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Problem

few arrays ⇔ few examples
lots of genes⇔high dimension
interactions ⇔ very high dimension

Inference

Which interactions?

The main trouble is the low sample size and high dimensional
setting

Our main hope is to benefit from sparsity: few genes interact
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Handling the scarcity of data

Merge several experimental conditions
experiment 1 experiment 2 experiment 3
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Handling the scarcity of data

Inferring each graph independently does not help
experiment 1 experiment 2 experiment 3
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Handling the scarcity of data

By pooling all the available data
experiment 1 experiment 2 experiment 3

(X1, . . . , Xn), n = n1 + n2 + n3.

inference
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Handling the scarcity of data

By breaking the separability
experiment 1 experiment 2 experiment 3

(X
(1)
1 , . . . , X

(1)
n1 ) (X

(2)
1 , . . . , X

(2)
n2 ) (X

(3)
1 , . . . , X

(3)
n3 )

inference inference inference

Inferring multiple graph structures 3



Handling the scarcity of data

By breaking the separability
experiment 1 experiment 2 experiment 3

(X
(1)
1 , . . . , X

(1)
n1 ) (X

(2)
1 , . . . , X

(2)
n2 ) (X

(3)
1 , . . . , X

(3)
n3 )

inference inference inferenceinference inference inference

Inferring multiple graph structures 3



Outline

Statistical model

Multi-task learning

Geometrical insights

Optimization strategy

Theoretical results

Experiments

Inferring multiple graph structures 4



Outline

Statistical model

Multi-task learning

Geometrical insights

Optimization strategy

Theoretical results

Experiments

Inferring multiple graph structures 5



Gaussian graphical modeling

Let
I X = (X1, . . . , Xp) ∼ N (0p,Σ) and assume n i.i.d. copies of X,
I X be the n× p matrix whose kth row is Xk,
I Θ = (θij)i,j∈P , Σ−1 be the concentration matrix.

Graphical interpretation
Since corij|P\{i,j} = −θij/

√
θiiθjj for i 6= j,

Xi ⊥⊥ Xj |XP\{i,j} ⇔


θij = 0

or
edge (i, j) /∈ network.

 non zeroes in Θ describes the graph structure.
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The model likelihood

Let S = n−1XᵀX be the empirical variance-covariance matrix: S
is a sufficient statistic for X ⇒ L(Θ; X) = L(Θ; S)

The log-likelihood

L(Θ; S) =
n

2
log det(Θ)− n

2
trace(SΘ)− n

2
log(2π).

The MLE of Θ is S−1

_ not defined for n < p

_ not sparse⇒ fully connected graph
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Penalized Approaches

Penalized Likelihood (Banerjee et al., 2008)
maximize

Θ∈S+

L(Θ; S)− λ‖Θ‖1

^ well defined for n < p

^ sparse⇒ sensible graph
_ SDP of size O(p2) (solved by Friedman et al., 2007)

Neighborhood Selection (Meinshausen & Bülhman, 2006)

β̂ = argmin
β∈Rp−1

1

n

∥∥Xj −X\j β
∥∥2

2
+ λ ‖β‖1

where Xj is the jth column of X and X\j is X deprived of Xj

_ not symmetric, not positive-definite
^ p independent LASSO problems of size (p− 1)
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Neighborhood vs. Likelihood

Pseudo-likelihood (Besag, 1975)

P(X1, . . . , Xp) '
p∏
j=1

P(Xj |{Xk}k 6=j)

L̃(Θ; S) =
n

2
log det(D)− n

2
trace

(
SD−1Θ2

)
− n

2
log(2π)

L(Θ; S) =
n

2
log det(Θ)− n

2
trace(SΘ) − n

2
log(2π)

with D = diag(Θ).

Proposition (Ambroise, Chiquet, Matias, 2008)
Neighborhood selection leads to the graph maximizing the
penalized pseudo-log-likelihood

Proof: β̂i = − θ̂ij

θ̂jj
, where Θ̂ = arg maxΘ L̃(Θ; S)− λ‖Θ‖1
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Multi-task learning

We have T samples (experimental cond.) of the same variables

I X(t) is the tth data matrix, S(t) is the empirical covariance
I examples are assumed to be drawn from N (0,Σ(t))

Ignoring the relationships between the tasks leads to separable
objectives

maximize
Θ(t)∈Rp×p,t=1...,T

L̃(Θ(t); S(t))− λ‖Θ(t)‖1

Multi-task learning = solving the T tasks jointly
We may couple the objectives
I through the fitting term term,
I through the penalty term.
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Coupling through the fitting term

Intertwined LASSO

maximize
Θ(t),t...,T

T∑
t=1

L̃(Θ(t); S̃(t))− λ‖Θ(t)‖1

I S = 1
n

∑T
t=1 ntS

(t) is the “pooled-tasks” covariance matrix.

