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Optimizing in Cost Function Networks 
(aka CFN or WCSP) 

 n variables 
 finite domains 

 
 e scoped cost functions 

 scope, cost function 
 

 Costs  {0,…,k}     k  used for forbidden 

    combinations 
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(Shapiro, Haralick, IEEE PAMI 81) 



Example Min-2coloring 
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B C 

CFN graph  
X={A,B,C,D}, 

F={f(A,B), f(A,C), f(A,D),  
     f(B,C), f(B,D), f(C,D)}) 
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B C 

micro-structure 
(each edge has cost 1) 
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Connections with MRF 

• Cost functions are similar to energies 

• Always positive (but wlog for optimization) 
 

 

• CFN Inherits from Constraint networks 

• Emphasis on constraints (0/1 probabilities) 

• Optimization: tree search + local inference (filtering) 

• Global constraints  
 

Filtering            Global cost functions 



Filtering a CFN 

• Transforms a network into an equivalent network 
(same cost distribution).  

    Incremental. 

• Using local transformations in the scope of one 
(arc consistency) cost function.   

    Efficient (bounded arity). 

• Makes the network more « explicit » until a given 
property is satisfied.  

Well characterized (Converges) 



Filtering a CFN 

• Applies equivalence preserving 
transformations (EPTs) to move costs to 
smaller arities :  
– f(Xi), Xi  X 

– f   lower bound on the optimum cost 

 

•  Two families of algorithms 
– Chaotic EPTs applications: AC, DAC, FDAC, EDAC 

– Planified EPTs application: OSAC, VAC 
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Equivalence preserving transformation 
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Arc consistent problem (AC) 
8 (Schiex, CP 2000) 



Chaotic application of EPTs 
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AC problem 
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Directional Arc Consistent problem (DAC) 
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f = 1 

2 

A < B < C < D 
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(Cooper,  FSS 03) 

O(e dr) 



Global constraints 

• A constraint c(T) over any scope T 

• No fixed arity 

• Associated efficient« filtering » algorithms 

 

AllDifferent(X1,…Xm)   

captures permutations, assignment (Régin 1994) 

Represented as a matching in a bipartite graph 



Global cost functions 

• A cost function f(T) over any scope T 

• No fixed arity 

• Associated efficient« filtering » algorithms 

 

SoftAllDifferent(X1,…Xm)   

(captures approximate permutations, assignment) 

Represented as min cost flow in a transportation network 



Filtering global cost functions 

• Need to efficiently detect which costs can be 
moved to smaller scopes, preserving internal 
representation. 

– Monolithic approach 

• Uses flow based algorithms (softAllDifferent, softGCC, 
softRegular) (Lee, Leung, IJCAI 2009, AAAI 2010, JAIR 2012) 

– Decomposition based-approach 

• Rewrite the global cost function as a sum of smaller 
bounded scope cost functions (a sub network) 
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Decomposable cost function 

A global cost function with a polynomial 
transformation δp 

 

f(T)   (TE, F)  a cost function network 

 

Such that 

  f’(S)F, |S|  p arity bounded by p 

  t DT , f(t) = min t’DTE, t’[T]=t   f’(S)F f’(t’[S]) 
Preserves marginal cost distribution 

14 Works also with constraints 

δp 



Relaxing decomposable global 
constraints 

 

 Let c(T)   (TE, C)  Constraint network 

 

 Let g  such that 

c’(S)C ,  t’ (g c’)(t’)  c’(t’)    (constraint relaxation) 

Then 

(TE, gC)  is a decomposition of a global cost 
function which is a specific relaxation of c(T) 

 

15 Scopes are preserved by g  => same hyper-graph 



Regular Global constraint 
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X1 X3 X5 X2 X4 

Regular(X1, X2, X3, X4, X5, (Q, , β, q0, S)) 

Polynomial transform (p=3) with extra variables (Qi representing states) 

Q0=q0 Q2 Q4 Q1 Q3 Q5T 

 AC filtering solves the decomposed Berge-acyclic network 

 = U DXi 

DQi = Q 



softRegular 
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X1 X3 X5 X2 X4 

g(Qi-1, Xi, Qi) =  

0  si  (qi-1, xi, qi) 

softRegular(X1, X2, X3, X4, X5, (Q, , , q0, T)) 

Polynomial transform (p=3) with extra variables (Qi representing states) 
 with Hamming distance relaxation. 

