihood :

− log p(V|WH) =
∑

n

‖vn‖1DKL(v̄n|Whn) + cst

where v̄n is the normalized data and DKL(x|y) =
∑

i xi log xi
yi

is the
Kullback-Leibler divergence between normalized vectors.

Application : relevant model for counts, popular in text analysis.
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Multiplicative Gamma model
(Févotte, Bertin, and Durrieu, 2009)

Generative model :

vfn = [WH]fn . εfn

εfn ∼ G (α, α) (= Gamma distribution with expectation 1)

Domain : vfn ∈ R+

Anti log-likelihood :

− log p(V|WH) = αDIS(V|WH) + cst

where DIS(X|Y) =
∑

ij
xij
yij
− log

xij
yij
− 1 is the Itakura-Saito divergence.

Application : decomposition of spectrograms.
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Tweedie model
(Yilmaz, 2012; Tan and Févotte, 2013)

Additive Gaussian, Poisson and multiplicative Gamma models are special
cases of

vfn ∼ T ([WH]fn, φ, β)

where T (µ, φ, β) refers the Tweedie distribution (Tweedie, 1984; Jørgensen,
1987) defined by

T (x |µ, φ, β) = h(x , φ) exp

[
1

φ

(
1

β − 1
xµβ−1 − 1

β
µβ
)]

with expectation µ, dispersion φ and shape β.

Underlies the β-divergence Dβ(V|WH), a common divergence in NMF, see,
e.g., (Févotte and Idier, 2011).
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