I S̃(t) = αS(t) + (1− α)S is a mixture between specific and
pooled covariance matrices.

I α = 0 pools the data sets and infers a single graph
I α = 1 separates the data sets and infers T graphs

independently
I α = 1/2 in all our experiments
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Coupling through penalties: group-LASSO

We group parameters by sets of
corresponding edges across graphs:

X1 X2

X3 X4

Graphical group-LASSO

maximize
Θ(t),t...,T

T∑
t=1

L̃
(
Θ(t); S(t)

)
− λ

∑
i 6=j

(
T∑
t=1

(
θ

(t)
ij

)2
)1/2

^ Sparsity pattern shared between graphs
_ Identical graphs across tasks
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Coupling through penalties: cooperative-LASSO

I Same grouping, and bet that
correlations are likely to be sign
consistent

I Gene interactions are either
inhibitory or activating across assays

X1 X2

X3 X4

Graphical cooperative-LASSO

maximize
Θ(t)

t=1,...,T

T∑
t=1

L̃
(
S(t); Θ(t)

)
−λ
∑
i 6=j

{( T∑
t=1

[
θ

(t)
ij

]2

+

) 1
2

+

( T∑
t=1

[
θ

(t)
ij

]2

−

) 1
2

}

where [u]+ = max(0, u) and [u]− = min(0, u).

^ Plausible in many other situations
^ Sparsity pattern shared between graphs, which may differ
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A Geometric View of Sparsity
Constrained Optimization

L
(β

1
,β

2
)

β2 β1

max
β1,β2

L(β1, β2)− λΩ(β1, β2)
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A Geometric View of Sparsity
Supporting Hyperplane

An hyperplane supports a set iff
I the set is contained in one half-space
I the set has at least one point on the hyperplane

β
2

β1
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A Geometric View of Sparsity
Supporting Hyperplane

An hyperplane supports a set iff
I the set is contained in one half-space
I the set has at least one point on the hyperplane

β
2

β1

β
2

β1

β
2

β1

There are Supporting Hyperplane at all points of convex sets:
Generalize tangents
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A Geometric View of Sparsity
Dual Cone

Generalizes normals
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A Geometric View of Sparsity
Dual Cone

Generalizes normals

β
2

β1

β
2

β1

β
2

β1

Shape of dual cones⇒ sparsity pattern
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Group-LASSO balls
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Cooperative-LASSO balls
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Decomposition strategy
Estimate the jth neighborhood of the T graphs

maximize
Θ(t),t=1...,T

T∑
t=1

L̃(Θ(t); S(t))− λ Ω(K(t))

decomposes into p convex optimization problems of size

β̂j = argmin
β∈RT×(p−1)

fj(β) + λ Ω(β)

where β̂j is a minimizer iff 0 ∈ ∇βfj(β) + λ∂βΩ(β)
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Decomposition strategy
Estimate the jth neighborhood of the T graphs

maximize
Θ(t),t=1...,T

T∑
t=1

L̃(Θ(t); S(t))− λ Ω(K(t))

decomposes into p convex optimization problems of size

β̂j = argmin
β∈RT×(p−1)

fj(β) + λ Ω(β)

where β̂j is a minimizer iff 0 ∈ ∇βfj(β) + λ∂βΩ(β)
Intertwined LASSO:

Ω(β) =

T∑
t=1

∥∥∥β(t)
∥∥∥

1
,

where β =
(
β(1), . . . ,β(T )

)ᵀ
, β(t) ∈ Rp−1
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Decomposition strategy
Estimate the jth neighborhood of the T graphs

maximize
Θ(t),t=1...,T

T∑
t=1

L̃(Θ(t); S(t))− λ Ω(K(t))

decomposes into p convex optimization problems of size

β̂j = argmin
β∈RT×(p−1)

fj(β) + λ Ω(β)

where β̂j is a minimizer iff 0 ∈ ∇βfj(β) + λ∂βΩ(β)
Group-LASSO:

