
Filtering decomposable global
cost functions

D. Allouche, C. Bessière, P. Boizumault, S. de Givry,
P. Gutierrez, S. Loudni, J-P. Métivier, T. Schiex

INRA-UBIA Toulouse, U. Montpellier,

GREYC-CNRS Caen, IIIA-CSIC Barcelone

ANR -10-BLA-0214

Optimizing in Cost Function Networks
(aka CFN or WCSP)

 n variables
 finite domains

 e scoped cost functions

 scope, cost function

 Costs {0,…,k} k used for forbidden

 combinations

 1
. . .

e
F = f , , f

i i i

1

,

...
n

X D D d

X = X , , X

Minimize ()
i

F

f X NP-hard

(Shapiro, Haralick, IEEE PAMI 81)

Example Min-2coloring

A

D

B C

CFN graph
X={A,B,C,D},

F={f(A,B), f(A,C), f(A,D),
 f(B,C), f(B,D), f(C,D)})

A

D

B C

micro-structure
(each edge has cost 1)

3

Connections with MRF

• Cost functions are similar to energies

• Always positive (but wlog for optimization)

• CFN Inherits from Constraint networks

• Emphasis on constraints (0/1 probabilities)

• Optimization: tree search + local inference (filtering)

• Global constraints

Filtering Global cost functions

Filtering a CFN

• Transforms a network into an equivalent network
(same cost distribution).

 Incremental.

• Using local transformations in the scope of one
(arc consistency) cost function.

 Efficient (bounded arity).

• Makes the network more « explicit » until a given
property is satisfied.

Well characterized (Converges)

Filtering a CFN

• Applies equivalence preserving
transformations (EPTs) to move costs to
smaller arities :
– f(Xi), Xi X

– f lower bound on the optimum cost

• Two families of algorithms
– Chaotic EPTs applications: AC, DAC, FDAC, EDAC

– Planified EPTs application: OSAC, VAC

7

Equivalence preserving transformation
A

D

B C

A

1

D

1
B

1
C

Arc consistent problem (AC)
8 (Schiex, CP 2000)

Chaotic application of EPTs
A

1

D

1
B

1
C

AC problem

A

1

D

1
B

1
C

Directional Arc Consistent problem (DAC)

2

1

f = 1

2

A < B < C < D
9

(Cooper, FSS 03)

O(e dr)

Global constraints

• A constraint c(T) over any scope T

• No fixed arity

• Associated efficient« filtering » algorithms

AllDifferent(X1,…Xm)

captures permutations, assignment (Régin 1994)

Represented as a matching in a bipartite graph

Global cost functions

• A cost function f(T) over any scope T

• No fixed arity

• Associated efficient« filtering » algorithms

SoftAllDifferent(X1,…Xm)

(captures approximate permutations, assignment)

Represented as min cost flow in a transportation network

Filtering global cost functions

• Need to efficiently detect which costs can be
moved to smaller scopes, preserving internal
representation.

– Monolithic approach

• Uses flow based algorithms (softAllDifferent, softGCC,
softRegular) (Lee, Leung, IJCAI 2009, AAAI 2010, JAIR 2012)

– Decomposition based-approach

• Rewrite the global cost function as a sum of smaller
bounded scope cost functions (a sub network)

13

Decomposable cost function

A global cost function with a polynomial
transformation δp

f(T) (TE, F) a cost function network

Such that

 f’(S)F, |S| p arity bounded by p

 t DT , f(t) = min t’DTE, t’[T]=t f’(S)F f’(t’[S])
Preserves marginal cost distribution

14 Works also with constraints

δp

Relaxing decomposable global
constraints

 Let c(T) (TE, C) Constraint network

 Let g such that

c’(S)C , t’ (g c’)(t’) c’(t’) (constraint relaxation)

Then

(TE, gC) is a decomposition of a global cost
function which is a specific relaxation of c(T)

15 Scopes are preserved by g => same hyper-graph

Regular Global constraint

16

X1 X3 X5 X2 X4

Regular(X1, X2, X3, X4, X5, (Q, , β, q0, S))

Polynomial transform (p=3) with extra variables (Qi representing states)

Q0=q0 Q2 Q4 Q1 Q3 Q5T

 AC filtering solves the decomposed Berge-acyclic network

 = U DXi

DQi = Q

softRegular

17

X1 X3 X5 X2 X4

g(Qi-1, Xi, Qi) =

0 si (qi-1, xi, qi)

softRegular(X1, X2, X3, X4, X5, (Q, , , q0, T))

Polynomial transform (p=3) with extra variables (Qi representing states)
 with Hamming distance relaxation.

