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Outline

Our Problems

What can we learn about the structure and dynamics of biological
systems from data?

How do networks evolve and what does their structure tell us about
their function?

1 The Inverse Problem in Systems Biology

2 Computing with Graphics Processing Units (GPUs)

3 Monte Carlo sampling

4 Mechanistic modelling of metapopulation dynamics

5 Network Evolution
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Inference and Models: Approximate vs. Exact
We have observed data, D, that was generated by some system of in
general unknown structure that we seek to describe by a mathematical
model. In principle we can have a model-set, M = {M1, . . . ,Mν}, where
each model Mi has an associated parameter θi .
We may know the different constituent parts of the system, Xi , and have
measurements for some or all of them under some experimental designs, T .

Model Posterior︷ ︸︸ ︷
Pr(Mi |T ,D)

=

Likelihood︷ ︸︸ ︷
Pr(D|Mi , T )

Prior︷ ︸︸ ︷
π(Mi )

ν∑
j=1

Pr(D|Mj , T )π(Mj)︸ ︷︷ ︸
Evidence

For complicated models and/or
detailed data the likelihood
evaluation can become
prohibitively expensive.

Approximate Inference

We can approximate the likelihood and/or the models. The “true” model
is unlikely to be in M anyway.
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Approximate Bayesian Computation

θ1

θ2

Model

t

X (t)

Data, X

Simulation, Xs(θ)

d = ∆(Xs(θ),X )

Reject θ if d > ε
Accept θ if d ≤ ε
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ABC SMC

Prior, π(θ)

Define set of intermediate distributions, πt , t = 1, ....,T
ε1 > ε2 > ...... > εT

πt−1(θ|∆(Xs ,X ) < εt−1)

πt(θ|∆(Xs ,X ) < εt)

πT (θ|∆(Xs ,X ) < εT )

Sequential importance sampling:

Sample from proposal, ηt(θt) and weight
wt(θt) = πt(θt)/ηt(θt) with
ηt(θt) =

R
πt−1(θt−1)Kt(θt−1, θt)dθt−1 where

Kt(θt−1, θt) is Markov perturbation kernel

Toni et al., J.Roy.Soc. Interface (2009).
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Model selection on a joint space

M1 M2

M2

M3

M3

M4

(M3, θ1)

(M3, θ2)

(M3, θ3)

(M3, θ4)

(M3, θ6)

(M3, θ7)

(M3, θ8)

(M3, θ9)

(M3, θ5)(M3, θ5)(M∗∗, θ∗∗)w(M∗∗, θ∗∗)

M∗

M∗∗ ∼ KM(M |M∗)

θ∗

θ∗∗ ∼ KP(θ|θ∗)

accept / reject

calculate w

Toni & Stumpf, Bioinformatics (2010).
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Optimal Models

Pr(θ)

θ

t

y(t)

θ̂1

X
θ̂1

θ̂1 +δ

X
θ̂1+δ

θ̂2

X
θ̂2

θ̂2 +δ

X
θ̂2+δ

Pr(M|D) ∝
∫

Ω Pr(D|θ)π(θ|M)dθ × π(M)
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ABC-SysBio
http://abc-sysbio.sourceforge.net/

Liepe et al., Bioinformatics (2010).
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What can ABC-SysBio do?

Input models in SBML format or python/CUDA code and supply time
series data from which to infer parameters.

Model 1

Ṡ = α− γSI − dS

İ = γSI − υI − dI

Ṙ = υI − dR

Model 2

Ṡ = α− γSI − dS

L̇ = γSI − δL− dL

İ = δL− υI − dI

Ṙ = υI − dR

Model 3

Ṡ = α− γSI − dS + eR

İ = γSI − υI − dI

Ṙ = υI − dR − eR

Data simulated from Model 1

9 / 35



What can ABC-SysBio do?
Model selection
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What can ABC-SysBio do?
Parameter inference
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Computation on graphics processing units (GPUs)
GPUs are massively multithreaded many-core chips and provide a platform
for cheap parallel computation.

