Centre for Data Analytics

Multi-Objective Constraint Optimization with Lexicographic and Weighted Average Preference Models

Anne-Marie George, Abdul Razak, Nic Wilson

AIGM15

September 28, 2015

Outline

- Introduction MOCOP
- Order Relations and Tradeoffs
- Computation of Preference Inference
- Solving MOCOP via AND/OR branch and bound
- Experiments

Background

- Real-world decisions often involve multiple, conflicting and non-commensurate objectives.
 - Oil drilling programmes:

PROFIT vs. ENVIRONMENTAL DAMAGE

ΜΟCOP

A Multi-Objective Constraint Optimization Problem (MOCOP) instance consists of

- ► Variables $\mathbf{X} = \{X_1, \dots, X_n\}$ over
- Finite Domains $\mathbf{D} = \{D_1, \dots, D_n\}$ and a set of
- ▶ Utility Functions $\mathbf{F} = \{f_1, \ldots, f_r\}$, with $f_i : \overline{Y_i} \longrightarrow \mathbb{R}^p$, where $Y_i \subseteq \mathbf{X}$ and the

Number of Objectives is p.

 $\begin{array}{l} \text{Maximize} \\ \mathcal{F}(\mathbf{X}) = \sum_{i=1}^{r} f_i(Y_i). \end{array}$

MOCOP - Example

Paris Trip:

Two school classes A and B vote over attractions to see on their joint trip to Paris regarding 3 aspects.

MOCOP - Example

Paris Trip:

▶ Sights: X_0, \ldots, X_4

► Aspects: Culture f_1 : $\{X_0, X_1, X_2\}$ Must-see f_2 : $\{X_0, X_1, X_3\}$ → (Votes A, Votes B) Amusement f_3 : $\{X_1, X_3, X_4\}$

X ₀	X ₁	X ₂	f ₁	X	Χ,	Х ₃	f_2	X ₁	Х ₃	X_4	f_3
0	0	0	(5,3)	0	0	0	(1,5)	0	0	0	(1,4)
0	0	1	(2,8)	0	0	1	(4,2)	0	0	1	(3,2)
0	1	0	(3,6)	0	1	0	(0,6)	0	1	0	(5,1)
0	1	1	(2,9)	0	1	1	(2,4)	0	1	1	(4,3)
1	0	0	(2,1)	1	0	0	(6,1)	1	0	0	(1,9)
1	0	1	(3,0)	1	0	1	(5,5)	1	0	1	(3,2)
1	1	0	(1,6)	1	1	0	(6,4)	1	1	0	(5,6)
1	1	1	(2,4)	1	1	1	(5,2)	1	1	1	(4,8)

 \rightarrow Maximize $\mathcal{F}(X) = f_1 + f_2 + f_3$

ΜΟCOP

Maximize $\mathcal{F}(X) = f_1 + f_2 + f_3$

... but which vectors are maximal?

Compare utility vectors by

- Pareto order
- Weighted averages
- Lexicographic order
- ...

 \rightarrow Set of undominated solutions is "maximal"!

Outline

- Introduction MOCOP
- Order Relations and Tradeoffs
- Computation of Preference Inference
- Solving MOCOP via AND/OR branch and bound
- Experiments

Issues with Order Relations

Pareto order

- No cutting of relevant solutions for decision maker.
- Very large number of optimal (undominated) solutions.

Issues with Order Relations

Mapping all objectives into a single scale of utility

- Precise representation of objective.
- Time-consuming/Difficult to elicit trade-offs.
- More than one expert may be involved in decision making process.

Elicit only a few tradeoffs between the objectives and deduce more information.

Example

In a bi-objective case, user may reveal that:

- (1,0) is at least as good as (0,1)
- (0,2) is strictly preferred to (1,0)

Idea - Use Imprecise Tradeoffs

Non-strict Statement

Strict Statement

Sets of Statements

 $\alpha \geq \beta: \ ``\alpha \text{ is at least as good as } \beta".$

 $\alpha > \beta$: " α is strictly preferred to β ".