Q0=q0 Q2 Q4 Q1 Q3 Q5T

+ sinon

1 si (qi-1,v,qi),vxi

 DAC filtering solves the decomposed Berge-acyclic network

Berge-acyclic decomposition

• Example of Berge-acyclic decomposition

• Counter-example

18
(X,F) Berge-acyclic iff the incidence graph (X F, EF) acyclic ({Xi,f(T)}EF si XiT)

Berge-acyclic decomposition

• Example of Berge-acyclic decomposition

• Counter-examples

19
(X,F) Berge-acyclic iff the incidence graph (X F, EF) acyclic ({Xi,f(T)}EF si XiT)

Berge-acyclic decomposable global constraints

20

among(NVAR, VAR, Valeurs) :
#{ i |VAR[i] Valeurs } = NVAR

elementn(I, Table, E) :
E1=Table[I], E2=Table[I+1]…

lex_less(VAR1, VAR2) :
VAR1[i] < VAR2[i] ou
VAR1[i]=VAR2[i] et VAR1[i+1]<VAR2[i+1] …

max(VAR) :
max(VAR[i], max(VAR[i+1],…))

max, min, and, or, xor, …

stretch, global_contiguity, …
*Global Constraint Catalog

Berge-acyclic decomposition &
directional arc consistency

• DAC solves Berge-acyclic CFN

f(T) (TE, F) Berge-acyclic

 order(X1,...,Xm) on T E such that

X1 T,

f(X1) after filtering by DAC(T, f(T){f(Xi) | Xi T})

=

f(X1) after filtering by DAC(TE, F{f(Xi) | Xi T})

21

Extends to several decomposable global cost functions whose overall
Decomposition is Berge-acyclic

Berge-acyclic decomposition &
virtual arc consistency

• VAC solves Berge-acyclic decompositions

f(T) (TE, F) Berge-acyclic network

f after filtering by VAC(T, f(T){f(Xi) | Xi T})

=

f after filtering by VAC(TE, F{f(Xi) | Xi T})

22

Extends to several decomposable global cost functions whose overall
Decomposition is Berge-acyclic

Experiments

• Benchmarks
 1-softRegular (Pesant, CP 2004)

• 30% of authorized transitions, 50% of terminal states

• Random unary cost functions in [0,9]

 Random nonograms (CSPLib #12)
• relaxed (2n-softRegular) or with white noise (2n-Regular, scalar)

 Knapsack with linear constraints (Market Split)
• non polynomial decomposition (max. domain size<1000)

• Comparison of monolithic (flow based, EDGAC) vs.
decomposed (EDAC) in toulbar2* solver.

24

*toulbar2 version 0.9.5 https://mulcyber.toulouse.inra.fr/projects/toulbar2/
With no preprocessing option and a static DAC compatible variable order

https://mulcyber.toulouse.inra.fr/projects/toulbar2/

1-softRegular

25

n n Nonograms

 Each cell is black or white

 The lengths of successive black
segments is fixed on every row and
column (NP-hard)

 One boolean variable per cell

 Length specifications can be
described by a regular language
(** *)

 One Regular per row/column

A DAC order compatible with all
Berge-acyclic regulars exists

Relaxed Nonograms

27

2n-softRegular

CPU limit one hour

(Hamming distance)

Conclusion

 Relaxation of Berge-acyclic global constraints
(SoftRegular, softAmong,…)

 DAC/VAC solves Berge-acyclic decompositions

 Incrementality for free, but additional variables

 Possible extension to other decompositions

29

change(NVAR, VAR, CTR)

Market Split

30

1-linearEquation

Number of boolean variables

Number of nodes Cpu time (seconds)

(scalar)

(costRegular)

Market Split

31

4-linearEquation

Number of boolean variables

(scalar)

(costRegular)

Number of nodes Cpu time (seconds)

Planified reformulation
A

D

1

B C

EDAC problem

A

D

B C 2

f = 1

2

f = 1

½

½

1½

1½ 1½

½

½

(Cooper et al, AAAI 2008) (Cooper et al, AIJ 2010)
Virtual Arc Consistent (VAC)

32 Time exponential in the function arity

O(e k dr/)

softAllDifferent

33

X1

X3 X5

X2

X4

gcij(Xi, Xj) =
0 si Xi Xj

1 si Xi = Xj

softAllDiff(X1, X2, X3, X4, X5)

Polynomial transform(p=2) with a relaxation semantics defined by the number
of pairs if variables with the same value.

cij : (XiXj)

AC/DAC on the decomposed problem not equivalent to a direct filtering
of the global cost function. Pol. Time using dedicated flow algorithms.

soft AllDifferent

34

X1

X3 X5

X2

X4

gcij(Xi, Xj) =

0 if Xi Xj

 or (Xi,Xj)G

softAllDiff(X1, X2, X3, X4, X5)

cij : (XiXj)

Finding the minimum of the cost function can be NP-hard
Depending on g (graph coloring)

1 else

