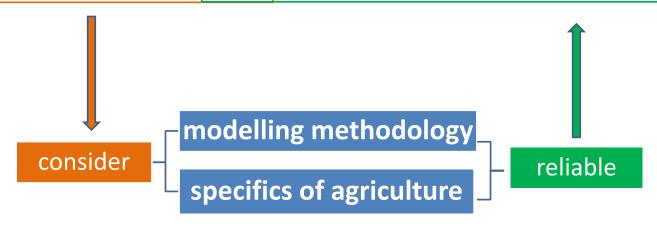


Development of DSS for application in agriculture

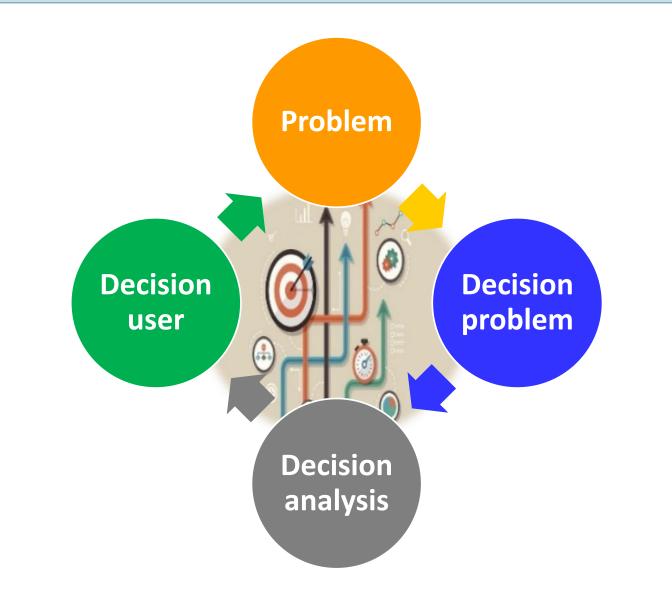
Marko Debeljak Jozef Stefan Institute Ljubljana, Slovenia

