

Filtering decomposable global cost functions

D. Allouche, C. Bessière, P. Boizumault, S. de Givry, P. Gutierrez, S. Loudni, J-P. Métivier, **T. Schiex**

> INRA-UBIA Toulouse, U. Montpellier, GREYC-CNRS Caen, IIIA-CSIC Barcelone

> > ANR -10-BLA-0214

Optimizing in Cost Function Networks (aka CFN or WCSP) (Shapiro, Haralick, IEEE PAMI 81)

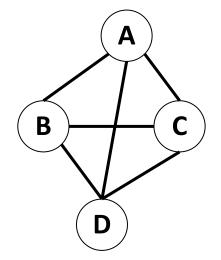
- n variables
 - finite domains
- *e* scoped cost functions
 scope, cost function

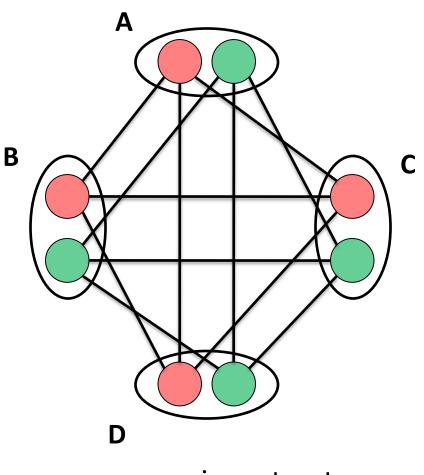
 $X = \{X_{1}, ..., X_{n}\}$ $X_{i} \in D_{i}, |D_{i}| \leq d$ $F = \{f_{1}, ..., f_{e}\}$

k used for forbidden combinations

Minimize
$$\sum_{F} f_i(X)$$

Example Min-2coloring





CFN graph X={A,B,C,D}, F={f(A,B), f(A,C), f(A,D), f(B,C), f(B,D), f(C,D)})

micro-structure (each edge has cost 1)

Connections with MRF

- Cost functions are similar to energies
- Always positive (but wlog for optimization)

- CFN Inherits from Constraint networks
 - Emphasis on constraints (0/1 probabilities)
 - Optimization: tree search + local inference (filtering)
 - Global constraints

Filtering Global cost functions

Filtering a CFN

• Transforms a network into an equivalent network (same cost distribution).

Incremental.

• Using local transformations in the scope of one (arc consistency) cost function.

Efficient (bounded arity).

• Makes the network more « explicit » until a given property is satisfied.

Well characterized (Converges)

Filtering a CFN

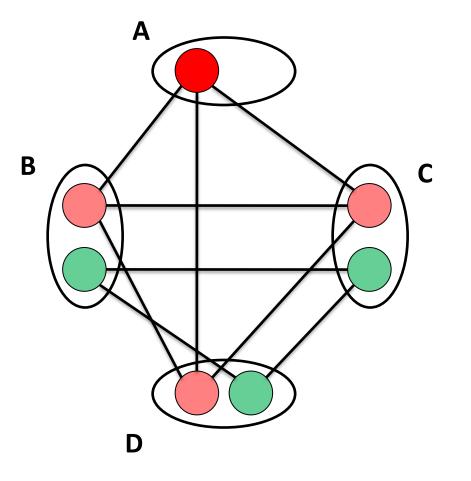
 Applies equivalence preserving transformations (EPTs) to move costs to smaller arities :

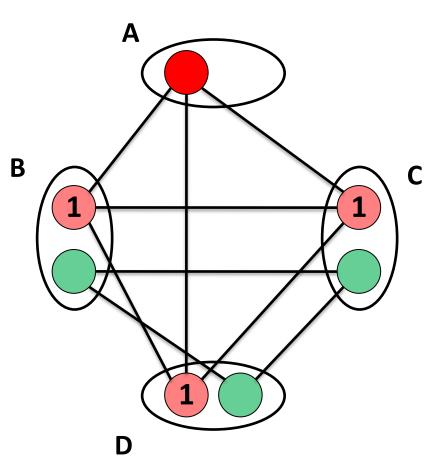
$$-f(X_i), \forall X_i \in X$$

- $-f_{\emptyset}$ lower bound on the optimum cost
- Two families of algorithms
 - Chaotic EPTs applications: AC, DAC, FDAC, EDAC

