Maximum marginal likelihood estimation for nonnegative dictionary learning

Cédric Févotte

Institut de Recherche en Informatique de Toulouse (IRIT)

Unité MIAT, INRA Toulouse, March 2017

Outline

Generalities

Matrix factorisation in data processing Nonnegative matrix factorisation

Maximum marginal likelihood estimation Definition Algorithms

Experiments

Toy example Text retrieval Audio spectral decomposition

≈ dictionary learning low-rank approximation factor analysis latent semantic analysis

≈ dictionary learning low-rank approximation factor analysis latent semantic analysis

for dimensionality reduction (coding, low-dimensional embedding)

for unmixing (source separation, latent topic discovery)

for interpolation (collaborative filtering, image inpainting)

Nonnegative matrix factorisation

- data V and factors W, H have nonnegative entries.
- nonnegativity of W ensures interpretability of the dictionary, because patterns w_k and samples v_n belong to the same space.
- nonnegativity of H tends to produce part-based representations, because subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)

49 images among 2429 from MIT's CBCL face dataset

PCA dictionary with K = 25

red pixels indicate negative values

NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)

NMF for latent semantic analysis

(Lee and Seung, 1999; Hofmann, 1999)

reproduced from (Lee and Seung, 1999)

NMF for hyperspectral unmixing

(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

reproduced from (Bioucas-Dias et al., 2012)

NMF for audio spectral unmixing

(Smaragdis and Brown, 2003)

reproduced from (Smaragdis, 2013)

Generalities

Matrix factorisation in data processing Nonnegative matrix factorisation

Maximum marginal likelihood estimation Definition Algorithms

Experiments

Toy example Text retrieval Audio spectral decomposition Minimise a measure of fit between ${\bf V}$ and ${\bf WH},$ subject to nonnegativity :

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} D(\mathbf{V}|\mathbf{W}\mathbf{H}) = \sum_{fn} d([\mathbf{V}]_{fn}|[\mathbf{W}\mathbf{H}]_{fn}),$$

where d(x|y) is a scalar cost function, e.g.,

- ▶ squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)
- generalised KL divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)
- Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)
- α-divergence (Cichocki et al., 2008)
- β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)
- Bregman divergences (Dhillon and Sra, 2005)
- and more in (Yang and Oja, 2011)

Regularisation terms often added to D(V|WH) for sparsity, smoothness, dynamics, etc.

Probabilistic viewpoint

- Let $\mathbf{V} \sim p(\mathbf{V}|\mathbf{W}\mathbf{H})$ such that
 - (1) $p(\mathbf{V}|\mathbf{WH}) = \prod_{fn} p(v_{fn}|[\mathbf{WH}]_{fn})$
 - (2) E[V|WH] = WH
- then the following correspondences apply with

$D(\mathbf{V} \mathbf{WH})$	$h = -\log p(\mathbf{V} \mathbf{W}\mathbf{H})$) + cst
-----------------------------	--	---------

data support	distribution/noise	divergence	examples
real-valued	additive Gaussian	squared Euclidean	many
integer	multinomial	weighted KL	word counts
integer	Poisson	generalised KL	photon counts
nonnegative	multiplicative Gamma	Itakura-Saito	spectral data
generally non- negative	Tweedie	β -divergence	generalises above models

Probabilistic viewpoint

- Let $\mathbf{V} \sim p(\mathbf{V}|\mathbf{WH})$ such that
 - (1) $p(\mathbf{V}|\mathbf{WH}) = \prod_{fn} p(v_{fn}|[\mathbf{WH}]_{fn})$
 - (2) E[V|WH] = WH
- then the following correspondences apply with

data support	distribution/noise	divergence	examples
real-valued	additive Gaussian	squared Euclidean	many
integer	multinomial	weighted KL	word counts
integer	Poisson	generalised KL	photon counts
nonnegative	multiplicative Gamma	Itakura-Saito	spectral data
generally non- negative	Tweedie	β -divergence	generalises above models

$D(\mathbf{V}|\mathbf{WH}) = -\log p(\mathbf{V}|\mathbf{WH}) + \operatorname{cst}$

- NMF sometimes cast as maximum likelihood estimation of W and H.
- ill-posed estimation, because the number of parameters grows with data (one h_n for every v_n)

Maximum marginal likelihood estimation

(Dikmen and Févotte, 2011, 2012)

► treat **W** as a deterministic variable.