Q0=q0 Q2 Q4 Q1 Q3 Q5T 

+ sinon 

1  si  (qi-1,v,qi),vxi 

 DAC filtering solves the decomposed Berge-acyclic network 



Berge-acyclic decomposition 

• Example of Berge-acyclic decomposition 
 

 

 

• Counter-example 

18 
(X,F) Berge-acyclic iff the incidence graph (X  F, EF) acyclic ({Xi,f(T)}EF si XiT) 



Berge-acyclic decomposition 

• Example of Berge-acyclic decomposition 

 

 

 

• Counter-examples 

19 
(X,F) Berge-acyclic iff the incidence graph (X  F, EF) acyclic ({Xi,f(T)}EF si XiT) 



Berge-acyclic decomposable global constraints 
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among(NVAR, VAR, Valeurs) : 
#{ i |VAR[i]  Valeurs } = NVAR 

elementn(I, Table, E) :  
E1=Table[I], E2=Table[I+1]… 

lex_less(VAR1, VAR2) : 
VAR1[i] < VAR2[i] ou 
VAR1[i]=VAR2[i] et VAR1[i+1]<VAR2[i+1] … 

max(VAR) :  
max(VAR[i], max(VAR[i+1],…)) 

max, min, and, or, xor, … 

stretch, global_contiguity, … 
*Global Constraint Catalog 



Berge-acyclic decomposition & 
directional arc consistency 

•  DAC solves Berge-acyclic CFN 

f(T)  (TE, F) Berge-acyclic 

 

 order(X1,...,Xm) on T E such that 

X1  T, 

f(X1) after filtering by DAC(T, f(T){f(Xi) | Xi  T}) 

= 

f(X1) after filtering by DAC(TE, F{f(Xi) | Xi  T}) 

21 

Extends to several decomposable global cost functions whose overall 
Decomposition is Berge-acyclic 



Berge-acyclic decomposition & 
virtual arc consistency 

• VAC solves Berge-acyclic decompositions 

f(T)  (TE, F) Berge-acyclic network 

 

 

f after filtering by VAC(T, f(T){f(Xi) | Xi  T}) 

= 

f after filtering by VAC(TE, F{f(Xi) | Xi  T}) 

22 

Extends to several decomposable global cost functions whose overall 
Decomposition is Berge-acyclic 



Experiments 

• Benchmarks 
 1-softRegular (Pesant, CP 2004) 

• 30% of authorized transitions, 50% of terminal states 

• Random unary cost functions in [0,9] 

 Random nonograms (CSPLib #12) 
• relaxed (2n-softRegular) or with white noise (2n-Regular, scalar) 

 Knapsack with linear constraints (Market Split) 
• non polynomial decomposition (max. domain size<1000) 

• Comparison of monolithic (flow based, EDGAC) vs. 
decomposed (EDAC) in toulbar2* solver.  

24 

*toulbar2 version 0.9.5 https://mulcyber.toulouse.inra.fr/projects/toulbar2/ 
With no preprocessing option and a static DAC compatible variable order 

https://mulcyber.toulouse.inra.fr/projects/toulbar2/


1-softRegular 
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n  n Nonograms  

 Each cell is black or white 
 
 The lengths of successive black 
segments is fixed on every row and 
column (NP-hard) 
 
 One boolean variable per cell 
  
 Length specifications can be 
described by a regular language 
(** *) 
 
 One Regular per row/column 

A DAC order compatible with all  
Berge-acyclic regulars exists 



Relaxed Nonograms 
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2n-softRegular 

CPU limit one hour 

(Hamming distance) 



Conclusion 

 Relaxation of Berge-acyclic global constraints 
(SoftRegular, softAmong,…) 

 DAC/VAC solves Berge-acyclic decompositions 

 Incrementality for free, but additional variables 

 Possible extension to other decompositions 

29 

change(NVAR, VAR, CTR) 



Market Split 
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1-linearEquation 

Number of boolean variables 

Number of nodes Cpu time (seconds) 

(scalar) 

(costRegular) 



Market Split 
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4-linearEquation 

Number of boolean variables 

(scalar) 

(costRegular) 

Number of nodes Cpu time (seconds) 



Planified reformulation 
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B C 

EDAC problem 
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f = 1 

2 

f = 1 

½ 

½ 

1½ 

1½ 1½ 

½ 

½ 

(Cooper et al, AAAI 2008) (Cooper et al, AIJ 2010) 
Virtual Arc Consistent (VAC) 

32 Time exponential in the function arity 

O(e k dr/) 



softAllDifferent 
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X1 

X3 X5 

X2 

X4 

gcij(Xi, Xj) =  
0  si  Xi  Xj 

1  si  Xi = Xj 

softAllDiff(X1, X2, X3, X4, X5) 

Polynomial transform(p=2) with a relaxation semantics defined by the number 
of pairs if variables with the same value. 

cij : (XiXj) 

AC/DAC on the decomposed problem not equivalent to a direct filtering 
of the global cost function.  Pol. Time using dedicated flow algorithms. 



soft AllDifferent 
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X1 

X3 X5 

X2 

X4 

gcij(Xi, Xj) =  

0  if Xi  Xj 

    or (Xi,Xj)G 

softAllDiff(X1, X2, X3, X4, X5) 

cij : (XiXj) 

Finding the minimum of the cost function can be NP-hard 
Depending on g (graph coloring) 

1  else 


