Approximate Bayesian Computation (ABC) to Learn the Structure and Dynamics of Complex Systems

Chris Barnes, Michael P.H. Stumpf

Centre for Bioinformatics & Institute of Mathematical Sciences & Centre for Integrative Systems Biology at Imperial College London

16/10/2010

Outline

Our Problems

- What can we learn about the structure and dynamics of biological systems from data?
- How do networks evolve and what does their structure tell us about their function?

Outline

Our Problems

- What can we learn about the structure and dynamics of biological systems from data?
- How do networks evolve and what does their structure tell us about their function?
- 1 The Inverse Problem in Systems Biology
- 2 Computing with Graphics Processing Units (GPUs)
- 3 Monte Carlo sampling
- Mechanistic modelling of metapopulation dynamics

5 Network Evolution

We have observed data, \mathcal{D} , that was generated by some system of in general unknown structure that we seek to describe by a mathematical model. In principle we can have a model-set, $\mathcal{M} = \{M_1, \ldots, M_\nu\}$, where each model M_i has an associated parameter θ_i .

We may know the different constituent parts of the system, X_i , and have measurements for some or all of them under some experimental designs, T.

We have observed data, \mathcal{D} , that was generated by some system of in general unknown structure that we seek to describe by a mathematical model. In principle we can have a model-set, $\mathcal{M} = \{M_1, \ldots, M_\nu\}$, where each model M_i has an associated parameter θ_i .

We may know the different constituent parts of the system, X_i , and have measurements for some or all of them under some experimental designs, T.

 $\underbrace{\mathsf{Pr}(M_i | \mathcal{T}, \mathcal{D})}_{\mathsf{Pr}(M_i | \mathcal{T}, \mathcal{D})}$

We have observed data, \mathcal{D} , that was generated by some system of in general unknown structure that we seek to describe by a mathematical model. In principle we can have a model-set, $\mathcal{M} = \{M_1, \ldots, M_\nu\}$, where each model M_i has an associated parameter θ_i .

We may know the different constituent parts of the system, X_i , and have measurements for some or all of them under some experimental designs, T.

We have observed data, \mathcal{D} , that was generated by some system of in general unknown structure that we seek to describe by a mathematical model. In principle we can have a model-set, $\mathcal{M} = \{M_1, \ldots, M_\nu\}$, where each model M_i has an associated parameter θ_i .

We may know the different constituent parts of the system, X_i , and have measurements for some or all of them under some experimental designs, T.

For complicated models and/or detailed data the likelihood evaluation can become prohibitively expensive.

We have observed data, \mathcal{D} , that was generated by some system of in general unknown structure that we seek to describe by a mathematical model. In principle we can have a model-set, $\mathcal{M} = \{M_1, \ldots, M_\nu\}$, where each model M_i has an associated parameter θ_i .

We may know the different constituent parts of the system, X_i , and have measurements for some or all of them under some experimental designs, T.

For complicated models and/or detailed data the likelihood evaluation can become prohibitively expensive.

Approximate Inference

We can approximate the likelihood and/or the models. The "true" model is unlikely to be in ${\cal M}$ anyway.

Imperial College London

Imperial College London

M_1 M_2 M_3 M_4

Toni & Stumpf, Bioinformatics (2010).

 M^*

6 / 35

 M^*

$M^{**} \sim KM(M|M^*)$

 M^*

$M^{**} \sim KM(M|M^*)$

 $(M_{3}, \theta_{3}) \\ (M_{3}, \theta_{7}) \\ (M_{3}, \theta_{6}) \\ (M_{3}, \theta_{8}) \\ (M_{3}, \theta_{8}) \\ (M_{3}, \theta_{4}) \\ (M_{3}, \theta_{9}) \\ (M_{3}, \theta_{9})$