Ω(β) =

p−1∑
i=1

∥∥∥β[1:T ]
i

∥∥∥
2

where β[1:T ]
i is the vector corresponding to the edges (i, j)

across graphs
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Decomposition strategy
Estimate the jth neighborhood of the T graphs

maximize
Θ(t),t=1...,T

T∑
t=1

L̃(Θ(t); S(t))− λ Ω(K(t))

decomposes into p convex optimization problems of size

β̂j = argmin
β∈RT×(p−1)

fj(β) + λ Ω(β)

where β̂j is a minimizer iff 0 ∈ ∇βfj(β) + λ∂βΩ(β)
Coop-LASSO:

Ω(β) =

p−1∑
i=1

(∥∥∥∥(β[1:T ]
i

)
+

∥∥∥∥
2

+

∥∥∥∥(−β[1:T ]
i

)
+

∥∥∥∥
2

)

where β[1:T ]
i is the vector corresponding to the edges (i, j)

across graphs
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Active set algorithm: , yellow belt
// 0. INITIALIZATION β ← 0,A ← ∅
while 0 /∈ ∂βL(β) do

// 1. MASTER PROBLEM: OPTIMIZATION WITH RESPECT TO βA
Find a solution h to the smooth problem

∇hf(βA + h) + λ∂hΩ(βA + h) = 0, where ∂hΩ = {∇hΩ} .

βA ← βA + h
// 2. IDENTIFY NEWLY ZEROED VARIABLES;

A ← A\{i}

// 3. IDENTIFY NEW NON-ZERO VARIABLES;
// Select a candidate i ∈ Ac

i← arg max
j∈Ac

vj , where vj = min
ν∈∂βjΩ

∣∣∣ ∂f(β)
∂βj

+ λν
∣∣∣

end
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Active set algorithm: / orange belt
// 0. INITIALIZATION β ← 0,A ← ∅
while 0 /∈ ∂βL(β) do

// 1. MASTER PROBLEM: OPTIMIZATION WITH RESPECT TO βA
Find a solution h to the smooth problem

∇hf(βA + h) + λ∂hΩ(βA + h) = 0, where ∂hΩ = {∇hΩ} .

βA ← βA + h
// 2. IDENTIFY NEWLY ZEROED VARIABLES;

A ← A\{i}

// 3. IDENTIFY NEW NON-ZERO VARIABLES;
// Select a candidate i ∈ Ac which violates the more the optimality

conditions

i← arg max
j∈Ac

vj , where vj = min
ν∈∂βjΩ

∣∣∣ ∂f(β)
∂βj

+ λν
∣∣∣

if it exists such an i then
A ← A∪ {i}

else
Stop and return β, which is optimal

end
end
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Active set algorithm: M green belt
// 0. INITIALIZATION β ← 0,A ← ∅
while 0 /∈ ∂βL(β) do

// 1. MASTER PROBLEM: OPTIMIZATION WITH RESPECT TO βA
Find a solution h to the smooth problem

∇hf(βA + h) + λ∂hΩ(βA + h) = 0, where ∂hΩ = {∇hΩ} .

βA ← βA + h
// 2. IDENTIFY NEWLY ZEROED VARIABLES;

while ∃i ∈ A : βi = 0 and min
ν∈∂βiΩ

∣∣∣ ∂f(β)
∂βi

+ λν
∣∣∣ = 0 do

A ← A\{i}
end
// 3. IDENTIFY NEW NON-ZERO VARIABLES;
// Select a candidate i ∈ Ac such that an infinitesimal change of βi
provides the highest reduction of L

i← arg max
j∈Ac

vj , where vj = min
ν∈∂βjΩ

∣∣∣ ∂f(β)
∂βj

+ λν
∣∣∣

if vi 6= 0 then
A ← A∪ {i}

else
Stop and return β, which is optimal

end
end
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(Sparse) linear regression setup

Let Y be a response variable, X = (X1, . . . , Xp) a vector of p
features,

Y = Xβ? + ε =

p∑
j=1

Xjβ
?
j + ε, ε ∼ N (0, σ2I) ,

I S = {j,β?j 6= 0} is the true support,
I β? has a group structure {Gk}k=1,...,K .

Cooperative-Lasso estimate of β?

Given the training vector y = (y1, . . . , yn)ᵀ and the n× p design
matrix X whose jth column xj = (x1

j , . . . , x
n
j )ᵀ,

β̂
coop

= arg min
β∈Rp

1

2
‖y −Xβ‖2n + λn

K∑
k=1

‖[βGk ]+‖+ ‖[βGk ]−‖. ,
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Technical assumptions

Let Ψ = EXXᵀ be the covariance matrix of X.