Maximum marginal likelihood estimation

(Dikmen and Févotte, 2011, 2012)

- treat W as a deterministic variable.
- treat **H** as a random latent variable with prior $p(\mathbf{H})$.

- treat W as a deterministic variable.
- treat **H** as a random latent variable with prior $p(\mathbf{H})$.
- optimise the marginal likelihood of V and W :

$$\min_{\mathbf{W} \ge 0} -\log p(\mathbf{V}|\mathbf{W}) = -\log \int_{\mathbf{H}} p(\mathbf{V}|\mathbf{W}\mathbf{H}) p(\mathbf{H}) d\mathbf{H}.$$

- treat W as a deterministic variable.
- treat **H** as a random latent variable with prior $p(\mathbf{H})$.
- optimise the marginal likelihood of V and W :

$$\min_{\mathbf{W} \ge 0} -\log p(\mathbf{V}|\mathbf{W}) = -\log \int_{\mathbf{H}} p(\mathbf{V}|\mathbf{W}\mathbf{H}) p(\mathbf{H}) d\mathbf{H}.$$

- + better-posed than traditional NMF (fixed number of parameters)
- + better-behaved with respect to scales
- + self-regularisation of the rank observed in practice
- I hard-to-obtain estimator that mingles optimisation and integration steps

- treat W as a deterministic variable.
- treat **H** as a random latent variable with prior $p(\mathbf{H})$.
- optimise the marginal likelihood of V and W :

$$\min_{\mathbf{W} \ge 0} -\log p(\mathbf{V}|\mathbf{W}) = -\log \int_{\mathbf{H}} p(\mathbf{V}|\mathbf{W}\mathbf{H}) p(\mathbf{H}) d\mathbf{H}.$$

- + better-posed than traditional NMF (fixed number of parameters)
- + better-behaved with respect to scales
- + self-regularisation of the rank observed in practice
- I hard-to-obtain estimator that mingles optimisation and integration steps

Background

- inspired by ICA & sparse coding, latent Dirichlet allocation (LDA), statistical estimation with nuisance parameters
- ▶ fully-Bayesian methods treat both W and H as random parameters and aim at p(W, H|V)

Expectation-Maximisation : complete data ${\bf V}$ with ${\bf H}$ and optimise

$$Q(\mathbf{W}|\tilde{\mathbf{W}}) = -\int_{\mathbf{H}} \log p(\mathbf{V},\mathbf{H}|\mathbf{W}) p(\mathbf{H}|\mathbf{V},\tilde{\mathbf{W}}) d\mathbf{H}$$

 $p(\mathbf{H}|\mathbf{V}, \tilde{\mathbf{W}})$ not available in most models.

Expectation-Maximisation : complete data ${\bf V}$ with ${\bf H}$ and optimise

$$Q(\mathbf{W}|\tilde{\mathbf{W}}) = -\int_{\mathbf{H}} \log p(\mathbf{V}, \mathbf{H}|\mathbf{W}) p(\mathbf{H}|\mathbf{V}, \tilde{\mathbf{W}}) d\mathbf{H}$$

 $p(\mathbf{H}|\mathbf{V}, \tilde{\mathbf{W}})$ not available in most models.