М*

$M^{**} \sim KM(M|M^*)$

 θ^*

 $(M_{3}, \theta_{3}) \\ (M_{3}, \theta_{7}) \\ (M_{3}, \theta_{6}) \\ (M_{3}, \theta_{8}) \\ (M_{3}, \theta_{8}) \\ (M_{3}, \theta_{4}) \\ (M_{3}, \theta_{9}) \\ (M_{3}, \theta_{9})$

 M^*

$M^{**} \sim KM(M|M^*)$

 θ^*

```
(M_{3}, \theta_{3}) \\ (M_{3}, \theta_{7}) \\ (M_{3}, \theta_{6}) \\ (M_{3}, \theta_{8}) \\ (M_{3}, \theta_{8}) \\ (M_{3}, \theta_{4}) \\ (M_{3}, \theta_{9}) \\ (M_{3}, \theta_{9})
```

Toni & Stumpf, Bioinformatics (2010).

Toni & Stumpf, Bioinformatics (2010).

 M^* $M^{**} \sim KM(M|M^*)$ θ^* $\theta^{**} \sim KP(\theta|\theta^*)$ accept / reject

Imperial College London

w(**M****,
$$\theta$$
**)

Toni & Stumpf, Bioinformatics (2010).

 M^* $M^{**} \sim KM(M|M^*)$ θ^* $\theta^{**} \sim KP(\theta|\theta^*)$ accept / reject calculate w

Imperial College London

ABC-SysBio http://abc-sysbio.sourceforge.net/

ABC-SysBio:

A Tool for Parameter Inference and Model Selection

Theoretical Systems Biology Group, Imperial College

By Juliane Liepe, Chris Barnes, Erika Cule, Paul Kirk, Kamil Erguler, Tina Toni, Michael Stumpf

Contacts:

christopher.barnes@imperial.ac.uk juliane.liepe08@imperial.ac.uk m.stumpf@imperial.ac.uk

Liepe et al., Bioinformatics (2010). Imperial College London

What can ABC-SysBio do?

Model 1

Input models in SBML format or python/CUDA code and supply time series data from which to infer parameters.

What can ABC-SysBio do? Model selection

Imperial College London

What can ABC-SysBio do? Parameter inference

Computation on graphics processing units (GPUs)

GPUs are massively multithreaded many-core chips and provide a platform for cheap parallel computation.

Computation on graphics processing units (GPUs)

GPUs are massively multithreaded many-core chips and provide a platform for cheap parallel computation.

Multiple instruction multiple data (MIMD)

- Multiple independent processors execute different instructions on different data
- API, Clusters, GRID computing
- Main drawback: cost

Computation on graphics processing units (GPUs)

GPUs are massively multithreaded many-core chips and provide a platform for cheap parallel computation.

Multiple instruction multiple data (MIMD)

- Multiple independent processors execute different instructions on different data
- API, Clusters, GRID computing
- Main drawback: cost

Single instruction multiple data (SIMD)

- Multiple processors execute same instruction on different data
- Supercomputers from 70s-80s based on this architecture
- GPUs follow this paradigm and are cheap
- Main drawback: Programming paradigm differs from CPU, not all applications can be accelerated

NVIDIA Compute Unified Device Architecture (CUDA)

GPGPU: General purpose GPU

- GPUs evolved from dedicated computer graphics to general-purpose parallel processors
- Dedicated computation GPUs manufactured by NVIDIA, ATI

NVIDIA dedicated computational GPUs include the Tesla range. Tesla C1060 : 30 multi \times 8 (floating point) processors = 240 cores

Threads, Blocks, Grids, Memory....

Threads, Blocks, Grids, Memory....

GPU programs require the efficient use of different memories. Data transfer between host (CPU) and device (GPU) must be minimized.

Threads, Blocks, Grids, Memory....