e-mail: marko.debeljak@ijs.si

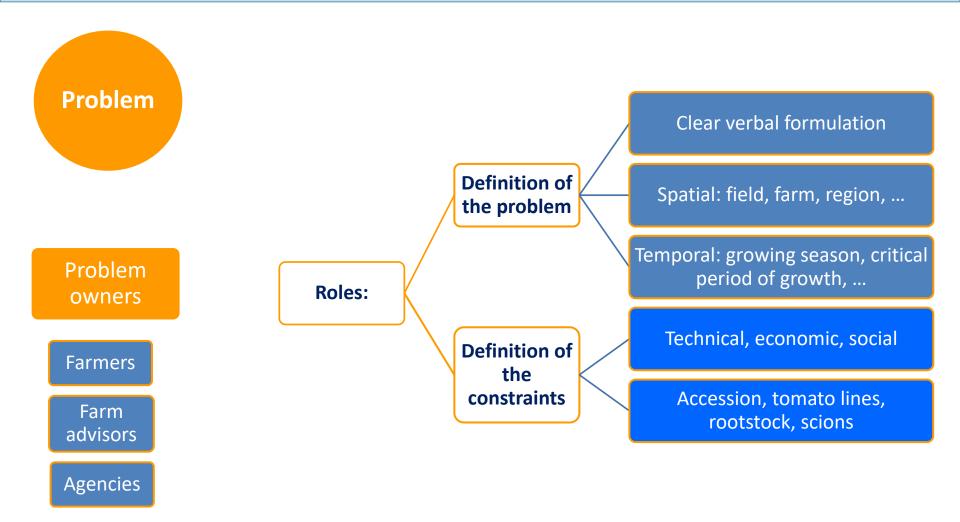


Development of DSS for application in agriculture

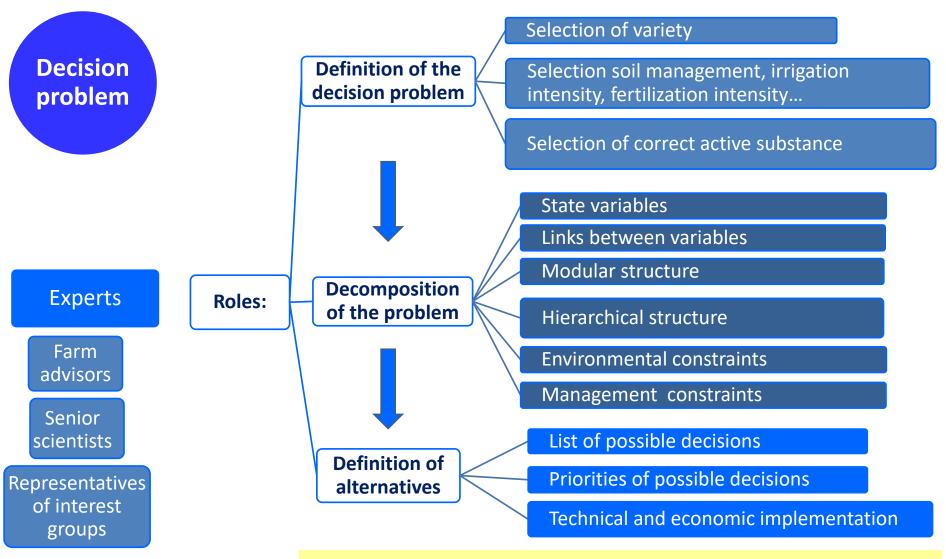
Modelling methodology


- Conceptual framework
- Architecture of DSS
- Modeling procedure
- Integration

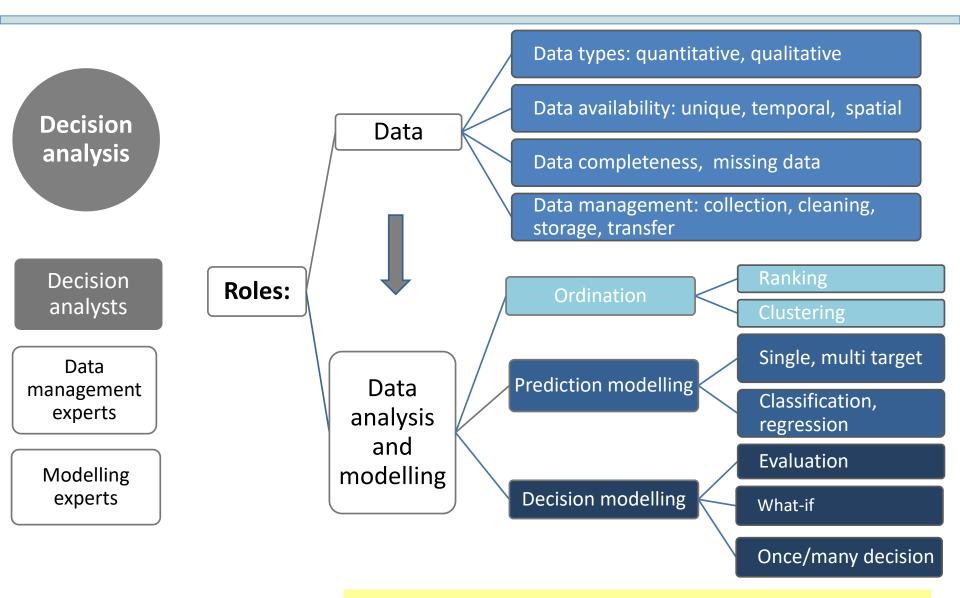
Implementation

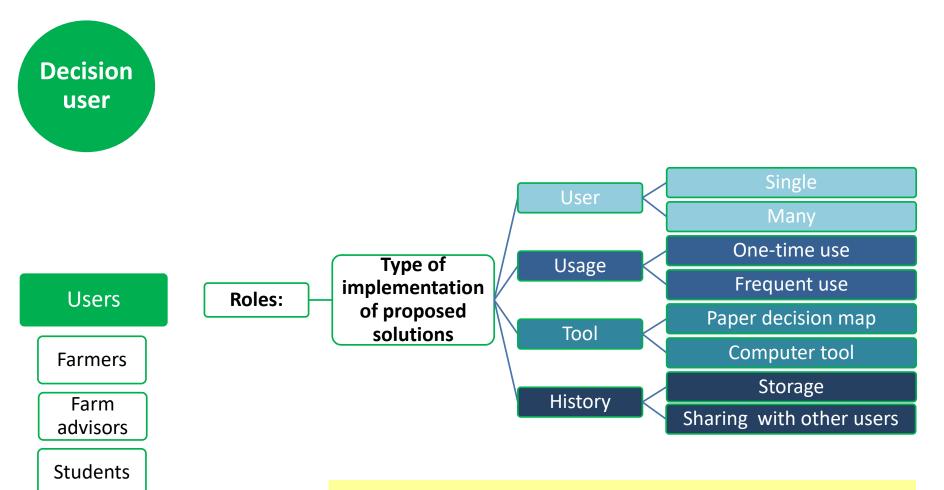

- EVADIFF
- Soil Navigator
- Path Finder

Final remarks

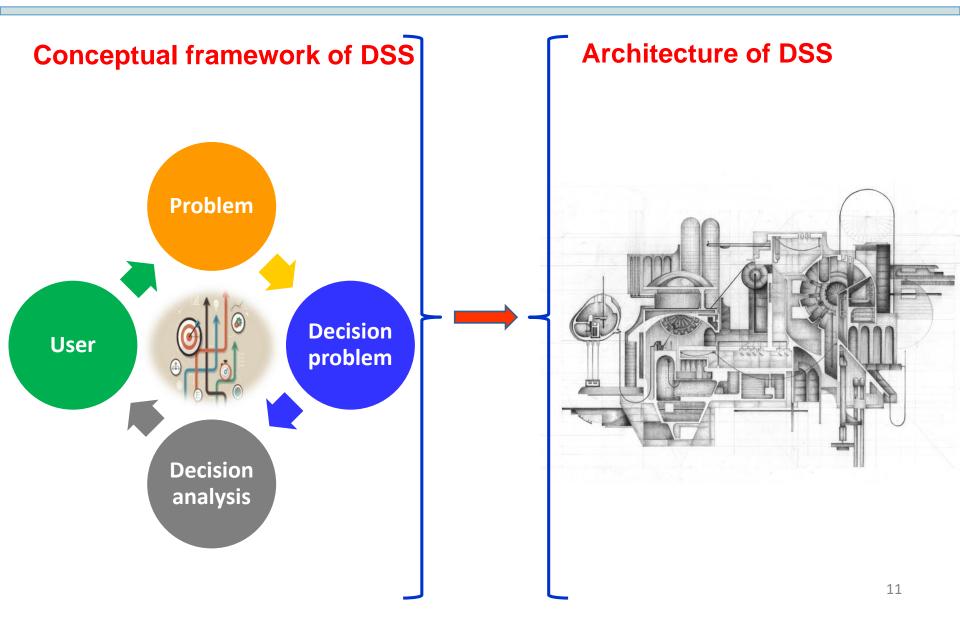


DERARTMENT OF TECHNOLOGIES

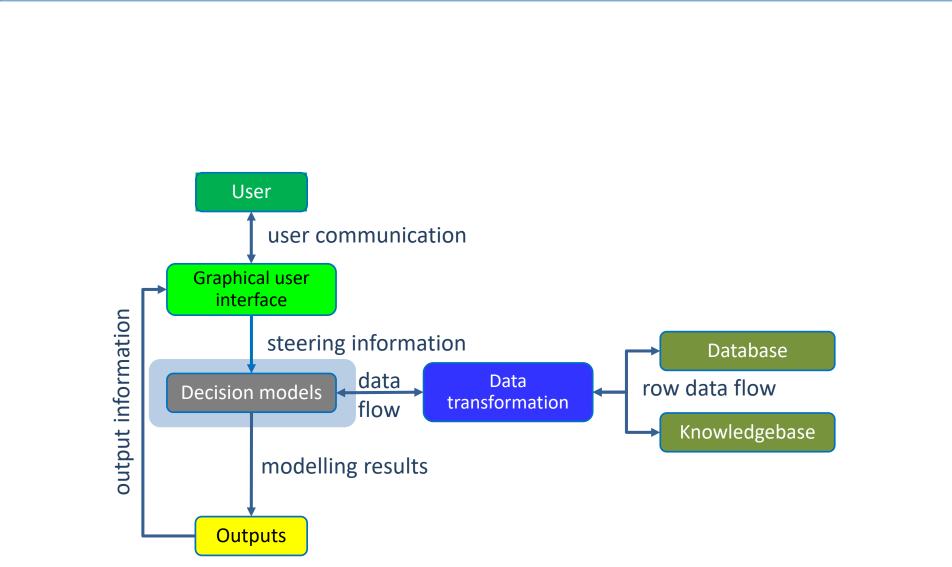

Example: Water pollution with pesticides.


