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Background

� Real-world decisions often involve multiple, conflicting and
non-commensurate objectives.

� Oil drilling programmes:

PROFIT vs. ENVIRONMENTAL DAMAGE
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MOCOP

A Multi-Objective Constraint Optimization Problem (MOCOP) instance
consists of

�Variables X = {X1, . . . ,Xn} over

�Finite Domains D = {D1, . . . ,Dn} and a set of

�Utility Functions F = {f1, . . . , fr}, with fi : Yi −→ Rp, where Yi ⊆ X and the

�Number of Objectives is p.

Maximize
F(X) =

∑r
i=1 fi (Yi ).
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MOCOP - Example

Paris Trip:
Two school classes A and B vote over attractions to see on their joint trip to
Paris regarding 3 aspects.

Must-see?

Louvre Boat Tour

Tour Eiffel

Notre Dame Disneyland

Important cultural sight? Amusement sight?
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MOCOP - Example

Paris Trip:

�Sights: X0, . . . ,X4

�Aspects: Culture f1 : {X0,X1,X2}↘
Must-see f2 : {X0,X1,X3} → (Votes A, Votes B)
Amusement f3 : {X1,X3,X4}↗

→ Maximize F(X ) = f1 + f2 + f3
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MOCOP

Maximize F(X ) = f1 + f2 + f3
... but which vectors are maximal?

Compare utility vectors by
� Pareto order

� Weighted averages

� Lexicographic order

� ...

→ Set of undominated solutions is “maximal”!
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Issues with Order Relations

Pareto order

� No cutting of relevant solutions for decision maker.

� Very large number of optimal (undominated) solutions.
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Issues with Order Relations

Mapping all objectives into a single scale of utility

� Precise representation of objective.

� Time-consuming/Difficult to elicit trade-offs.

� More than one expert may be involved in decision making process.
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Idea - Use Imprecise Tradeoffs

Elicit only a few tradeoffs between the objectives and deduce
more information.

Example

In a bi-objective case, user may reveal that:

� (1,0) is at least as good as (0,1)

� (0,2) is strictly preferred to (1,0)
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Idea - Use Imprecise Tradeoffs

Non-strict Statement α ≥ β: “α is at least as good as β”.

Strict Statement α > β: ”α is strictly preferred to β”.

Sets of Statements Γ≥ the set of non-strict statements.

Γ> the set of strict statements.

Γ = Γ≥ ∪ Γ>.
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Order Relations

Weighted Average Models (WA):

� Normalized weights vector ~w = (w1, . . . ,wp) with
∑

i=1,...,p wi = 1.

� α ≥w β if and only if
∑

i=1,...,p wi ∗ αi ≥
∑

i=1,...,p wi ∗ βi

(~w satisfies α ≥ β).

Example
~w = (0.3, 0.7). Then (0, 4) ≥w (5, 1), because:

2.8 = 0.3 ∗ 0 + 0.7 ∗ 4
≥

2.2 = 0.3 ∗ 5 + 0.7 ∗ 1.
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Order Relations

Lexicographic Models (Lex):

� Ordered subset of objectives π = (π1, . . . , πr ) with
{π1, . . . , πr} ⊆ {1, . . . , p}.

� α ≥π β if and only if (απ1 , . . . , απr ) ≥lex (βπ1 , . . . , βπr )
(π satisfies α ≥ β).

Example
π = (3, 1, 4). Then (0,4,1,2) ≤ (5,3,1,0), because:

↘↙ ↓ ↘↙ ↓
(1, 0, 2) ≤Lex (1, 5, 0).
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Tradeoffs

Consistency

WA-consistency Set of tradeoffs Γ is WA-consistent, if there exists WA
model ~w that satisfies all tradeoffs.

Lex-consistency Set of tradeoffs Γ is Lex-consistent, if there exists Lex
model π that satisfies all tradeoffs.

� If Γ is Lex-consistent then Γ is WA-consistent.
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Order Relations

Inference

Γ � α ≥WA β if and only if all WA models that satisfy all elicited tradeoffs Γ
also satisfy α ≥ β.

Γ � α ≥Lex β if and only if all Lex models that satisfy all elicited tradeoffs Γ
also satisfy α ≥ β.

� If Γ � α ≥WA β then Γ � α ≥Lex β.
If Γ � α >WA β then Γ � α >Lex β.
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Relationship Between Weighted Average and Lex Models

Induced Relations:

α ≥WA
Γ β if and only if Γ � α ≥WA β.

α >WA
Γ β if and only if Γ � α ≥WA β and Γ 6� β ≥WA α.

α ≥Lex
Γ β and α >Lex

Γ β analogously.

Opt(S,�) the set of �-undominated solutions in S.