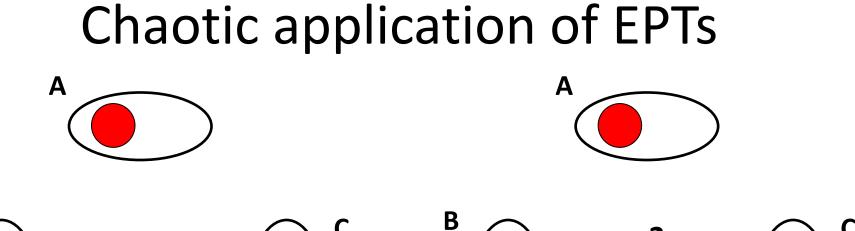
– Planified EPTs application: OSAC, VAC

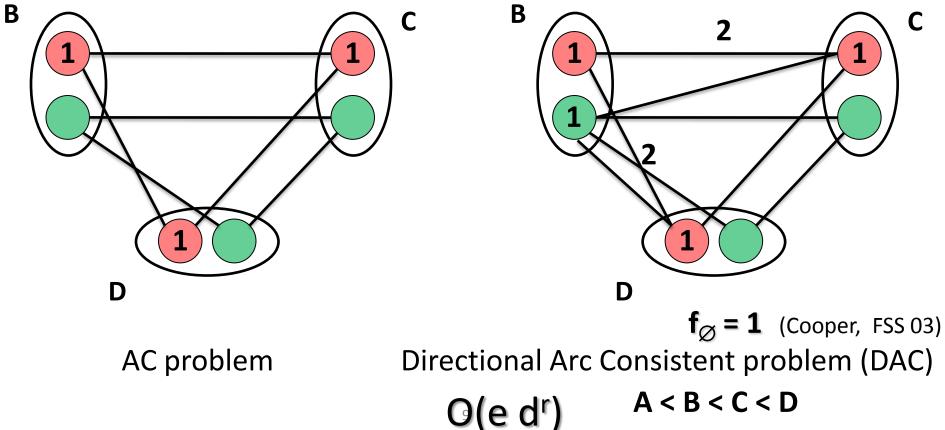
Equivalence preserving transformation





Arc consistent problem (AC) (Schiex, CP 2000)





Global constraints

- A constraint c(T) over any scope T
- No fixed arity
- Associated efficient« filtering » algorithms

AllDifferent(X1,...Xm)

captures permutations, assignment (Régin 1994) Represented as a matching in a bipartite graph

Global cost functions

- A cost function f(T) over any scope T
- No fixed arity
- Associated efficient« filtering » algorithms

SoftAllDifferent(X1,...Xm)

(captures approximate permutations, assignment) Represented as min cost flow in a transportation network

Filtering global cost functions

- Need to efficiently detect which costs can be moved to smaller scopes, preserving internal representation.
 - Monolithic approach
 - Uses flow based algorithms (softAllDifferent, softGCC, softRegular) (Lee, Leung, IJCAI 2009, AAAI 2010, JAIR 2012)
 - Decomposition based-approach
 - Rewrite the global cost function as a sum of smaller bounded scope cost functions (a sub network)

Decomposable cost function

A global cost function with a polynomial transformation $\delta_{\rm p}$

f(T)
$$(T \cup E, F)$$

a cost function network

Such that

- $\forall f'(S) \in F, |S| \leq p$ arity bounded by p
- $\forall t \in D^T$, $f(t) = \min_{t' \in D^{T \cup E}, t'[T]=t} \sum_{f'(S) \in F} f'(t'[S])$

Preserves marginal cost distribution

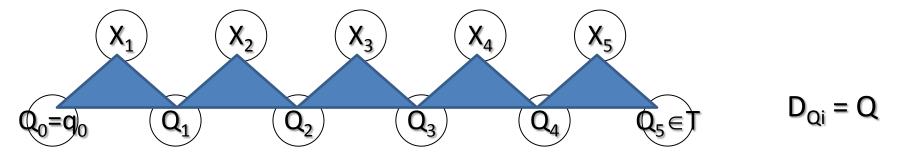
Relaxing decomposable global constraints