Example: Active substance, concentration, time of application.

Example: Data mining and qualitative decision modeling


DEPARTMENT OF **Conceptual framework** TECHNOLOGIES ožof Stofan Instituto

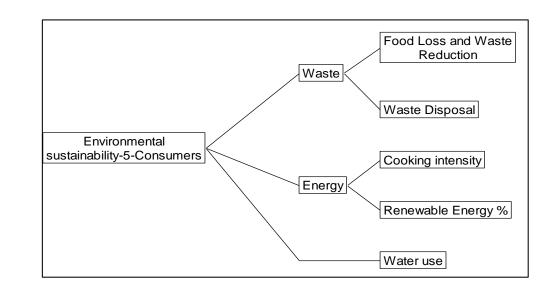
Example: Phone App, personalized support: Isoproturon before drainage period with 50% reduced concentration



Modeling methodology

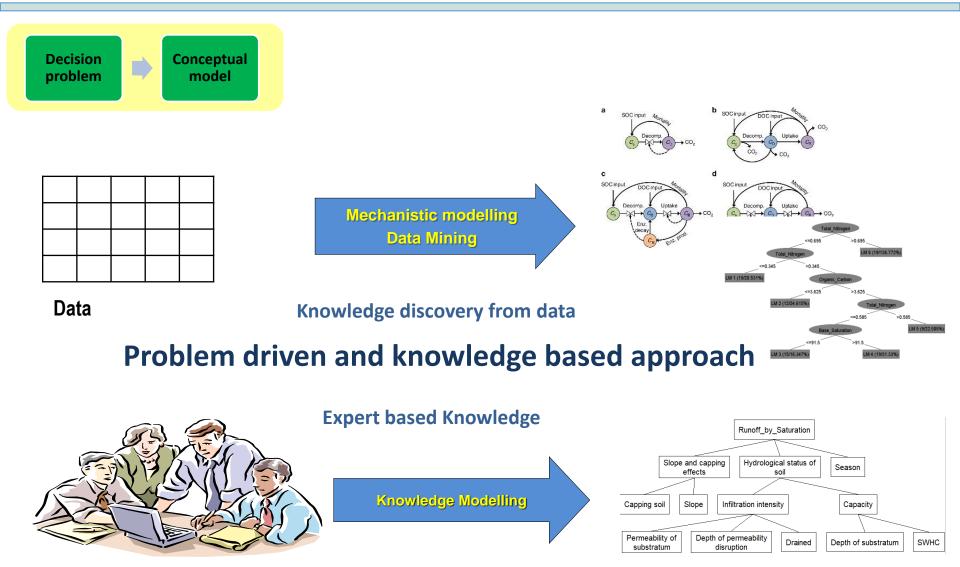
Architecture of DSS

Decision models

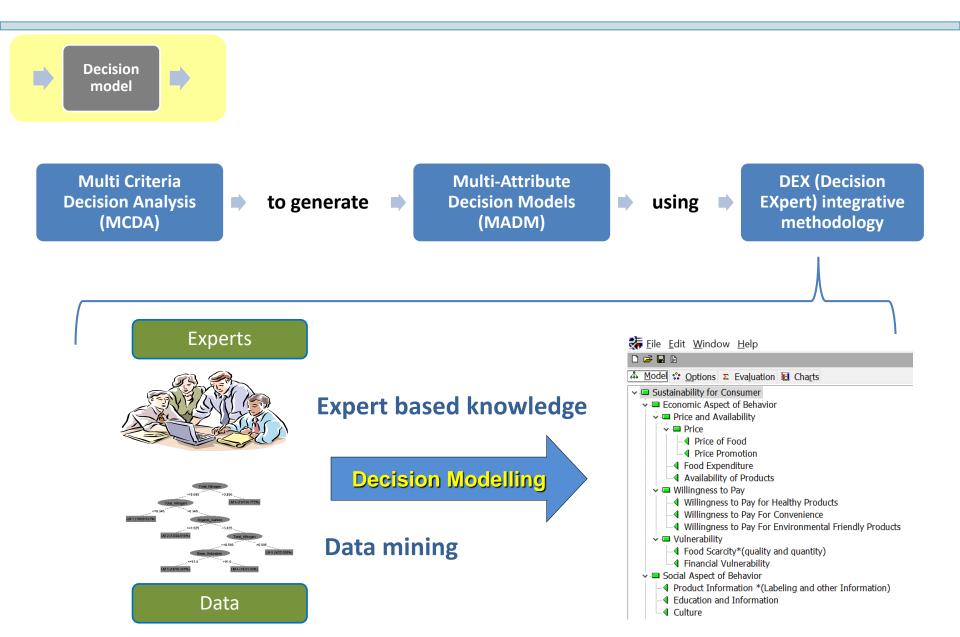

Multiobjective decision model:

