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Intro: Gene Regulatory Networks
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Methods: Unsupervised vs. Supervised
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Methods: Supervised inference
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Methods: Variant 1
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Methods: Variant 2

|R| regulators |R| regulators TG, |R| regulators

0.7

G o $ | Confid
enotype 01 SVR c onfidence
matrix 0.9 |:> a0 | score matrix
T’ o © | SVR(D, T)

0.0

Expressiol
Data matrix
D7

-

|E| measurements
|E| measurements

__/

unsupervised, add genotype



|E| measurements

15t : unsupervised, genotype

Methods: Both Genotype+Network
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Performance

Results
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Results: Performance
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Results: Effect of Regulator Genotype
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Results: Chromosomal Proximity
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Results: Correlation vs Co-Regulation
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Discussion: Performance

e Supervision increases performance on SGS
* Robust against preprocessing, parameters

* Expression data most informative
— Genotype information did not help
— Less information for close TFs?
— Deducible from expression in supervised setup?
— Network context hardly helps



Discussion: Real vs SGS

* Network context hardly helps
— functionally related TGs regulated by same TFs
— functionally related TFs regulate similar TGs
— TG overlaps < correlated expression of TFs

* TGs regulated by same TF show extreme
correlation in SGS
— in comparison to bacteria

— no correlation in eucaryotes!



Discussion: Complexity of Transcription
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Discussion: Potential improvements

* Realistic network topologies?

e Careful parametrization of models?

* Complex genotypes & effects?

e Alternative splicing, protein networks?

* What else affects expression?
— Methylation?
— 3D DNA-DNA contacts
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