(A1) X and Y have finite fourth order moments E‖X‖4 <∞,
E‖Y ‖4 <∞,

(A2) the covariance matrix Ψ = EXXᵀ ∈ Rp×p is invertible,

(A3) for every k = 1, . . . ,K, if ‖[β?]+‖ > 0 and ‖[β?]−‖ > 0 then for
every j ∈ Gk β?j 6= 0. (There should not be any zero in a group with positive

and negative coefficients).
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Irrepresentability condition

Define Sk = S ∩ Gk the support within a group and

D(β)]jj = ‖[sign(βj)βGk ]+‖−1.

Assume there exists η > 0 such that

I for every group k to switch off (where Sck = Gk),

max(‖[ΨSckSΨ−1
SSD(β?S)β?S ]+‖, ‖[ΨSckSΨ−1

SSD(β?S)β?S ]−‖) ≤ 1− η,

I for every group k with zero coefficients and either positive
or negative coefficients, define νk = 1 if positive coefficients
are activated, νk = −1 otherwise, and requireνkΨSckSΨ−1

SSD(β?S)β?S ≤ 0 component-wise

‖ΨSckSΨ−1
SSD(β?S)β?S‖ ≤ 1− η.
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Consistency results

Theorem (Chiquet, Grandvalet, Charbonnier, in progress!)

If assumptions (A1-3) are satisfied and if there exists η > 0, then
for every sequence λn such that λn = λ0n

−γ , γ ∈]0, 1/2[,

β̂
coop P−→ β? and P(S(β̂

coop
) = S)→ 1. (1)

Asymptotically, the cooperative-Lasso is unbiased and enjoys
exact support recovery (even when there are irrelevant
variables within a group Gk).
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Data Generation

We set

I the number of nodes p
I the number of edges K
I the number of examples n

Process
1. Generate a random adjacency matrix with 2K

off-diagonal terms
2. Compute the normalized Laplacian L

3. Generate a symmetric matrix of random signs R

4. Compute the concentration matrix Θ?
ij = Lij Rij

5. compute Σ? by pseudo-inversion of Θ?

6. generate correlated Gaussian data ∼ N (0,Σ?)
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Simulating Related Tasks

Generate
1. an “ancestor” with p = 20 nodes and K = 20 edges
2. T = 4 children by adding and deleting δ edges
3. T = 4 Gaussian samples

Figure: ancestor and children with δ = 2 perturbations
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Simulating Related Tasks

Generate
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2. T = 4 children by adding and deleting δ edges
3. T = 4 Gaussian samples

Figure: ancestor and children with δ = 2 perturbations
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Simulation results

Precision/Recall curve
precision = TP/(TP+FP)

recall = TP/P (power)
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Simulation results
large sample size
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Simulation results
medium sample size
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Simulation results
small sample size
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Breast Cancer
Prediction of the outcome of preoperative chemotherapy

Two types of patients
Patient response can be classified either as

1. pathologic complete response (PCR)
2. residual disease (not PCR)

Gene expression data

I 133 patients (99 not PCR, 34 PCR)
I 26 identified genes (differential analysis)
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Package Demo

cancer data: Coop-Lasso
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cancer_mtasks.swf
Media File (application/x-shockwave-flash)



Further investigations
Introduce prior through existing pathways

Jeanmouin, Guedj, Ambroise (preprint http://arxiv.org)
Defining a robust biological prior from Pathway Analysis to drive Network
Inference

Marine will speak at SMPGD ’11 ,

“Due to the vast space of possible networks and the
relatively small amount of data available, inferring genetic
networks from gene expression data is one of the most
challenging work in the post-genomic era. [...] We propose
an original approach for inferring gene regulation network
using a robust biological prior on structure in order to limit
the set of candidate networks.”

Inferring multiple graph structures 35
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To sum-up

I Clarified links between neighborhood selection and
graphical LASSO

I Identified the relevance of Multi-Task Learning in network
inference

I First methods for inferring multiple Gaussian Graphical
Models

I Consistent improvements upon the available baseline
solutions

I Available in the R package SIMoNe
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Perspectives

Issues
1. How can we choose for a unique network ? (should we ?)

I Explore model-selection capabilities,
I Network comparison.

2. Robustness
I Test the validity of an edge ? Of a whole motif ?
I Bootstrap greatly improves the inference but is

computationally intensive,
I Introduce more biological prior (semi-supervised learning).