- Let c(T) (T∪E, C) Constraint network
- Let g such that ∀c'(S)∈C, ∀t' (g •c')(t') ≤ c'(t') (constraint relaxation) Then
 - (T∪E, g•C) is a decomposition of a global cost function which is a specific relaxation of c(T)

Regular Global constraint

Regular($X_1, X_2, X_3, X_4, X_{5}$, (Q, Σ, β, q_0, S))

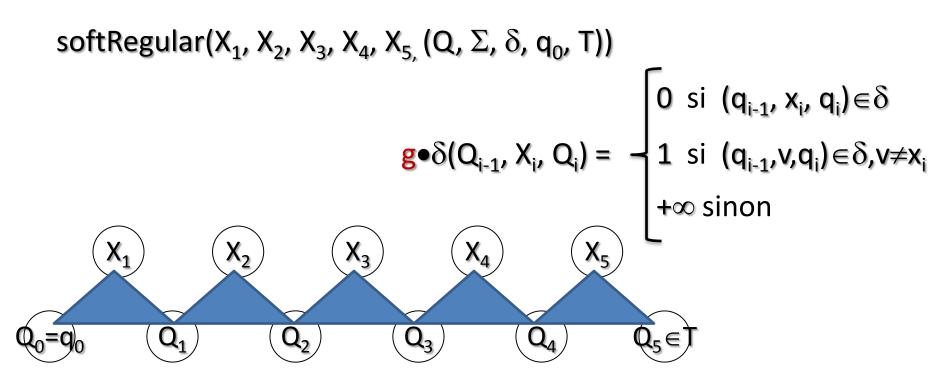
 $\Sigma = U D_{Xi}$



Polynomial transform (p=3) with extra variables (Q_i representing states)

AC filtering solves the decomposed Berge-acyclic network

softRegular



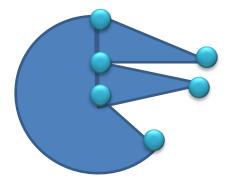
Polynomial transform (p=3) with extra variables (Q_i representing states) with Hamming distance relaxation.

DAC filtering solves the decomposed Berge-acyclic network

Berge-acyclic decomposition

• Example of Berge-acyclic decomposition

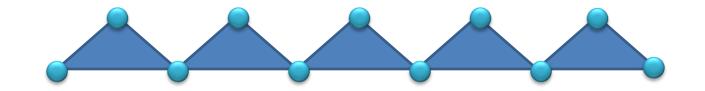
• Counter-example



(X,F) Berge-acyclic iff the incidence graph (X \cup F, E_F) acyclic ({X_i, f(T)} \in E_F si X_i \in T)

Berge-acyclic decomposition

• Example of Berge-acyclic decomposition



• Counter-examples

(X,F) Berge-acyclic iff the incidence graph (X \cup F, E_F) acyclic ({X_i, f(T)} \in E_F si X_i \in T)

Berge-acyclic decomposable global constraints

```
VAR
                                                                                     VAR
                                                                                                     VAR.
              max(VAR) :
              max(VAR[i], max(VAR[i+1],...))
                                                                                                                          Q3=t
                                                                              Q<sub>0</sub>=s
                                                                                              Q<sub>1</sub>
                                                                                                              Q<sub>2</sub>
          max, min, and, or, xor, ...
                                                                                                                     <sup>E</sup>2
                                                                                                     E<sub>1</sub>
                                                                                     Т
           elementn(I, Table, E) :
           E<sub>1</sub>=Table[I], E<sub>2</sub>=Table[I+1]...
                                                                                            Q<sub>1</sub>
                                                                             Q<sub>0</sub>=s
                                                                                                                        Q3=t
                                                                                                            Q<sub>2</sub>
                                                                                                  VAR<sub>2</sub>
                                                                                        VAR,
                                                                                                                         VAR
         among(NVAR, VAR, Valeurs) :
                                                                                         S<sub>1</sub>
                                                                                                    s2
                                                                                                                          Sn
         #{ i |VAR[i] \in Valeurs } = NVAR
                                                                                   Q<sub>0</sub>=s
                                                                                               Q<sub>1</sub>
                                                                                                                          Q<sub>n</sub>=s
                                                                                    C_0 = 0
                                                                                               C<sub>1</sub>
                                                                                                                          C<sub>n</sub>=NVAR
                                                                                                                               VAR1
                                                                                                VAR1,
                                                                                 VAR1,
lex_less(VAR1, VAR2) :
                                                                                VAR21
                                                                                                VAR2,
                                                                                                                               VAR2
VAR1[i] < VAR2[i] ou
                                                                                                                                 ś
                                                                                  s_
                                                                                                  s_
VAR1[i]=VAR2[i] et VAR1[i+1]<VAR2[i+1] ...
                                                                                          Q<sub>1</sub>
                                                                           Q<sub>0</sub>=s
                                                                                                                                 Q<sub>n</sub>=t
```