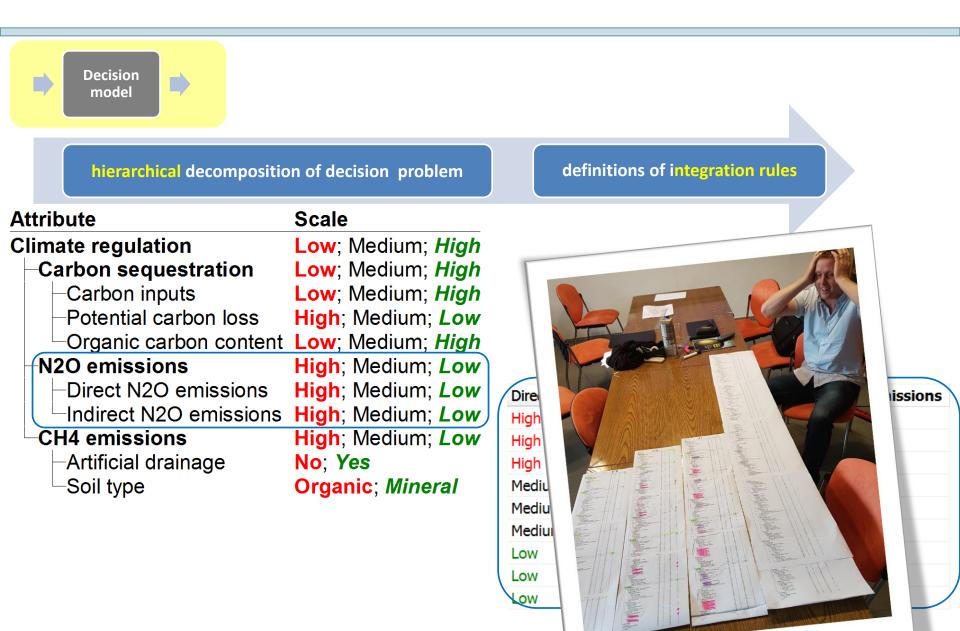
- Soil properties,
- Soil management,
- Cropping system,
- Climate, ...

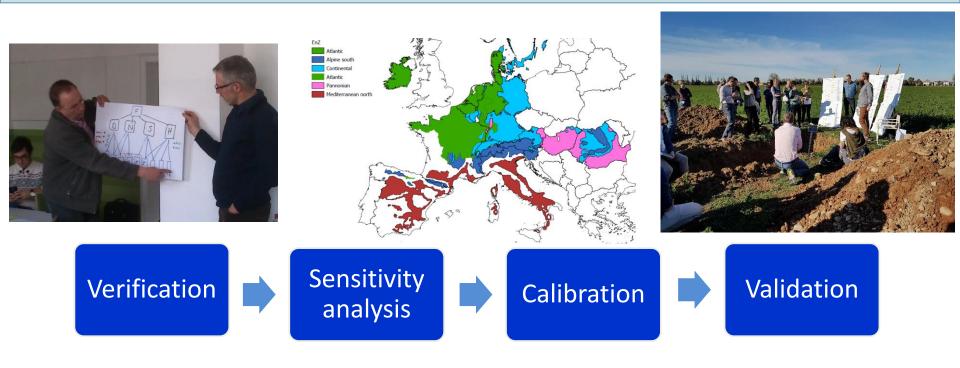
Systematic structural approach is needed:


- **Structuring and braking** complex decision problems into **less** complex parts that are manageable
- Understanding of the problem
- Communication between experts
- Obtaining required knowledge

Multi-attribute utility models


Golden roles of ecological modelling Final Decision Decision Sensitivity Conceptual Verification Calibration Validation decision problem model analysis model model

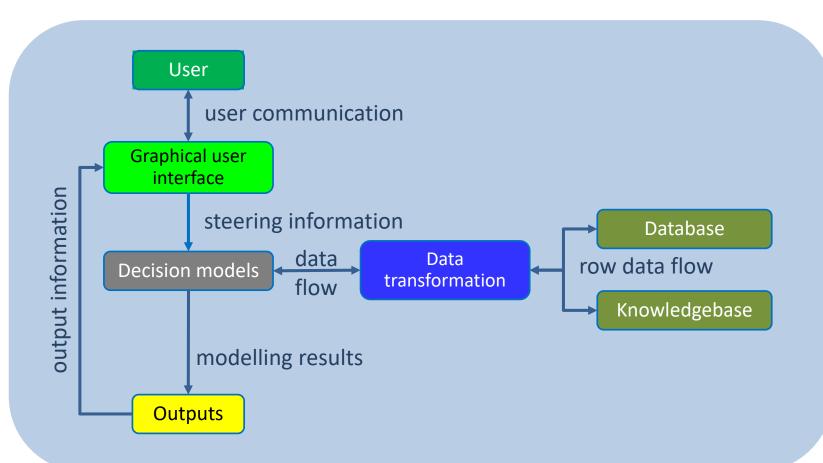

Domain experts



Decision models

Decision models

Average weights


Attribute	Local	Global	Loc.norm.	Glob.norm.
Primary Productivity				
Soil	19	19	22	22
 Biological activity 	26	5	31	7
⊢pH	50	2	50	3
C/N ratio	20	1	20	1
SOM	30	1	30	2
Chemical	26	5	31	7
Macro Elements	33	2	43	3
⊢ P	57	1	57	2
-K	26	0	26	1
└─Mg	17	0	17	1
Other Chemical Attributes	67	3	57	4
CEC	25	1	25	1
Salinity	75	2	75	3
-Physical	47	9	37	8
Structure	50	4	50	4
Bulk Density	41	2	41	2
-Rooting Depth	27	1	27	1
Clay content	32	1	32	1
Groundwater Table Depth	50	4	50	4