Resort to

• variational EM : $q(H) \approx p(H|V, \tilde{W})$

$$Q^{\mathsf{VB}}(\mathbf{W}| ilde{\mathbf{W}}) = -\int_{\mathbf{H}} \log p(\mathbf{V},\mathbf{H}|\mathbf{W})q(\mathbf{H})d\mathbf{H}$$

Expectation-Maximisation : complete data ${\bf V}$ with ${\bf H}$ and optimise

$$Q(\mathbf{W}|\tilde{\mathbf{W}}) = -\int_{\mathbf{H}} \log p(\mathbf{V}, \mathbf{H}|\mathbf{W}) p(\mathbf{H}|\mathbf{V}, \tilde{\mathbf{W}}) d\mathbf{H}$$

 $p(\mathbf{H}|\mathbf{V}, \tilde{\mathbf{W}})$ not available in most models.

Resort to

• variational EM :
$$q(H) \approx p(H|V, \tilde{W})$$

$$Q^{\mathrm{VB}}(\mathbf{W}|\tilde{\mathbf{W}}) = -\int_{\mathbf{H}} \log p(\mathbf{V},\mathbf{H}|\mathbf{W})q(\mathbf{H})d\mathbf{H}$$

• Monte-Carlo EM : $H^{(i)} \sim p(H|V, \tilde{H})$

$$Q^{\mathsf{MC}}(\mathbf{W}|\tilde{\mathbf{W}}) = -\sum_{i} \log p(\mathbf{V}, \mathbf{H}^{(i)}|\mathbf{W})$$

Generalities

Matrix factorisation in data processing Nonnegative matrix factorisation

Maximum marginal likelihood estimation Definition Algorithms

Experiments

Toy example Text retrieval Audio spectral decomposition

Setup

Models

	Gamma-Poisson	Gamma-Exponential
p(V WH)	$\prod_{fn} Pois(v_{fn} [\mathbf{WH}]_{fn})$	$\prod_{fn} Exp(v_{fn} [\mathbf{WH}]_{fn})$
$p(\mathbf{H} oldsymbol{eta})$	$\frac{(\text{rotsson})}{\prod_{kn} G(h_{kn} \alpha_k,\beta_k)}$	

Estimators

Maximum marginal likelihood estimation (MMLE)

$$C_{\mathsf{ML}}(\mathbf{W},oldsymbol{eta}) = -\log p(\mathbf{V}|\mathbf{W},oldsymbol{eta})$$

Optimisation with variational EM or MC-EM. Estimation of ${\bf H}$ given $\hat{{\bf W}}$ in a second step by MAP.

Maximum joint likelihood estimation (MJLE)

$$C_{\mathsf{JL}}(\mathsf{W},\mathsf{H},eta) = -\log p(\mathsf{V},\mathsf{H}|\mathsf{W},eta) = -\log p(\mathsf{V}|\mathsf{W}\mathsf{H}) - \log p(\mathsf{H}|eta)$$

Equivalent to penalised NMF.

Optimisation with state-of-the-art majorisation-minimisation.

Let Λ be a nonnegative diagonal matrix. MMLE is scale-invariant

$$C_{\mathsf{ML}}(\mathsf{W} \mathsf{\Lambda}^{-1}, \mathsf{\Lambda} eta) = C_{\mathsf{ML}}(\mathsf{W}, eta)$$

We may set $\beta_k = 1$ and let **W** free.

Let Λ be a nonnegative diagonal matrix. MMLE is scale-invariant

$$C_{\mathsf{ML}}(\mathsf{W} \mathbf{\Lambda}^{-1}, \mathbf{\Lambda} oldsymbol{eta}) = C_{\mathsf{ML}}(\mathbf{W}, oldsymbol{eta})$$

We may set $\beta_k = 1$ and let **W** free.