3. Biological studies
I Breast cancer (Marine),
I Parkinson (with J.-C. Corvol, Pitié Salpétrière and Camille),
I Bacillus subtilis and Staphylococcus aureus (ANR NOUGA

déposée: heterogeneous data, RNAseq, new, prior etc.).

Coop-Lasso
Theoretical analysis and other applications in genetics with penalized linear / logistic
regression.
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Outline

Model selection

More details on optimisation
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Tuning the penalty parameter
What does the literature say?

Theory based penalty choices

1. Optimal order of penalty in the p� n framework:
√
n log p

Bunea et al. 2007, Bickel et al. 2009

2. Control on the probability of connecting two distinct
connectivity sets

Meinshausen et al. 2006, Banerjee et al. 2008, Ambroise et al. 2009

 practically much too conservative

Cross-validation
I Optimal in terms of prediction, not in terms of selection
I Problematic with small samples:

changes the sparsity constraint due to sample size
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Tuning the penalty parameter
BIC / AIC

Theorem (Zou et al. 2008)

df(β̂ lasso
λ ) =

∥∥∥β̂ lasso
λ

∥∥∥
0

Straightforward extensions to the graphical framework

BIC(λ) = L(Θ̂λ; X)− df(Θ̂λ)
log n

2

AIC(λ) = L(Θ̂λ; X)− df(Θ̂λ)

Rely on asymptotic approximations, but still relevant for small
data set
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Outline

Model selection

More details on optimisation
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Decomposition strategy (1)

Consider the (p T )× (p T ) block-diagonal matrix C composed
by the empirical covariance matrices of each tasks

C =

S(1) 0
. . .

0 S(T )

 ,

and define

C\i\i =


S

(1)
\i\i 0

. . .

0 S
(T )
\i\i

 , Ci\i =


S

(1)
i\i
...

S
(T )
i\i

 .

The (p− 1)T × (p− 1)T matrix C\i\i is the matrix C where we
removed each line and each column pertaining to variable i.
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Decomposition strategy (2)

Estimate the ith neighborhood of the T tasks bind together

argmax
Θ(t),t=1...,T

T∑
t=1

L̃(Θ(t); S(t))− λ Ω(Θ(t))

decomposes into p convex optimization problems

argmin
β∈RT×(p−1)

f(β; C) + λ Ω(β),

where we set β(t) = Θ
(t)
i\i and

β =

β
(1)

...
β(T )

 ∈ RT×(p−1).
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Solving the sub-problem

Subdifferential approach

min
β∈RT×(p−1)

L(β) = f(β) + Ω(β) ,

β is a minimizer iif 0p ∈ ∂βL(β), with

∂βL(β) = ∇βf(β) + λ∂βΩ(β).
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Solving the sub-problem

Subdifferential approach

min
β∈RT×(p−1)

L(β) = f(β) + Ω(β) ,

β is a minimizer iif 0p ∈ ∂βL(β), with

∂βL(β) = ∇βf(β) + λ∂βΩ(β).

For the graphical Intertwined LASSO

Ω(β) =

T∑
t=1

∥∥∥β(t)
∥∥∥

1
,

where the grouping effect is managed by the function f .
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Solving the sub-problem

Subdifferential approach

min
β∈RT×(p−1)

L(β) = f(β) + Ω(β) ,

β is a minimizer iif 0p ∈ ∂βL(β), with

∂βL(β) = ∇βf(β) + λ∂βΩ(β).

For the graphical Group-LASSO

Ω(β) =

p−1∑
i=1

∥∥∥β[1:T ]
i

∥∥∥
2
,

where β[1:T ]
i =

(
β

(1)
i , . . . , β

(T )
i

)ᵀ
∈ RT is the vector of the ith

component across tasks.
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Solving the sub-problem

Subdifferential approach

min
β∈RT×(p−1)

L(β) = f(β) + Ω(β) ,

β is a minimizer iif 0p ∈ ∂βL(β), with

∂βL(β) = ∇βf(β) + λ∂βΩ(β).

For the graphical Coop-LASSO

Ω(β) =

p−1∑
i=1

(∥∥∥∥[β[1:T ]
i

]
+

∥∥∥∥
2

+

∥∥∥∥[β[1:T ]
i

]
−

∥∥∥∥
2

)
,

where β[1:T ]
i =

(
β

(1)
i , . . . , β

(T )
i

)ᵀ
∈ RT is the vector of the ith

component across tasks.
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