Linking modules into operational DSS

Linking modules into operational DSS

1. Contextual interviews

2. Analysis of available materials (factsheets)

3. Inventory of input parameters

4. Initial design of data input flow

5. Refinement

6. Initial design of output parameters and analysis tools

7. Refinement

8. Wrap-up in interactive mock-up

9. Validation of DSS

Table USER_INDICATOR_PRIVILEGES { id int [pk] string role [note: "edit, view"] }	USER_INDICAT	OR_PRIVILEGES		ASSESMENT_IND	ICATOR_PREFERENCE	s .	DICATOR PREFERENCE				ASSESMET_TYPE_DES	CRIPTION
Table ASSESMENT_INDICATOR_PREFERENCES	id		int	id		int					id	int
<pre>id int [pk] assesmentId int [ref: > "ASSESMENT!</pre>	string	r	ole	assesmentid		intid		int			assesmentTypeld	int -
indicatorId int [ref: > "INDICATOR!				indicatorId		int 1	me	string			language	string
preferenceId int [ref: > "INDICATO				preferenceld		int					name	string
}	USERS							USER_	ROLES		modelPath	string
Table INDICATOR_PREFERENCES {	id	int —		ASSESMENTS				id	int		description	string
id int [pk]	firstname	string				USER_ASSESSMEN	IT_INDICATOR	string	role			
name string	lastname	string		id	int	id	int					
, ,	role	int		name	string	assesmentId	int					
Table USER_ROLES { id int [pk]	email	email		language	string	userld	int		ASSESMENT_INDI	CATOR_ANSWERS	ASSESMET_TY	PES
string role [note: "administrator, a	password	string		createdAt	datetime	indicatorId	int		id	int	id	int
}	phone	string		editedAt	datetime	userPrivilegesId	int		indicatorId	int	indicatorId	int
Table USERS {	comapny	string		assesmentType	int				value	int		
id int [pk]	companyRole	string		alternativeTo	int				userld	int		
firstname string	createdAt	datetime				NODES			assesmentid	int		
<pre>lastname string role int [ref: - "USER ROLES"."id"</pre>	IsotLogin	datetime		PILLAR_DESCRI	IPTIONS	id	int		timestamp	datetime	INDICATOR_THRESHOLD	-
email email				id	int	name	string				id	int
password string phone string	PILLARS			pillarld	int						thresholdId	int
comapny string	id	int		language	string	INDICATORS			NODE DESCRIPT	0.015	language	string
companyRole string	color			name	string	id	int				name	string
createdAt datetime lsotLogin datetime	icon	string		description	string	pillarld	int		id	int	description	string
}		string				nodeld	int		nodeld	int		
Table ASSESMENTS {	model	string				themeld			language	string	INDICATOR_DES	CRIPTIONS
id int [pk]				THEMES_DESC	RIPTIONS	unit	string		name	string	id	int
name string	THEMES			id	int				description	string	indicatorid	int
language string createdAt datetime				themeld	int	required	boolean				language	string
editedAt datetime	id	int		language	string	weight	float				name	string
assesmentType int [ref: - "ASSESME"	indicatorId	int		name	string	isInput	boolean		INDICATOR_THRE	SHOLDS	description	string
alternativeTo int [ref: - "ASSESME!	themeld	int		description	string				id	int	metrics	string
,									indicatorId	int		
Table USER_ASSESSMENT_INDICATOR { id int [pk]									value	int		
assesmentId int [ref: - "ASSESMENT!									lowerBound	float		
<pre>userId int [ref: - "USERS"."id"] indicatorId int [ref: - "INDICATOR! userPrivilegesId int [ref: - "USER_</pre>					77 9	ó 🛑 Focus	Auto-arrange	Highlig	ht	float	From Holi	istics folks with love

- NodeJS server
- Express web framework
- PostgreSQL database
- Sequelize ORM
- Frontend: Angular

9. Validation of DSS

THE SOIL NAVIGATOR: A DECISION SUPPORT SYSTEM FOR THE ASSESSMENT AND MANAGEMENT OF SOIL FUNCTIONS

Marko Debeljak Jožef Stefan Institute

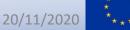
Aneta Trajanov, Vladimir Kuzmanovski, Jaap Schröder, Taru Sandén, Heide Spiegel, David P. Wall, Marijn Van de Broek, Michiel Rutgers, Francesca Bampa, Rachel E. Creamer, Christian Bugge Henriksen

22 www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

20/11/2020

THE SOIL NAVIGATOR

DMARK

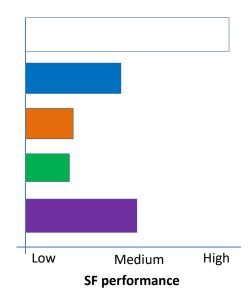

Specific objective of the H2020 LANDMARK project

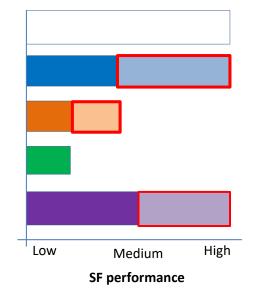
Decision support system that operates at the field level

Provides advices on the management of soils that optimise 5 soil functions

Primary production

www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

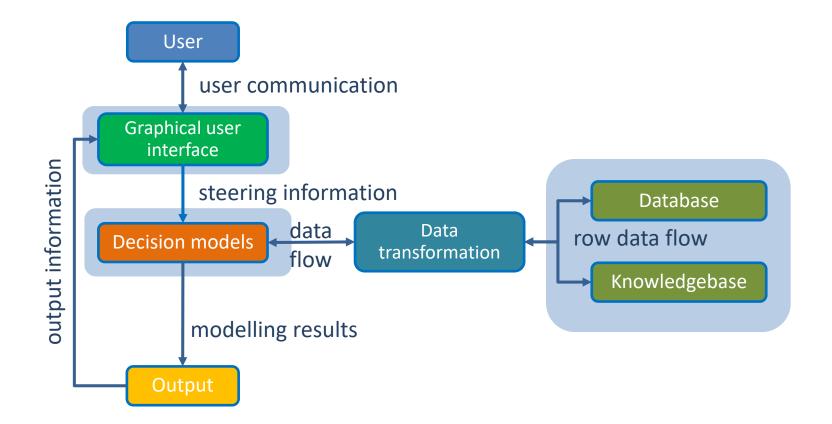

DECISION PROBLEM


Assessing the performance of the five soil functions

- specific management practices,
- environmental/climatic conditions
- soil characteristics

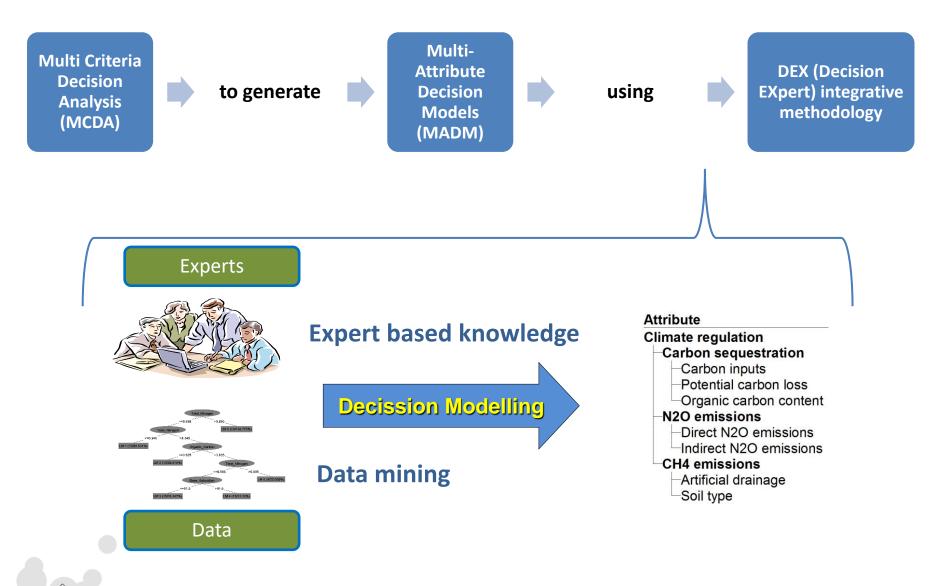
Choosing appropriate management practices that will improve the performance of the soil functions under:

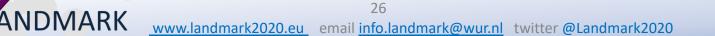
- climatic conditions
- soil characteristics
- management options

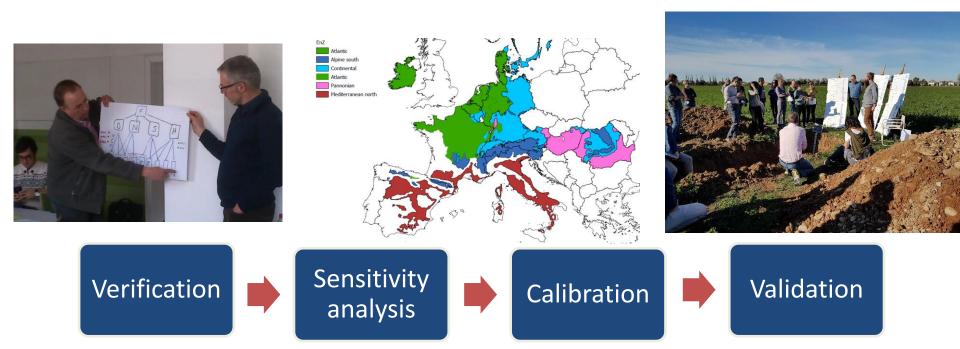


20/11/2020

www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020


ARCHITECTURE OF THE SOIL NAVIGATOR DSS

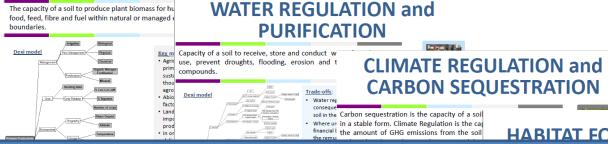




DECISION MODELS

Attribute Local Global Loc.norm. Glob.norm. **Primary Productivity** Soil Biological activity -pH –C/N ratio –SOM 26 Chemical 57 Macro Elements -P -K └-Mg Other Chemical Attributes -CEC Salinity Physical Structure 27 -Bulk Density -Rooting Depth Clay content Groundwater Table Depth

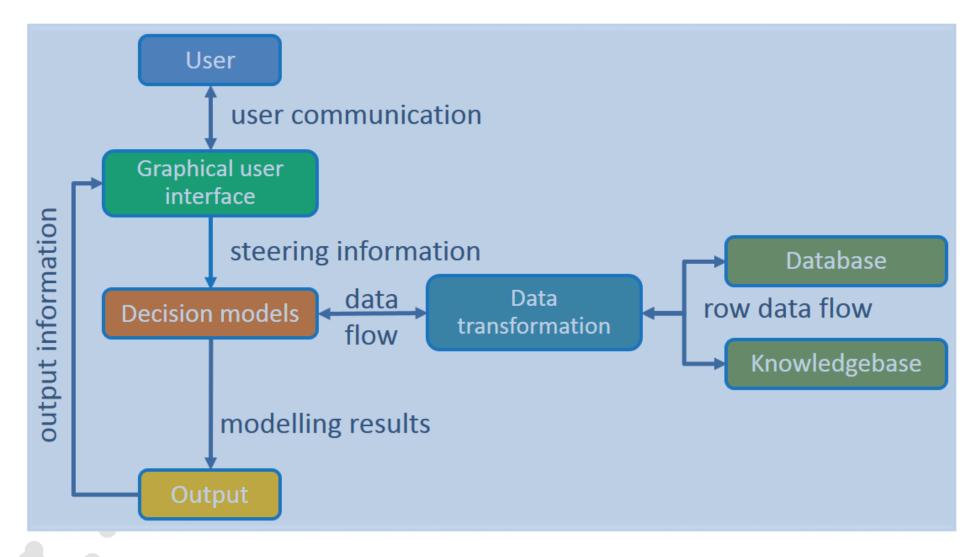
Average weights


www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

20/11/2020

DECISION MODELS

PRIMARY PRODUCTIVITY



HABITAT FOR BIODIVERSITY

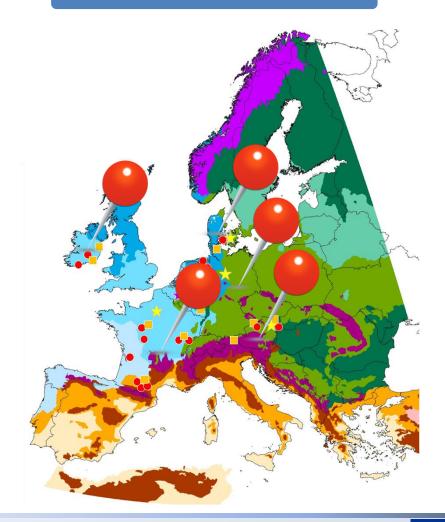
Soil function models	Total number of attributes	Number of aggregated attributes	Number of input attributes	Number of hierarchical levels	Number of integration rules
Primary productivity	42	16	25	4	294
Nutrient cycling	51	27	24	5	302
Climate regulation	540	21	19	5	301
Water regulation and purification	116	77	39	6	800
Biodiversity and habitat	55	24	31	5	612

TRANSFER TO COMPUTER

29 _www.landmark2020.eu_ email info.landmark@wur.nl_twitter @Landmark2020

SOIL NAVIGATOR - VALIDATION

Farmers


Farm advisors

5 countries (A, D, DK, UK, IE, F)

> 90 sites across Europe

31 <u>www.landmark2020.eu</u> email <u>info.landmark@wur.nl</u> twitter @Landmark2020