MJLE is not scale-invariant

$$C_{\mathsf{JL}}(\mathsf{W}\mathbf{\Lambda}^{-1},\mathbf{\Lambda}\mathbf{H},\mathbf{\Lambda}\boldsymbol{\beta}) = C_{\mathsf{JL}}(\mathsf{W},\mathbf{H},\boldsymbol{\beta}) + N\sum_{k}\log\lambda_{k}$$

 $\Rightarrow \text{ degenerate solutions } \|\mathbf{W}\| \to \infty, \ \|\mathbf{H}\| \to 0, \ \|\boldsymbol{\beta}\| \to 0.$

if $\alpha_k > 1$, we may set $\beta_k = 1$ and let **W**, **H** free. if $\alpha_k \leq 1$ the norm of **W** needs to be controlled. Swimmer dataset corrupted by multiplicative exponential noise.

(a) pure samples

Swimmer dataset corrupted by multiplicative exponential noise.

(a) pure samples

MMLE returns four null columns in $\hat{\mathbf{W}}$ (self-regularisation of rank). MJLE overfits.

Gamma-Poisson model

- lyrics of 10,000 songs.
- bag-of-words representation of each song using the 5,000 most frequent (stemmed) words.
- semantic analysis with MMLE and MJLE.
- ► *K* = 200.
- # occurrences of word f from topic k in song n is reconstructed by :

$$\hat{c}_{k,fn} = rac{\hat{w}_{fk}\hat{h}_{kn}}{[\mathbf{WH}]_{fn}}v_{fn}.$$

It follows that $\mathbf{V} = \sum_k \hat{\mathbf{C}}_k$.

Norms $\|\hat{\mathbf{C}}_k\|$ of the components from the two estimators.

MMLE cancels out about 50 of the components (self-regularisation of rank).

Gamma-Poisson model

4 topics extracted by MMLE and their 5 most representative songs.

	(a)bb		
(k = 2) get nigga the ya shit like fuck em got hit bitch up off yall ass they that emon money and			
UGK (Underground Kingz) - Murder	i the to nigga my a you got murder and it is am from we so with they yo cuz		
Big Punisher - Nigga Shit	shit that nigga the i and my what to out am in on for love me with gettin you do		
E-40 - Turf Drop [Clean]	gasolin the my i hey to a it on you some fuck spit of what one ride nigga sick gold		
Cam'Ron - Sports Drugs & Entertainment	a the you i got yo stop shot is caus or street jump short wick either to on but in		
Foxy Brown - Chyna Whyte	the nigga and you shit i not yall to a on with bitch no fuck uh it money white huh		
	(b) metal		
(k = 8) god of blood soul death die fear pain hell power within shall earth blind human bleed scream evil holi peac			
Demolition Hammer - Epidemic Of Violence	of pain death reign violenc and a kill rage vicious the to in down blue dead cold		
Disgorge - Parallels Of Infinite Torture	of the tortur by their within upon flow throne infinit are no they see life eye befor		
Tacere - Beyond Silence	silenc beyond a dark beauti i the you to and me it not in my is of your that do		
Cannibal Corpse - Perverse Suffering	to my pain of i me for agoni in by and from way etern lust tortur crave the not be		
Showbread - Sampsa Meets Kafka	to of no one die death loneli starv i the you and a me it not in my is your		
(c) girls			
(k = 26) she her girl beauti woman & a	queen sex sexi cloth herself doll shes pink gypsi bodi midnight callin dress hair		
Headhunter - Sex & Drugs & Rock'N Roll	& sex drug rock roll n is good veri inde and not my are all need dead bodi brain i		
Holy Barbarians - She	she of kind girl my is the a littl woman like world and gone destroy tiger me on an		
X - Devil Doll	devil doll her she and a the in is of eye bone & shoe rag batter you to on no		
Kittie - Paperdoll	her she you i now soul pain to is down want eat fit size and not in all dead bodi		
Ottawan - D.I.S.C.O.	is she oh disco i o s d c super incred a crazi such desir sexi complic special candi		
(d) French			
(k = 13) je et les le pas dan pour des cest qui de tout mon moi au comm ne sur jai			
Veronique Sanson - Feminin	cest comm le car de bien se les mai a fait devant heur du et une quon quelqu etre		
Nevrotic Explosion - Heritage	quon faut mieux pour nous qui nos ceux de la un plus tous honor parent ami oui		
Kells - Sans teint	de la se le san des est loin peur reve pour sa sang corp lumier larm		
Stille Volk - Corps Magicien	de les ell dan la se le du pass est sa par mond leur corp vivr lair voyag feu		
Florent Pagny - Tue-Moi	si plus que un tu mon mes jour souvenir parc		