stretch, global_contiguity, ...

*Global Constraint Catalog

Berge-acyclic decomposition & directional arc consistency

- DAC solves Berge-acyclic CFN $f(T) \longrightarrow (T \cup E, F)$ Berge-acyclic
 - \exists order(X₁,...,X_m) on T \cup E such that $X_1 \in T$, $f(X_1)$ after filtering by DAC(T, $f(T) \cup \{f(X_i) \mid X_i \in T\})$

 $f(X_1)$ after filtering by DAC(T \cup E, F \cup { $f(X_i) \mid X_i \in T$ })

Extends to several decomposable global cost functions whose overall Decomposition is Berge-acyclic

Berge-acyclic decomposition & virtual arc consistency

 VAC solves Berge-acyclic decompositions $f(T) \longrightarrow (T \cup E, F)$ Berge-acyclic network

f_{\emptyset} after filtering by VAC(T, f(T) \cup {f(X_i) | X_i \in T}) f_{\emptyset} after filtering by VAC(T \cup E, F \cup {f(X_i) | X_i \in T})

Extends to several decomposable global cost functions whose overall Decomposition is Berge-acyclic

Experiments

- Benchmarks
 - 1-softRegular (Pesant, CP 2004)
 - 30% of authorized transitions, 50% of terminal states
 - Random unary cost functions in [0,9]
 - Random nonograms (CSPLib #12)
 - relaxed (2n-softRegular) or with white noise (2n-Regular, scalar)
 - Knapsack with linear constraints (Market Split)
 - non polynomial decomposition (max. domain size<1000)
- Comparison of monolithic (flow based, EDGAC) vs. decomposed (EDAC) in toulbar2* solver.

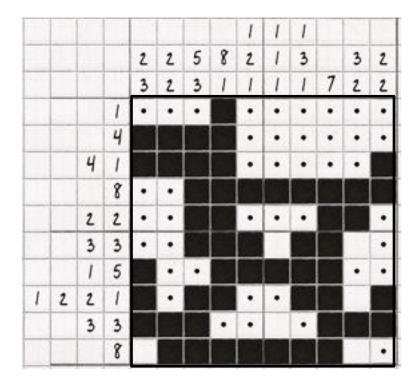
*toulbar2 version 0.9.5 <u>https://mulcyber.toulouse.inra.fr/projects/toulbar2/</u> With no preprocessing option and a static DAC compatible variable order

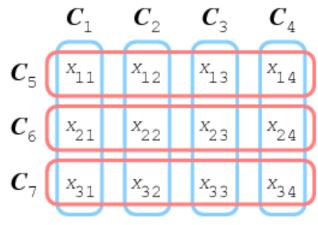
24

1-softRegular

n	$ \Sigma $	Q	Monolithic		Decomposed	
			filter	solve	filter	solve
25	5	10	0.12	0.51	0.00	0.00
		80	2.03	9.10	0.08	0.08
25	10	10	0.64	2.56	0.01	0.01
		80	10.64	43.52	0.54	0.56
25	20	10	3.60	13.06	0.03	0.03
		80	45.94	177.5	1.51	1.55
50	5	10	0.45	3.54	0.00	0.00
		80	11.85	101.2	0.17	0.17
50	10	10	3.22	20.97	0.02	0.02
		80	51.07	380.5	1.27	1.31
50	20	10	15.91	100.7	0.06	0.07
		80	186.2	1,339	3.38	3.47

n × n Nonograms





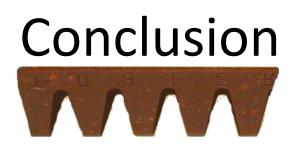
- Each cell is black or white
- The lengths of successive black
 segments is fixed on every row and
 column (NP-hard)
- One boolean variable per cell
- Length specifications can be described by a regular language
 (□*■■□*■■■□*)
- One Regular per row/column
- A DAC order compatible with all Berge-acyclic regulars exists