Multiple instruction multiple data (MIMD)

Multiple independent processors execute different instructions on
different data

API, Clusters, GRID computing

Main drawback: cost

Single instruction multiple data (SIMD)

Multiple processors execute same instruction on different data

Supercomputers from 70s-80s based on this architecture

GPUs follow this paradigm and are cheap

Main drawback: Programming paradigm differs from CPU, not all
applications can be accelerated
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NVIDIA Compute Unified Device Architecture (CUDA)

GPGPU: General purpose GPU

GPUs evolved from dedicated computer graphics to general-purpose
parallel processors

Dedicated computation GPUs manufactured by NVIDIA, ATI

NVIDIA dedicated computational GPUs include the Tesla range.
Tesla C1060 : 30 multi x 8 (floating point) processors = 240 cores

11 / 35



Threads, Blocks, Grids, Memory....

GPU programs require the efficient
use of different memories.
Data transfer between host (CPU)
and device (GPU) must be
minimized.

speed scope
global 150x slower dev, host
local 150x slower thread

texture faster (cached) dev, host
constant faster (cached) dev, host
shared fastest block

registers fastest thread
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p53 oscillations : simple negative feedback loop
Geva-Zatorsky et al., Mol. Syst. Biol. (2006).

p53

Mdm2* Mdm2

A B
ẋ = βxΩ− αxx− αky

x
x+kΩ

ẏ0 = βyx− α0y0

ẏ = α0y0 − αyy

x : nuclear p53 (p53) βx : 0.91

y0 : Mdm2 precursor (Mdm2*) βy : 1.21

y : nuclear Mdm2 (Mdm) αx : 0.31

αy : 0.81

x(0) : 0 α0 : 0.91

y0(0) : 20 αk : 1.71

y(0) : 160 k : 0.0001
Ω : 200
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Timing improvements using CUDA + Tesla C1060
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Mechanistic modelling of metapopulation dynamics

Predator-prey systems are unstable
and prone to extinction but one
mechanism for promoting stability is
spatial heterogeneity.
A metapopulation is a set of linked
sub populations or ’patches’ and
limited dispersal and asynchronous
dynamics between patches can
increase total persistence.

http://www.bio.uni-potsdam.de

Mechanistic modelling is important for understanding how to maximize
metapopulation persistence and has obvious applications for conservation.
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Experimental setup

Host-parasitoid systems

Callosobruchus chinensis (bruchid beetle, bean weavils)

Anisopteromalus calandrae (wasps)

Laboratory microcosm

4 × 4 clear plastic boxes (73×73×30
mm)

Establish bruchid beetle on black eyed
peas

Introduce wasp populations

Control inter cell migration using gates

Limited dispersal (3 hours per day)
Unlimited dispersal
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Metapopulation structure affects persistence

a Prey in absence of
predators

b Single isolated system

c Small metapopulation
system unlimited dispersal

d Small metapopulation
system limited dispersal

e Large metapopulation
system unlimited dispersal

f Large metapopulation
system limited dispersal

(Bonsall et al J. Anim. Ecol. (2002) )
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Time series data

Unlimited dispersal
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Stochastic Model

Logistic growth + Lotka-Volterra
interaction with migration

Xi , Yi are beetles, wasps in cell i

process hazard
Xi → 2Xi b1Xi

Xi → ∅ d1X
2
i

Xi + Yi → 2Yi pXiYi

Yi → ∅ d2Yi

Xi → Xj mXcXi

Xi + X ′i → Xi + Xj mXdX 2
i

Yi → Yj mYcYi

Yi + Y ′i → Yi + Yj mYdY 2
i

Q: ”Given a migration event occurs,

where does the individual move?”

Global movement: Xi → Xj where i 6= j
Local movement: Xi → Xj where j ∈

nearest neighbours of i
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Movement and migration models

Movement models
global : local

Global model has most support.

Migration models
d,d : c+d,d : d, c+d : c+d, c+d

Density dependence dominates.
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Inference: Parameters of the global movement model
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Network growth models
α

δ

δ

γ

γ

α

δ

δ
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ABC on Networks

Summarizing Networks

Data are noisy and incomplete.

We can simulate models of network
evolution, but this does not allow us
to calculate likelihoods for all but very
trivial models.

There is also no sufficient statistic
that would allow us to summarize
networks, so ABC approaches require
some thought.