GPU programs require the efficient use of different memories. Data transfer between host (CPU) and device (GPU) must be minimized.

	speed	scope
global	150x slower	dev, host
local	150x slower	thread
texture	faster (cached)	dev, host
constant	faster (cached)	dev, host
shared	fastest	block
registers	fastest	thread

p53 oscillations : simple negative feedback loop

Geva-Zatorsky et al., Mol. Syst. Biol. (2006).

time (hours)

Timing improvements using CUDA + Tesla C1060

http://cuda-sim.sourceforge.net/

Imperial College London

Mechanistic modelling of metapopulation dynamics

Predator-prey systems are unstable and prone to extinction but one mechanism for promoting stability is spatial heterogeneity.

A metapopulation is a set of linked sub populations or 'patches' and limited dispersal and asynchronous dynamics between patches can increase total persistence.

http://www.bio.uni-potsdam.de
Mechanistic modelling of metapopulation dynamics

Predator-prey systems are unstable and prone to extinction but one mechanism for promoting stability is spatial heterogeneity.

A metapopulation is a set of linked sub populations or 'patches' and limited dispersal and asynchronous dynamics between patches can increase total persistence.

http://www.bio.uni-potsdam.de

Mechanistic modelling is important for understanding how to maximize metapopulation persistence and has obvious applications for conservation.

- Callosobruchus chinensis (bruchid beetle, bean weavils)
- Anisopteromalus calandrae (wasps)

- Laboratory microcosm
- 4 × 4 clear plastic boxes (73×73×30 mm)

- Callosobruchus chinensis (bruchid beetle, bean weavils)
- Anisopteromalus calandrae (wasps)

- Laboratory microcosm
- 4 \times 4 clear plastic boxes (73 \times 73 \times 30 mm)
- Establish bruchid beetle on black eyed peas

- Callosobruchus chinensis (bruchid beetle, bean weavils)
- Anisopteromalus calandrae (wasps)

- Laboratory microcosm
- 4 \times 4 clear plastic boxes (73 \times 73 \times 30 mm)
- Establish bruchid beetle on black eyed peas
- Introduce wasp populations

- Callosobruchus chinensis (bruchid beetle, bean weavils)
- Anisopteromalus calandrae (wasps)

- Laboratory microcosm
- 4 × 4 clear plastic boxes (73×73×30 mm)
- Establish bruchid beetle on black eyed peas
- Introduce wasp populations
- Control inter cell migration using gates
 - Limited dispersal (3 hours per day)
 - Unlimited dispersal

Metapopulation structure affects persistence

- a Prey in absence of predators
- b Single isolated system
- c Small metapopulation system unlimited dispersal
- d Small metapopulation system limited dispersal
- e Large metapopulation system unlimited dispersal
- f Large metapopulation system limited dispersal

(Bonsall et al J. Anim. Ecol. (2002))

Time series data

Limited dispersal

Imperial College London

 $\begin{array}{c|c|c} X_i, \ Y_i \ \text{are beetles, wasps in cell } i \\ \hline \hline & \hline & \hline & \hline & \hline & X_i \rightarrow 2X_i & b_1X_i \\ \hline & X_i \rightarrow \mathcal{Q} & d_1X_i^2 \\ \hline & X_i + Y_i \rightarrow 2Y_i & pX_iY_i \\ \hline & Y_i \rightarrow \mathcal{Q} & d_2Y_i \\ \hline & X_i \rightarrow X_j & m_{Xc}X_i \\ \hline & X_i + X_i' \rightarrow X_i + X_j & m_{Xd}X_i^2 \\ \hline & Y_i \rightarrow Y_j & m_{Yc}Y_i \\ \hline & Y_i \rightarrow Y_i + Y_i' \rightarrow Y_i + Y_j & m_{Yd}Y_i^2 \end{array}$

 X_i , Y_i are beetles, wasps in cell i

process	hazard
$X_i \rightarrow 2X_i$	b_1X_i
$X_i ightarrow arnothing$	$d_1 X_i^2$
$X_i + Y_i \rightarrow 2Y_i$	pX_iY_i
$Y_i ightarrow arnothing$	$d_2 Y_i$
$X_i o X_j$	$m_{Xc}X_i$
$X_i + X'_i \rightarrow X_i + X_j$	$m_{Xd}X_i^2$
$Y_i \rightarrow Y_j$	$m_{Yc}Y_i$
$Y_i + Y'_i o Y_i + Y_j$	$m_{Yd}Y_i^2$

Q: "Given a migration event occurs, where does the individual move?"