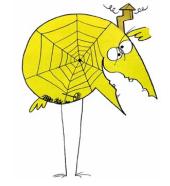
Relaxed Nonograms

2n-softRegular (Hamming distance)

Size	Monolithic		Decomposed	
	Solved	Time	Solved	Time
6×6	100%	1.98	100%	0.00
8×8	96%	358	100%	0.52
10×10	44%	2,941	100%	30.2
12×12	2%	3,556	82%	1,228
14×14	0%	3,600	14%	3,316

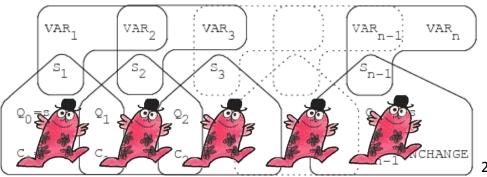
CPU limit one hour





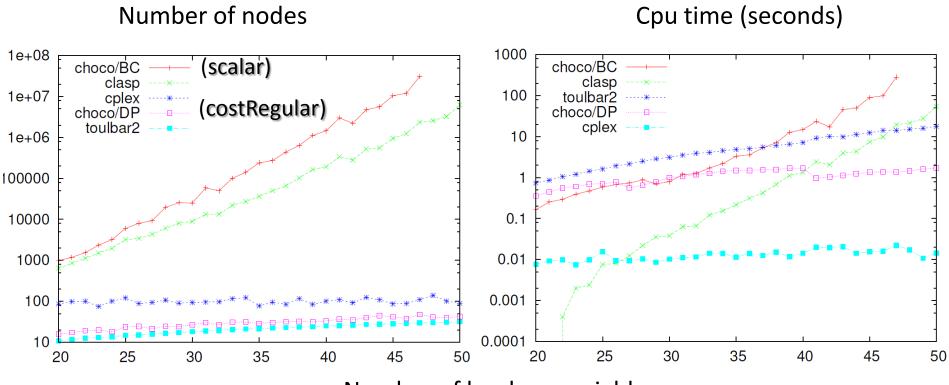
- Relaxation of Berge-acyclic global constraints (SoftRegular, softAmong,...)
- DAC/VAC solves Berge-acyclic decompositions
- Incrementality for free, but additional variables
- Possible extension to other decompositions

change(NVAR, VAR, CTR)