Many possible summary statistics of
networks are expensive to calculate.

Full likelihood: Wiuf et al., PNAS (2006).

ABC: Ratman et al., PLoS Comp.Biol. (2008).

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).
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Graph Spectrum
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A =

Graph Spectra

Given a graph G comprised of a set of nodes N and edges (i , j) ∈ E with
i , j ∈ N, the adjacency matrix, A, of the graph is defined by

ai ,j =

{
1 if (i , j) ∈ E ,

0 otherwise.

The eigenvalues, λ, of this matrix provide one way of defining the graph
spectrum.
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Spectral Distances
A simple distance measure between graphs having adjacency matrices A
and B, known as the edit distance, is to count the number of edges that
are not shared by both graphs,

D(A,B) =
∑
i ,j

(ai ,j − bi ,j)
2.

However for unlabelled graphs we require some mapping h from i ∈ NA to
i ′ ∈ NB that minimizes the distance

D(A,B) ≥ D ′h(A,B) =
∑
i ,j

(ai ,j − bh(i),h(j))2,

Given a spectrum we have

D ′(A,B) =
∑

l

(λ
(α)
l − λ(β)

l )2

Spectrum calculation would be prohibitive without using GPU + CUDA.
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Estimating Parameters of Network Growth Models
We simulate networks, sample a dataset from it (e.g. interactions among
80% of nodes) and then try and infer the parameters of the evolutionary
model.

Duplication Attachment (DA)
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Inference of Evolutionary Parameters

In all simulations the posterior over model parameters was reasonably large
— as would be expected for evolutionary models, where the variance tends
to overwhelm the mean.
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Evolutionary Models of the Yeast PIN
Duplication Attachment (DA)
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Data Uncertainties
Conditioning on incomplete data and known whole-genome duplication data can
radically alter the inferred parameters.
While the spectrum appears to be a better summary statistic than others used so
far, our ABC approach does not (yet) condition on other aspects of the data,
such as functional annotations.

27 / 35



Evolutionary Models of the Yeast PIN
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Selecting Models of Network Evolution
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Selecting Models of Network Evolution
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Thanks!
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Perturbation kernels

Componentwise independent random walk proposals

Empirical studies have shown, for each component i ,

K (θi
t |θi

t−1) = θi
t−1 + δiU(−1, 1) where δi =

1

2
(max{θi

t−1} −min{θi
t−1})

provides good coverage for most applications.

However this can be very wasteful for correlated posteriors.
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Perturbations in varimax rotation space

Rotate into a new basis O ′

θ′t−1 = V T
t−1θt−1

where Vt−1 results from the spectral decomposition of the covariance matrix
Σt−1(πt−1)

Σt−1(πt−1) = V T
t−1Λt−1(πt−1)Vt−1.

The importance weight calculation requires Kt(θt−1, θt) which is the probability
of observing the current particle given the previous population.
In the case of uniform, independent kernels, this reduces to two questions

What is the volume defined by θt−1?

Is θt contained within the volume defined by θt−1?

Standard computational geometry problems.
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n-polytope volume calculation

Duality between H and V representations and typically P hard in one
representation.

Using both representations is more efficient but there is a tradeoff between the

reduction in samples and volume calculations. Expect volume calculation to

become lengthy in high dimensional space.

−4 −2 0 2 4
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0
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4

x

y

●

cddlib: http://www.ifor.math.ethz.ch/~fukuda/cdd_home/

Vinci: http://www.math.u-bordeaux1.fr/~enge/Vinci.html

B Bueler, A Enge, K Fukuda, Combinatorics and Computation (2000)
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Toy mixture model testing

x ~ 0.5 N(0,1) + 0.5 N(0,1/100)
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What is the Point of Such Simple Models?

We can gain generic insights into evolutionary processes underlying
the architecture of networks.

We can use Bayesian model averaging in order to make predictions.

EBMA[Q] =
ν∑

i=1

Pr(Mi |D)EMi
[Q]

True Models?

Even if the correct model is not included among the ν candidates, we can
often obtain reliable predictions.
BMA trades in explanatory for predictive power, but allows us to predict
structural and organizational properties of PINs.
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p53 oscillations : parameter inference using SDE’s
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