 $\label{eq:logistic growth + Lotka-Volterra} \ensuremath{\mathsf{Lotka-Volterra}} \\ \ensuremath{\mathsf{interaction}} \ensuremath{\mathsf{wigration}} \\ \ensuremath{\mathsf{migration}} \\ \ensuremath{\mathsfmigration} \\ \ensuremath{\mathsfmigration}$

 X_i , Y_i are beetles, wasps in cell i

process	hazard
$X_i \rightarrow 2X_i$	b_1X_i
$X_i ightarrow arnothing$	$d_1 X_i^2$
$X_i + Y_i \rightarrow 2Y_i$	pX_iY_i
$Y_i ightarrow arnothing$	$d_2 Y_i$
$X_i o X_j$	$m_{Xc}X_i$
$X_i + X'_i ightarrow X_i + X_j$	$m_{Xd}X_i^2$
$Y_i \rightarrow Y_j$	m _{Yc} Y _i
$Y_i + Y'_i o Y_i + Y_j$	$m_{Yd}Y_i^2$

Q: "Given a migration event occurs, where does the individual move?"

 X_i , Y_i are beetles, wasps in cell i

process	hazard
$X_i \rightarrow 2X_i$	b_1X_i
$X_i ightarrow arnothing$	$d_1 X_i^2$
$\overline{X_i + Y_i \rightarrow 2Y_i}$	pX_iY_i
$Y_i ightarrow arnothing$	$d_2 Y_i$
$X_i \rightarrow X_j$	$m_{Xc}X_i$
$X_i + X'_i ightarrow X_i + X_j$	$m_{Xd}X_i^2$
$Y_i \rightarrow Y_j$	$m_{Yc}Y_i$
$Y_i + Y'_i o Y_i + Y_j$	$m_{Yd}Y_i^2$

Q: "Given a migration event occurs, where does the individual move?"

Local movement: $X_i \rightarrow X_j$ where $j \in$ nearest neighbours of i

Movement and migration models

Movement models global : local

Global model has most support.

$\begin{array}{l} \mbox{Migration models} \\ \mbox{d,d} : \ c{+}\mbox{d,d} : \ d, \ c{+}\mbox{d} : \ c{+}\mbox{d}, \ c{+}\mbox{d} \end{array}$

Density dependence dominates.

Inference: Parameters of the global movement model

Imperial College London

Network growth models

Summarizing Networks

• Data are noisy and incomplete.

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).

Summarizing Networks

- Data are noisy and incomplete.
- We can simulate models of network evolution, but this does not allow us to calculate likelihoods for all but very trivial models.

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).

Summarizing Networks

- Data are noisy and incomplete.
- We can simulate models of network evolution, but this does not allow us to calculate likelihoods for all but very trivial models.
- There is also no sufficient statistic that would allow us to summarize networks, so ABC approaches require some thought.

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).

Summarizing Networks

- Data are noisy and incomplete.
- We can simulate models of network evolution, but this does not allow us to calculate likelihoods for all but very trivial models.
- There is also no sufficient statistic that would allow us to summarize networks, so ABC approaches require some thought.
- Many possible summary statistics of networks are expensive to calculate.

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).

Summarizing Networks

- Data are noisy and incomplete.
- We can simulate models of network evolution, but this does not allow us to calculate likelihoods for all but very trivial models.
- There is also no sufficient statistic that would allow us to summarize networks, so ABC approaches require some thought.
- Many possible summary statistics of networks are expensive to calculate.