Market Split

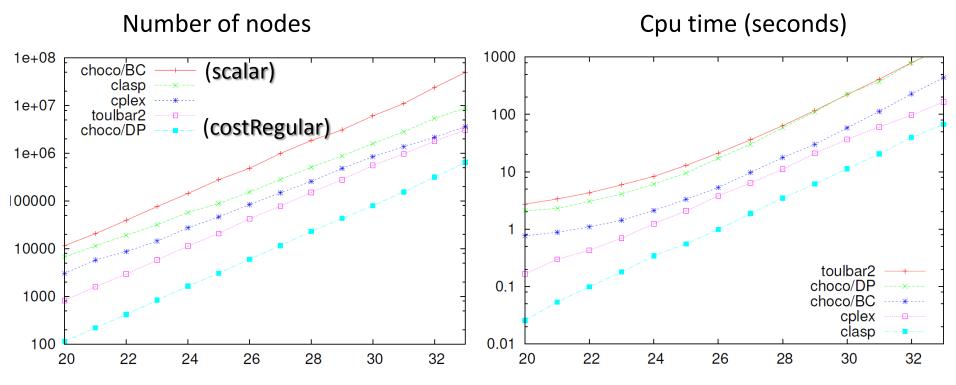
1-linearEquation



Number of boolean variables

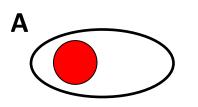
Market Split

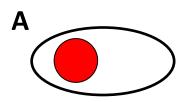
4-linearEquation

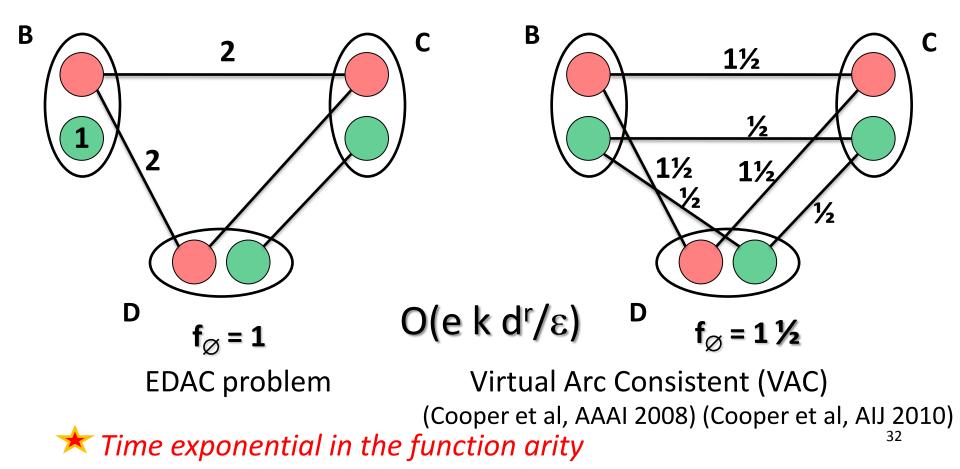


Number of boolean variables

Planified reformulation

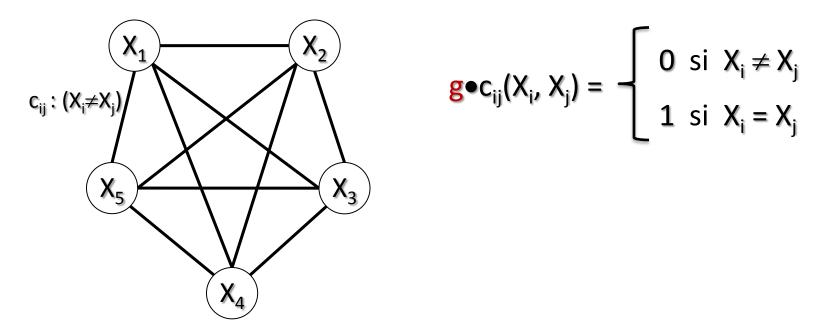






softAllDifferent

softAllDiff(X₁, X₂, X₃, X₄, X₅)

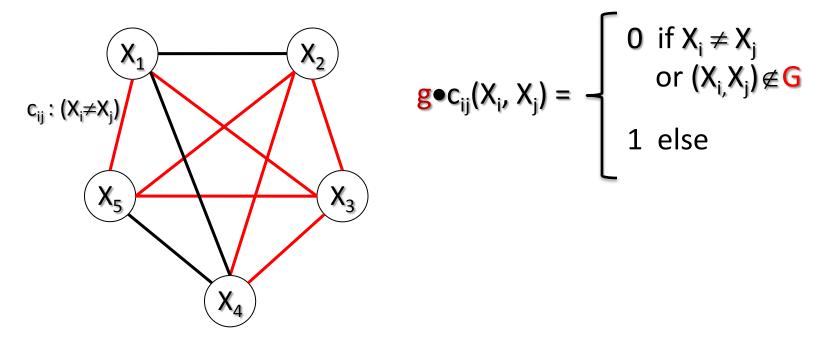


Polynomial transform(p=2) with a relaxation semantics defined by the number of pairs if variables with the same value.

 \star AC/DAC on the decomposed problem not equivalent to a direct filtering of the global cost function. Pol. Time using dedicated flow algorithms.³³

soft AllDifferent

softAllDiff(X₁, X₂, X₃, X₄, X₅)



Finding the minimum of the cost function can be NP-hard Depending on **g** (graph coloring)