 $\label{eq:gamma} \begin{array}{l} \Gamma_{\geq} \mbox{ the set of non-strict statements.} \\ \Gamma_{>} \mbox{ the set of strict statements.} \\ \Gamma=\Gamma_{>}\cup\Gamma_{>}. \end{array}$

Order Relations

Weighted Average Models (WA):

- Normalized weights vector $\vec{w} = (w_1, \dots, w_p)$ with $\sum_{i=1,\dots,p} w_i = 1$.
- $\alpha \geq_{w} \beta$ if and only if $\sum_{i=1,...,p} w_i * \alpha_i \geq \sum_{i=1,...,p} w_i * \beta_i$ (\vec{w} satisfies $\alpha \geq \beta$).

Example $\vec{w} = (0.3, 0.7)$. Then $(0, 4) \ge_w (5, 1)$, because: 2.8 = 0.3 * 0 + 0.7 * 4 \ge 2.2 = 0.3 * 5 + 0.7 * 1.

Order Relations

Lexicographic Models (Lex):

- Ordered subset of objectives $\pi = (\pi_1, \ldots, \pi_r)$ with $\{\pi_1, \ldots, \pi_r\} \subseteq \{1, \ldots, p\}.$
- $\alpha \geq_{\pi} \beta$ if and only if $(\alpha_{\pi_1}, \ldots, \alpha_{\pi_r}) \geq_{lex} (\beta_{\pi_1}, \ldots, \beta_{\pi_r})$ (π satisfies $\alpha \geq \beta$).

Example

Tradeoffs

Consistency

WA-consistency Set of tradeoffs Γ is WA-consistent, if there exists WA model \vec{w} that satisfies all tradeoffs.

Lex-consistency Set of tradeoffs Γ is Lex-consistent, if there exists Lex model π that satisfies all tradeoffs.

 \rightarrow If Γ is Lex-consistent then Γ is WA-consistent.

Order Relations

Inference

- $\Gamma \vDash \alpha \ge_{WA} \beta$ if and only if all WA models that satisfy all elicited tradeoffs Γ also satisfy $\alpha \ge \beta$.
- $\[Gamma \vdash \alpha \geq_{Lex} \beta\]$ if and only if all Lex models that satisfy all elicited tradeoffs $\[Gamma \cap \alpha \geq \beta]$.
- $\rightarrow \text{ If } \Gamma \vDash \alpha \geq_{WA} \beta \text{ then } \Gamma \vDash \alpha \geq_{Lex} \beta.$ If $\Gamma \vDash \alpha >_{WA} \beta \text{ then } \Gamma \vDash \alpha >_{Lex} \beta.$

Relationship Between Weighted Average and Lex Models

Induced Relations:

$$\begin{array}{l} \alpha \geq_{\Gamma}^{WA} \beta \ \text{ if and only if } \Gamma \vDash \alpha \geq_{WA} \beta. \\ \alpha >_{\Gamma}^{WA} \beta \ \text{ if and only if } \Gamma \vDash \alpha \geq_{WA} \beta \text{ and } \Gamma \nvDash \beta \geq_{WA} \alpha. \\ \alpha \geq_{\Gamma}^{Lex} \beta \text{ and } \alpha >_{\Gamma}^{Lex} \beta \text{ analogously.} \end{array}$$

 $Opt(S, \succ)$ the set of \succ -undominated solutions in S.

- For <u>non-strict relations</u>, Lex is stronger than WA: $Opt(S, \geq_{\Gamma}^{Lex}) \subseteq Opt(S, \geq_{\Gamma}^{WA})$
- For strict relations, not necessarily the case: $Opt(S, >_{\Gamma}^{Lex}) \subseteq Opt(S, >_{\Gamma}^{WA})$

Outline

- Introduction MOCOP
- Order Relations and Tradeoffs
- Computation of Preference Inference
- Solving MOCOP via AND/OR branch and bound
- Experiments

Computation of weighted average model inferences

- For WA-consistent Γ and α, β ∈ ℝ^p, to check if α is preferred to β use LP formulation [Marinescu et al., CP'13]:
 - Define set of non-strict linear inequalities involving α and β and real-valued variables.
 - Check satisfiability of inequalities with standard LP solver.
 - Return TRUE if and only if inequalities are satisfiable.