Full likelihood: Wiuf et al., PNAS (2006).

ABC: Ratman et al., PLoS Comp.Biol. (2008).

Stumpf & Wiuf, J. Roy. Soc. Interface (2010).

Graph Spectrum

Graph Spectrum

Graph Spectra

Given a graph G comprised of a set of nodes N and edges $(i,j) \in E$ with $i, j \in N$, the adjacency matrix, A, of the graph is defined by

$$\mathsf{a}_{i,j} = egin{cases} 1 & ext{if } (i,j) \in E, \ 0 & ext{otherwise}. \end{cases}$$

The eigenvalues, $\lambda,$ of this matrix provide one way of defining the graph spectrum.

Spectral Distances

A simple distance measure between graphs having adjacency matrices A and B, known as the edit distance, is to count the number of edges that are not shared by both graphs,

$$D(A,B) = \sum_{i,j} (a_{i,j} - b_{i,j})^2.$$

Spectral Distances

A simple distance measure between graphs having adjacency matrices A and B, known as the edit distance, is to count the number of edges that are not shared by both graphs,

$$D(A,B)=\sum_{i,j}(a_{i,j}-b_{i,j})^2.$$

However for unlabelled graphs we require some mapping h from $i \in N_A$ to $i' \in N_B$ that minimizes the distance

$$D(A,B) \ge D'_h(A,B) = \sum_{i,j} (a_{i,j} - b_{h(i),h(j)})^2,$$

Spectral Distances

A simple distance measure between graphs having adjacency matrices A and B, known as the edit distance, is to count the number of edges that are not shared by both graphs,

$$D(A,B)=\sum_{i,j}(a_{i,j}-b_{i,j})^2.$$

However for unlabelled graphs we require some mapping h from $i \in N_A$ to $i' \in N_B$ that minimizes the distance

$$D(A,B) \ge D'_h(A,B) = \sum_{i,j} (a_{i,j} - b_{h(i),h(j)})^2,$$

Given a spectrum we have

$$D'(A,B) = \sum_{I} (\lambda_{I}^{(\alpha)} - \lambda_{I}^{(\beta)})^{2}$$

Spectrum calculation would be prohibitive without using GPU + CUDA. $\frac{125 / 35}{25 / 35}$

Estimating Parameters of Network Growth Models

We simulate networks, sample a dataset from it (e.g. interactions among 80% of nodes) and then try and infer the parameters of the evolutionary model.

Duplication Attachment (DA)

DA + complimentarity (DAC)

Estimating Parameters of Network Growth Models

We simulate networks, sample a dataset from it (e.g. interactions among 80% of nodes) and then try and infer the parameters of the evolutionary model.

Duplication Attachment (DA)

Inference of Evolutionary Parameters

In all simulations the posterior over model parameters was reasonably large — as would be expected for evolutionary models, where the variance tends to overwhelm the mean.

Evolutionary Models of the Yeast PIN

DAC + uniform (DAC + UR)

Evolutionary Models of the Yeast PIN

0.0 0.5 0.7 0.9 0.10 0.90 0.90 0.40 00 01 02 03 04 05 06 02 04 0.6 0.8 1.0 0.10 0.20 0.30 03 04 05 06 0.2

Data Uncertainties

Conditioning on incomplete data and known whole-genome duplication data can radically alter the inferred parameters.

While the spectrum appears to be a better summary statistic than others used so far, our ABC approach does not (yet) condition on other aspects of the data, such as functional annotations.

Selecting Models of Network Evolution

Probability of Models. (DA: very basic duplication; DAC: duplication preserving complementarity; LPA: linear preferential attachment; GSF - generalised scale free (change scaling coefficient between 2-3); DAC+LPA: combination of DAC and LPA; DAC+UR: DAC plus random attachment. Most models have finite weight and only one, LPA, can be ruled out.