(a) hip-hop

Spectral data

Gamma-Exponential model

- ▶ 40 seconds of *God Only Knows* by the Beach Boys.
- MMLE decomposition of the spectrogram $v_{fn} = |x_{fn}|^2$ with K = 50 components.
- Gamma-Exponential model shown to be a valid generative model of the spectrogram in (Févotte et al., 2009).

• component reconstruction
$$\hat{c}_{k,fn} = \frac{\hat{w}_{fk}\hat{h}_{kn}}{|\mathbf{WH}|_m} x_{fn}$$
.

Time-frequency Wiener mask of component 13

- MMLE leads to a better-posed estimator than MAP/MJLE
 - statistically well-posed (finite number of parameters)
 - scale-invariant
- MMLE found empirically to self-regularise rank (for the two models considered)
 - surprising and very appealing result
 - Laplace approximation of the marginal likelihood provides a start to explain this phenomenon, see (Dikmen and Févotte, 2012)
 - similar findings in Bayesian Matrix Factorisation in (Nakajima and Sugiyama, 2011; Nakajima et al., 2013), "model-induced regularisation"

- M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms and applications for approximate nonnegative matrix factorization. *Computational Statistics & Data Analysis*, 52(1):155–173, Sep. 2007.
- J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot. Hyperspectral unmixing overview : Geometrical, statistical, and sparse regression-based approaches. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 5(2):354–379, 2012.
- D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. *Journal of Machine Learning Research*, 3 :993–1022, Jan. 2003.
- W. L. Buntine and A. Jakulin. Discrete component analysis. In *Lecture Notes in Computer Science*, volume 3940, pages 1–33. Springer, 2006. URL http://www.springerlink.com/content/d53027666542q3v7/.
- J. F. Canny. GaP : A factor model for discrete data. In Proc. ACM International Conference on Research and Development of Information Retrieval (SIGIR), pages 122–129, 2004.
- A. T. Cemgil. Bayesian inference for nonnegative matrix factorisation models. Computational Intelligence and Neuroscience, 2009(Article ID 785152) :17 pages, 2009. doi :10.1155/2009/785152.
- A. Cichocki, R. Zdunek, and S. Amari. Csiszar's divergences for non-negative matrix factorization : Family of new algorithms. In Proc. International Conference on Independent Component Analysis and Blind Signal Separation (ICA), pages 32–39, Charleston SC, USA, Mar. 2006.
- A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi. Non-negative matrix factorization with α -divergence. Pattern Recognition Letters, 29(9) :1433–1440, July 2008.
- I. S. Dhillon and S. Sra. Generalized nonnegative matrix approximations with Bregman divergences. In Advances in Neural Information Processing Systems (NIPS), 2005.