Computation of lexicographic model inferences

- For Lex-consistent Γ and α, β ∈ ℝ^ρ, to check if α is preferred to β use Greedy algorithm (slight variation of [Wilson et al., IJCAI'15]):
 - Start with empty sequence, i.e., $\pi = ()$.
 - Consider preference statements $\Gamma' = \Gamma \cup \{\alpha < \beta\}.$
 - Repeatedly add new elements i ∈ {1,..., p} to π for which no preference statement in Γ' becomes opposed, i.e., ∄(δ ≥ γ) or (δ > γ) ∈ Γ s. t. δ <_π γ.
 - \blacktriangleright Return TRUE is and only if final sequence π satisfies all strict statements.

Outline

- Introduction MOCOP
- Order Relations and Tradeoffs
- Imprecise Tradeoffs
- Computation of Preference Inference
- Solving MOCOP via AND/OR branch and bound
- Experiments

Solving MOCOP

Multi-objective AND/OR Branch-and-Bound (MOAOBB) [Marinescu, CP'09]

- 1. Create primal graph and pseudo-tree.
- 2. Perform depth-first Branch-and-Bound search on the associated weighted AND/OR search tree.
- 3. Backtrack if lower bound dominates upper bound for the set of undominated solutions.

- 1. Create primal graph and pseudo-tree.
- 2. Perform depth-first Branch-and-Bound search on the associated weighted AND/OR search tree.
- 3. Backtrack if lower bound dominates upper bound for the set of undominated solutions.

- 1. Create primal graph and pseudo-tree.
- 2. Perform depth-first Branch-and-Bound search on the associated weighted AND/OR search tree.
- 3. Backtrack if lower bound dominates upper bound for the set of undominated solutions.

- 1. Create primal graph and pseudo-tree.
- 2. Perform depth-first Branch-and-Bound search on the associated weighted AND/OR search tree.
- 3. Backtrack if lower bound dominates upper bound for the set of undominated solutions.

- 1. Create primal graph and pseudo-tree.
- 2. Perform depth-first Branch-and-Bound search on the associated weighted AND/OR search tree.
- 3. Backtrack if lower bound dominates upper bound for the set of undominated solutions.

Upper Bound v(n) is maintained for every subproblem descending from node *n*. Depending on its child nodes and edge weights. Updated in every step.

Lower Bound is given for every subproblem descending from node n by heuristic h(n). E.g., Static or Dynamic Mini-Bucket Heuristic.

Dominance Test $A \succeq B \Leftrightarrow$ for all $\beta \in B$ exists $\alpha \in A$ such that $\alpha \geq \beta$. Depends on order relation!

Outline

- Introduction MOCOP
- Order Relations and Tradeoffs
- Computation of Preference Inference
- Solving MOCOP via AND/OR branch and bound
- Experiments

Problem Instances

- Problem types:
 - Vertex covering: 2,3 and 5 objectives
 - Random networks: 2,3 and 5 objectives
 - Auctions: 3 objectives (price, failure, quality)
- Lex/WA-Consistent random trade-offs:
 - ▶ Of the form +, +, -, e.g., (1, 0, 0, 2) ≥ (0, 0, 1, 0)

Comparison between Pareto, Weighted and Lex Models

Figure: Average number of solutions (left) and CPU time in seconds for computing (right). Time limit 20 minutes.

Conclusion

Experimental results show, that

- Lex-order yields less solutions than WA- (and Pareto-) order...
- ...for the cost of a higher running time....

... which is consistent with the theoretical results.

Questions?

Anne-Marie George annemarie.george@insight-centre.org Abdul Razak abdul.razak@insight-centre.org Nic Wilson nic.wilson@insight-centre.org

Impact of tradeoffs

Figure: Number of problems solved (left) and CPU time in seconds (right) for random networks problem instances with 40 variables and 5 objectives. Time limit 20 minutes.

- 1. Create primal graph and pseudo-tree.
- 2. Perform depth-first Branch-and-Bound search on the associated weighted AND/OR search tree.
- 3. Backtrack if lower bound dominates upper bound for the set of undominated solutions.