� For non-strict relations, Lex is stronger than WA:

Opt(S,≥Lex
Γ ) ⊆ Opt(S,≥WA

Γ )

� For strict relations, not necessarily the case:

Opt(S, >Lex
Γ ) 6⊆ Opt(S, >WA

Γ )
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Computation of weighted average model inferences

� For WA-consistent Γ and α, β ∈ Rp , to check if α is preferred to β use LP
formulation [Marinescu et al., CP’13]:

� Define set of non-strict linear inequalities involving α and β and
real-valued variables.

� Check satisfiability of inequalities with standard LP solver.

� Return TRUE if and only if inequalities are satisfiable.
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Computation of lexicographic model inferences

� For Lex-consistent Γ and α, β ∈ Rp , to check if α is preferred to β use
Greedy algorithm (slight variation of [Wilson et al., IJCAI’15]):

� Start with empty sequence, i.e., π = ().

� Consider preference statements Γ′ = Γ ∪ {α < β}.

� Repeatedly add new elements i ∈ {1, . . . , p} to π for which no preference
statement in Γ′ becomes opposed, i.e., @(δ ≥ γ) or (δ > γ) ∈ Γ s. t. δ <π γ.

� Return TRUE is and only if final sequence π satisfies all strict statements.
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Solving MOCOP

Multi-objective AND/OR Branch-and-Bound (MOAOBB)
[Marinescu, CP’09]

1. Create primal graph and pseudo-tree.

2. Perform depth-first Branch-and-Bound search on the associated
weighted AND/OR search tree.

3. Backtrack if lower bound dominates upper bound for the set of
undominated solutions.
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MOAOBB

1. Createprimal graph and pseudo-tree .

2. Perform depth-first Branch-and-Bound search on the associated weighted
AND/OR search tree.

3. Backtrack if lower bound dominates upper bound for the set of undominated
solutions.
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MOAOBB

1. Create primal graph and pseudo-tree.

2. Perform depth-first Branch-and-Bound search on the associatedweighted
AND/OR search tree .

3. Backtrack if lower bound dominates upper bound for the set of undominated
solutions.

Partial Solution Tree
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MOAOBB

1. Create primal graph and pseudo-tree.

2. Perform depth-first Branch-and-Bound search on the associatedweighted
AND/OR search tree .

3. Backtrack if lower bound dominates upper bound for the set of undominated
solutions.

Solution Tree
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MOAOBB

1. Create primal graph and pseudo-tree.

2. Perform depth-first Branch-and-Bound search on the associated weighted
AND/OR search tree.

3. Backtrack if lower bound dominates upper bound for the set of
undominated solutions.

Upper Bound v(n) is maintained for every subproblem descending from node n.
Depending on its child nodes and edge weights. Updated in every step.

Lower Bound is given for every subproblem descending from node n by heuristic h(n).
E.g., Static or Dynamic Mini-Bucket Heuristic.

Dominance Test A < B ⇔ for all β ∈ B exists α ∈ A such that α ≥ β.
Depends on order relation!

Insight Centre for Data Analytics AIGM15 Slide 26



Outline

• Introduction MOCOP

• Order Relations and Tradeoffs

• Computation of Preference Inference

• Solving MOCOP via AND/OR branch and bound

� Experiments

Insight Centre for Data Analytics AIGM15 Slide 27



Problem Instances

� Problem types:

� Vertex covering: 2,3 and 5 objectives

� Random networks: 2,3 and 5 objectives

� Auctions: 3 objectives (price, failure, quality)

� Lex/WA-Consistent random trade-offs:

� Of the form +,+,−, e.g., (1, 0, 0, 2) ≥ (0, 0, 1, 0)
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Comparison between Pareto, Weighted and Lex Models
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Figure: Average number of solutions (left) and CPU time in seconds for computing
(right). Time limit 20 minutes.
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Conclusion

Experimental results show, that
� Lex-order yields less solutions than WA- (and Pareto-) order...

� ...for the cost of a higher running time....

... which is consistent with the theoretical results.
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Questions?

Anne-Marie George annemarie.george@insight-centre.org

Abdul Razak abdul.razak@insight-centre.org

Nic Wilson nic.wilson@insight-centre.org
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Impact of tradeoffs
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Figure: Number of problems solved (left) and CPU time in seconds (right) for random
networks problem instances with 40 variables and 5 objectives. Time limit 20 minutes.
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MOAOBB

1. Create primal graph and pseudo-tree.

2. Perform depth-first Branch-and-Bound search on the associatedweighted
AND/OR search tree .

3. Backtrack if lower bound dominates upper bound for the set of undominated
solutions.

f1 : {X0, X1, X2}
f2 : {X0, X1, X3}
f3 : {X1, X3, X4}

f1(0X0
, 1X1

, 0X2
) = (3, 6) f3(1X1

, 0X3
, 0X4

) = (1, 9)
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