References II

- O. Dikmen and C. Févotte. Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation. In Advances in Neural Information Processing Systems (NIPS), pages 2267-2275, Granada, Spain, Dec. 2011. URL https://www.irit.fr/-Cedric.Fevotte/publications/proceedings/nips11.pdf.
- O. Dikmen and C. Févotte. Maximum marginal likelihood estimation for nonnegative dictionary learning in the Gamma-Poisson model. *IEEE Transactions on Signal Processing*, 60(10) :5163-5175, Oct. 2012. doi: http://dx.doi.org/10.1109/TSP.2012.2207117. URL https://www.irit.fr/~Cedric.Fevotte/publications/journals/ieee_sp_mmle.pdf.
- C. Févotte and J. Idier. Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Computation, 23(9):2421-2456, Sep. 2011. doi: 10.1162/NECO_a_00168. URL https://www.irit.fr/~Cedric.Fevotte/publications/journals/neco11.pdf.
- C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis. *Neural Computation*, 21(3):793-830, Mar. 2009. doi: 10.1162/neco.2008.04-08-771. URL https://www.irit.fr/~Cedric.Fevotte/publications/journals/neco09_is-nmf.pdf.
- L. Finesso and P. Spreij. Nonnegative matrix factorization and I-divergence alternating minimization. Linear Algebra and its Applications, 416 :270–287, 2006.
- T. Hofmann. Probabilistic latent semantic indexing. In Proc. 22nd International Conference on Research and Development in Information Retrieval (SIGIR), 1999. URL http://www.cs.brown.edu/~th/papers/Hofmann-SIGIR99.pdf.
- B. Jørgensen. Exponential dispersion models. Journal of the Royal Statistical Society : Series B (Statistical Methodology), 49(2) :127–162, 1987.
- D. D. Lee and H. S. Seung. Learning the parts of objects with nonnegative matrix factorization. *Nature*, 401 :788–791, 1999.

References III

- D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural and Information Processing Systems 13, pages 556–562, 2001.
- S. Nakajima and M. Sugiyama. Theoretical analysis on bayesian matrix factorization. Journal of Machine Learning Research, 12 :2579–2644, 2011.
- S. Nakajima, M. Sugiyama, S. D. Babacan, and R. Tomioka. Global analytic solution of fully-observed variational bayesian matrix factorization. *The Journal of Machine Learning Research*, 14(1):1–37, 2013.
- P. Paatero and U. Tapper. Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values. *Environmetrics*, 5 :111–126, 1994.
- M. N. Schmidt, O. Winther, and L. K. Hansen. Bayesian non-negative matrix factorization. In In Proc. 8th Internation conference on Independent Component Analysis and Signal Separation (ICA), Paraty, Brazil, Mar. 2009.
- P. Smaragdis. About this non-negative business. WASPAA keynote slides, 2013. URL http://web.engr.illinois.edu/~paris/pubs/smaragdis-waspaa2013keynote.pdf.
- P. Smaragdis and J. C. Brown. Non-negative matrix factorization for polyphonic music transcription. In Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct. 2003.
- V. Y. F. Tan and C. Févotte. Automatic relevance determination in nonnegative matrix factorization with the beta-divergence. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(7): 1592 - 1605, July 2013. URL https://www.irit.fr/-Cedric.Fevotte/publications/journals/pami13_ardnmf.pdf.
- M. Tweedie. An index which distinguishes between some important exponential families. In Proc. Indian Statistical Institute Golden Jubilee International Conference, 1984.

- Z. Yang and E. Oja. Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization. *IEEE Transactions on Neural Networks*, 22 :1878 – 1891, Dec. 2011. doi : http://dx.doi.org/10.1109/TNN.2011.2170094.
- Y. K. Yilmaz. Generalized tensor factorization. PhD thesis, Boğaziçi University, Istanbul, Turkey, 2012.
- M. Zhong and M. Girolami. Reversible jump MCMC for non-negative matrix factorization. In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), page 8, 2009.

Additional slides

Additive Gaussian model

(Schmidt et al., 2009; Zhong and Girolami, 2009)

Generative model :

$$egin{aligned} & \mathbf{v}_{\mathit{fn}} = [\mathbf{W}\mathbf{H}]_{\mathit{fn}} + \epsilon_{\mathit{fn}} \ & \epsilon_{\mathit{fn}} \sim \mathcal{N}(0,\sigma^2) \end{aligned}$$

Anti log-likelihood :

$$-\log p(\mathbf{V}|\mathbf{WH}) = \frac{1}{\sigma^2} D_{EUC}(\mathbf{V}|\mathbf{WH}) + cst$$

with $D_{EUC}(\mathbf{X}|\mathbf{Y}) = \|\mathbf{X} - \mathbf{Y}\|_{F}^{2}$.