Selecting Models of Network Evolution

Probability of Models. (DA: very basic duplication; DAC: duplication preserving complementarity; LPA: linear preferential attachment; GSF - generalised scale free (change scaling coefficient between 2-3); DAC+LPA: combination of DAC and LPA; DAC+UR: DAC plus random attachment.

Most models have finite weight and only one, LPA, can be ruled out.

Thanks!


```
christopher.barnes@imperial.ac.uk
http://www3.imperial.ac.uk/theoreticalsystemsbiology
http://abc-sysbio.sourceforge.net/
http://cuda-sim.sourceforge.net/
```

Perturbation kernels

Imperial College

Componentwise independent random walk proposals

Empirical studies have shown, for each component *i*,

$$\mathcal{K}(heta_t^i| heta_{t-1}^i)= heta_{t-1}^i+\delta^i U(-1,1) ext{ where } \delta^i=rac{1}{2}(\max\{ heta_{t-1}^i\}-\min\{ heta_{t-1}^i\})$$

provides good coverage for most applications. However this can be very wasteful for correlated posteriors.

Perturbations in varimax rotation space

Rotate into a new basis O'

$$\theta_{t-1}' = V_{t-1}^T \theta_{t-1}$$

where V_{t-1} results from the spectral decomposition of the covariance matrix $\Sigma_{t-1}(\pi_{t-1})$

$$\Sigma_{t-1}(\pi_{t-1}) = V_{t-1}^T \Lambda_{t-1}(\pi_{t-1}) V_{t-1}.$$

The importance weight calculation requires $K_t(\theta_{t-1}, \theta_t)$ which is the probability of observing the current particle given the previous population. In the case of uniform, independent kernels, this reduces to two questions

- What is the volume defined by θ_{t-1} ?
- Is θ_t contained within the volume defined by θ_{t-1} ?

Perturbations in varimax rotation space

Rotate into a new basis O'

$$\theta_{t-1}' = V_{t-1}^T \theta_{t-1}$$

where V_{t-1} results from the spectral decomposition of the covariance matrix $\Sigma_{t-1}(\pi_{t-1})$

$$\Sigma_{t-1}(\pi_{t-1}) = V_{t-1}^T \Lambda_{t-1}(\pi_{t-1}) V_{t-1}.$$

The importance weight calculation requires $K_t(\theta_{t-1}, \theta_t)$ which is the probability of observing the current particle given the previous population. In the case of uniform, independent kernels, this reduces to two questions

- What is the volume defined by θ_{t-1} ?
- Is θ_t contained within the volume defined by θ_{t-1} ?

Standard computational geometry problems.

n-polytope volume calculation

Duality between ${\cal H}$ and ${\cal V}$ representations and typically ${\it P}$ hard in one representation.

Using both representations is more efficient but there is a tradeoff between the reduction in samples and volume calculations. Expect volume calculation to become lengthy in high dimensional space.

cddlib: http://www.ifor.math.ethz.ch/~fukuda/cdd_home/ Vinci: http://www.math.u-bordeaux1.fr/~enge/Vinci.html

B Bueler, A Enge, K Fukuda, Combinatorics and Computation (2000)

Toy mixture model testing

population

samples PCA / samples default

0.8

80

3

0.2

2

10
What is the Point of Such Simple Models?

- We can gain generic insights into evolutionary processes underlying the architecture of networks.
- We can use Bayesian model averaging in order to make predictions.

$$E_{\mathsf{BMA}}[Q] = \sum_{i=1}^{\nu} \mathsf{Pr}(M_i | \mathcal{D}) E_{M_i}[Q]$$

True Models?

Even if the correct model is not included among the ν candidates, we can often obtain reliable predictions.

BMA trades in explanatory for predictive power, but allows us to predict structural and organizational properties of PINs.

p53 oscillations : parameter inference using SDE's

Imperial College London