Soil Navigator - Graphical User Interface

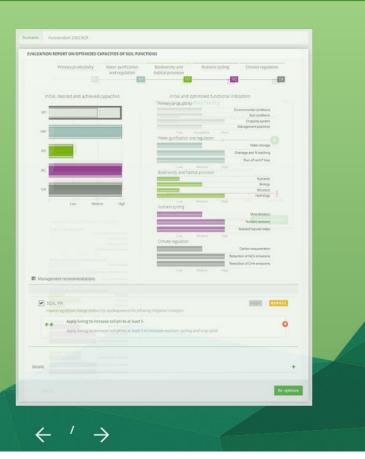
Soil Navigator

Home Decis

Decision support system

system Soil functions

ctions Team Publications

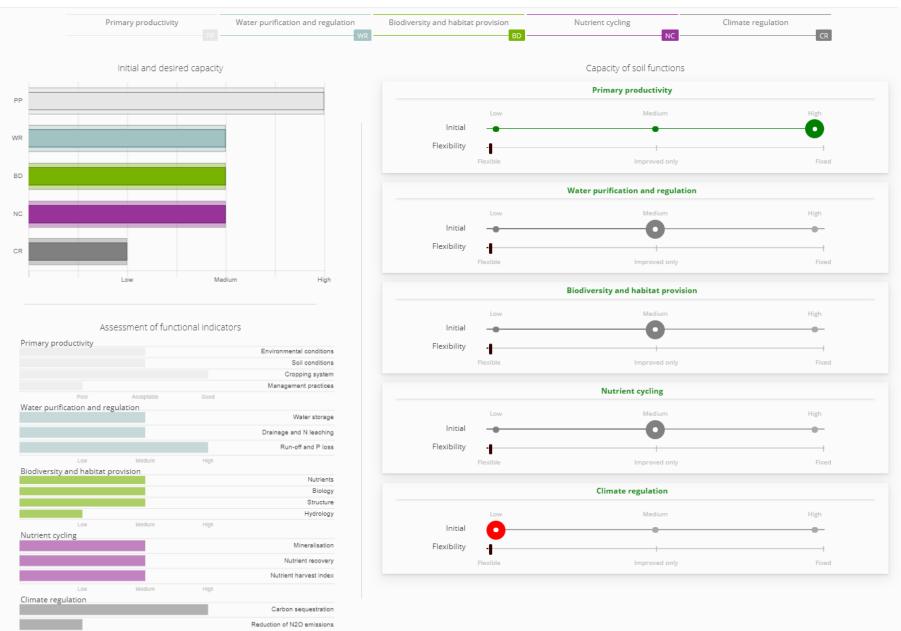

Tutorials RUN

A Decision Support System for assessing and optimizing soil functions

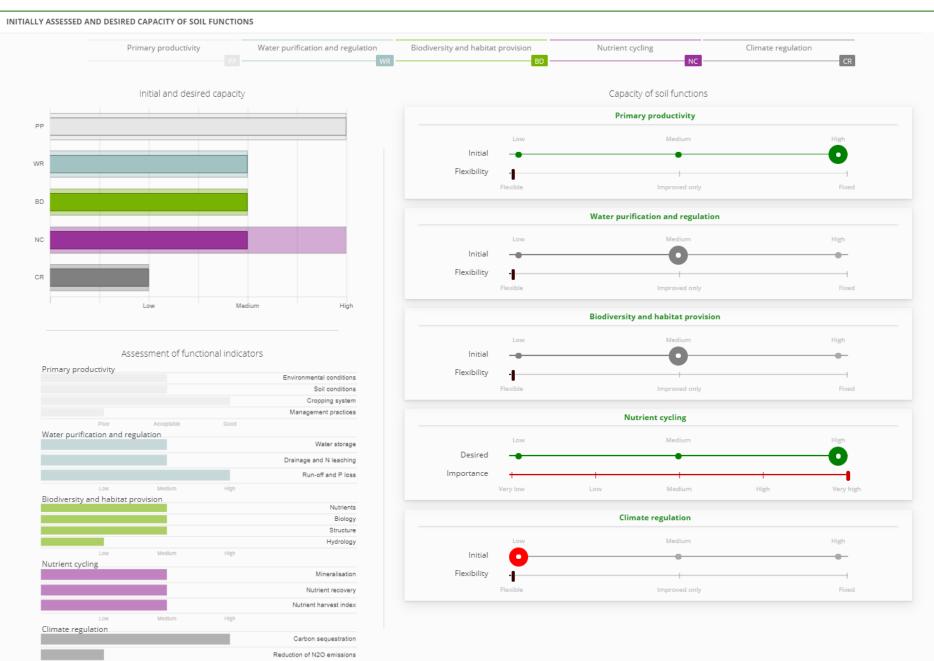
The Soil Navigator decision support system (DSS) was developed in the Horizon 2020 project LANDMARK. It assesses the initial capacities of five soil functions within a field including primary productivity, nutrient cycling, water purification and regulation, carbon sequestration and climate regulation, as well as biodiversity and habitat provision. In addition, this evidence based DSS offers targeted solutions and management recommendations to improve the supply of several soil functions simultaneously and assisting farmers and farm advisors to make the right decisions for long term sustainability.

Watch video

Run Soil Navigator DSS



GRAPHICAL USER INTERFACE - DATA ENTRY


	Home / N	lavigator					
me	Navigator						55 6
vigator ~	Scenario	Germany4bog (new)					C 0;
out	Scenario	dermany-bog (new)					
timization	INPUT D	ATA				PAGE 4 / 4	Agroecosystem
port	<u>e</u>		S	OIL		<i>,</i> ø	Management
hive		Unless otherwise specified, all input val	ues are for the speci	fic field and soil measurem	ants are in the 0 to 25 cm	soil laver	-
		oniess outerwise specified, an input var	ues are for the speci	ne nelo ano son measurem		son ayer	Environment
							Soil
	Soil p	hysical properties					
		Soil type 🔞	Organic	O Mineral		×	Assess soil funct
				<u> </u>	0.5.1		Save
		Soil texture 💿		O Loam	Sand	*	Save As New
		Clay content 💿		- Select -	-	×	
		Soil crusting/capping 💿	O Yes	No		×	
		Thickness (and the second	0	(10 20 cm	● >20 cm	x	
		Thickness of organic layer 💿	0 ×10 cm	🔵 10-20 cm	• >20 cm		
		Potential rooting depth 💿	🔵 <50 cm	● 50-100 cm	🔵 >100 cm	×	
		Groundwater table depth 💿		🔵 0.4-1.0 m	🔵 1.0-2.0 m	×	
ANDMARK			○ >2.0 m				
ANDIVIARK		Soil organic carbon 💿	<1 %	1-3 %	>3 %	×	
Γ.							