Ill-posed model for nonnegative data as it may generate negative values in large variance settings.

Generative model :

$$v_{fn} \sim Pois([\mathbf{WH}]_{fn})$$

Domain : $v_{fn} \in \mathbb{N}$ **Anti log-likelihood** :

$$-\log p(\mathbf{V}|\mathbf{WH}) = D_{GKL}(\mathbf{V}|\mathbf{WH}) + cst$$

where $D_{GKL}(\mathbf{X}|\mathbf{Y}) = \sum_{ij} x_{ij} \log \frac{x_{ij}}{y_{ij}} - x_{ij} + y_{ij}$ is the generalized Kullback-Leibler divergence.

Application : relevant model for counts, long history in photon tomography, text analysis.

Multinomial model

(Hofmann, 1999; Blei et al., 2003)

Generative model

$$\mathbf{v}_n \sim Mult(\sum_f v_{fn}, \mathbf{Wh}_n)$$

where the columns of **W** and \mathbf{h}_n sum to 1. **Domain** : $v_{fn} \in \mathbb{N}$ **Anti log-likelihood** :

$$-\log p(\mathbf{V}|\mathbf{W}\mathbf{H}) = \sum_{n} \|\mathbf{v}_{n}\|_{1} D_{\mathcal{KL}}(\bar{\mathbf{v}}_{n}|\mathbf{W}\mathbf{h}_{n}) + cst$$

where $\bar{\mathbf{v}}_n$ is the normalized data and $D_{KL}(\mathbf{x}|\mathbf{y}) = \sum_i x_i \log \frac{x_i}{y_i}$ is the Kullback-Leibler divergence between normalized vectors.

Application : relevant model for counts, popular in text analysis.

Multiplicative Gamma model

(Févotte, Bertin, and Durrieu, 2009)

Generative model :

$$m{v}_{fn} = [m{WH}]_{fn}$$
 . ϵ_{fn}
 $\epsilon_{fn} \sim G(lpha, lpha)$ (= Gamma distribution with expectation 1)

Domain : $v_{fn} \in \mathbb{R}^+$ **Anti log-likelihood** :

$$-\log p(\mathbf{V}|\mathbf{WH}) = \alpha D_{IS}(\mathbf{V}|\mathbf{WH}) + cst$$

where $D_{IS}(\mathbf{X}|\mathbf{Y}) = \sum_{ij} \frac{x_{ij}}{y_{ij}} - \log \frac{x_{ij}}{y_{ij}} - 1$ is the Itakura-Saito divergence. **Application** : decomposition of spectrograms. Additive Gaussian, Poisson and multiplicative Gamma models are special cases of

$$w_{fn} \sim T([\mathbf{WH}]_{fn}, \phi, \beta)$$

where $T(\mu, \phi, \beta)$ refers the Tweedie distribution (Tweedie, 1984; Jørgensen, 1987) defined by

$$T(x|\mu,\phi,\beta) = h(x,\phi) \exp\left[\frac{1}{\phi}\left(\frac{1}{\beta-1}x\mu^{\beta-1} - \frac{1}{\beta}\mu^{\beta}\right)\right]$$

with expectation μ , dispersion ϕ and shape β .

Additive Gaussian, Poisson and multiplicative Gamma models are special cases of

$$w_{fn} \sim T([\mathbf{WH}]_{fn}, \phi, \beta)$$

where $T(\mu, \phi, \beta)$ refers the Tweedie distribution (Tweedie, 1984; Jørgensen, 1987) defined by

$$T(x|\mu,\phi,\beta) = h(x,\phi) \exp\left[rac{1}{\phi}\left(rac{1}{eta-1}x\mu^{eta-1} - rac{1}{eta}\mu^{eta}
ight)
ight]$$

with expectation μ , dispersion ϕ and shape β .

Underlies the β -divergence $D_{\beta}(\mathbf{V}|\mathbf{WH})$, a common divergence in NMF, see, e.g., (Févotte and Idier, 2011).