GUI– ASSESSMENT OF THE SOIL FUNCTIONS

INITIALLY ASSESSED AND DESIRED CAPACITY OF SOIL FUNCTIONS

GUI– ASSESSMENT OF THE SOIL FUNCTIONS

GUI-SUGGESTIONS FOR IMPROVEMENT OF SELECTED SF

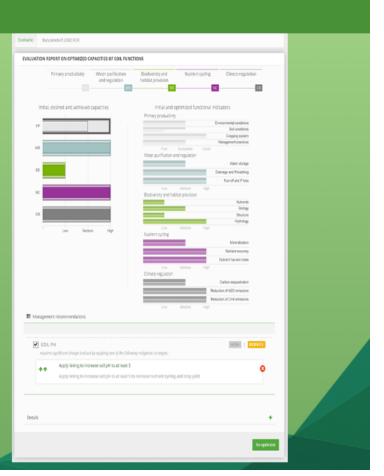
EVALUATION REPORT ON OPTIMIZED CAPACITIES OF SOIL FUNCTIONS

SOIL NAVIGATOR

SOIL NAVIGATOR

Open access: www.soilnavigator.eu

Home

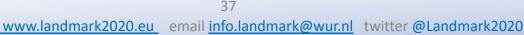

Decision support system

Soil functions

Team

The Soil Navigator decision support system (DSS) was developed in the Horizon 2020 project **LANDMARK**. It assesses the initial capacities of five soil functions within a field including primary productivity, nutrient cycling, water purification and regulation, carbon sequestration and climate regulation, as well as biodiversity and habitat provision. In addition, this evidence based DSS offers targeted solutions and management recommendations to improve the supply of several soil functions simultaneously and assisting farmers and farm advisors to make the right decisions for long term sustainability.

Publications


Tutorials

RUN

Watch video

DMARK

Run Soil Navigator DSS

SUPPLEMENTING MATERIALS

Soil Navigator, English tutorial

NDMARK

Video tutorials (English, French, German, Danish):

http://videolectures.net/soil_english_tutorial/

38

Soil Navigator, French tutorial

www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

Soil Navigator, German

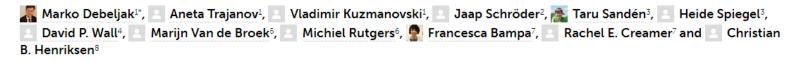
tutoria

Soil Navigator, introduction

SUPPLEMENTING MATERIALS

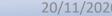
Methodological paper

Soil Processes


	SECTION	ABOUT	ARTICLES	RESEARCH TOPICS	FOR AUTHORS 🔻	EDITORIAL BOARD	
< Articles					Assessn	RTICLE IS PART OF TH ment and Modeling of ms View all 8 Articles >	Soil Functions or Soil-Based Ecosystem Serv

ORIGINAL RESEARCH ARTICLE

Front. Environ. Sci., 05 August 2019 | https://doi.org/10.3389/fenvs.2019.00115


A Field-Scale Decision Support System for Assessment and Management of Soil Functions

www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

39

SUPPLEMENTING MATERIALS

Soil functions research papers

ORIGINAL RESEARCH ARTICLE Front. Environ. Sci., 17 May 2019 | https://doi.org/10.3389/fenvs.2019.00058

Development of an Agricultural Primary Productivity Decision Support Model: A Case Study in France

🌊 Taru Sandén¹", 🚊 Aneta Trajanov^{2,3}, 🚊 Heide Spiegel¹, 🚊 Vladimir Kuzmanovski², 🚊 Nicolas P. A. Saby⁴, 🚊 Calypso Picaud⁵, 🔄 Christian Bugge Henriksen⁶ and 🌄 Marko Debeljak^{2,3}

SPECIAL ISSUE PAPER 🖞 Open Access 😨 🚺

Harvesting European knowledge on soil functions and land management using multi-criteria decision analysis

Francesca Bampa 🗙, Lilian O'Sullivan, Kirsten Madena, Taru Sandén, Heide Spiegel, Christian Bugge Henriksen, Bhim Bahadur Ghaley, Arwyn Jones, Jan Staes, Sylvain Sturel ... See all authors 🗸

First published: 25 February 2019 | https://doi.org/10.1111/sum.12506 | Cited by: 4

Review Article 🖞 Open Access 💿 💽 🗐 🕞 😒

NDMARK

The elusive role of soil quality in nutrient cycling: a review

J. J. Schröder 🗙, R. P. O. Schulte, R. E. Creamer, A. Delgado, J. van Leeuwen, T. Lehtinen, M. Rutgers, H. Spiegel, J. Staes, G. Tóth, D. P. Wall

First published: 16 September 2016 | https://doi.org/10.1111/sum.12288 | Cited by: 12

ORIGINAL RESEARCH ARTICLE

Front. Environ. Sci., 22 August 2019 | https://doi.org/10.3389/fenvs.2019.00113

Modeling of Soil Functions for Assessing Soil **Quality: Soil Biodiversity and Habitat Provisioning**

🔺 Jeroen P. van Leeuwen¹, 🖾 Rachel E. Creamer², 🖾 Daniel Cluzeau³, 🎇 Marko Debeljak4, 💷 Fabio Gatti⁵, 🖄 Christian B. Henriksen⁶, 🙏 Vladimir Kuzmanovski⁴, 💄 Cristina Menta⁵, 🙏 Guénola Pérès⁷, 🙏 Calypso Picaud⁸, Nicolas P. A. Saby⁹, 🔄 Aneta Trajanov⁴, 🔄 Isabelle Trinsoutrot-Gattin¹⁰, 🌁 Giovanna Visioli⁵ and 📃 Michiel Rutgers^{11*}

Regional Environmental Change February 2019, Volume 19, Issue 2, pp 325–337 | Cite as

Using data mining techniques to model primary productivity from international long-term ecological research (ILTER) agricultural experiments in Austria

Authors

Authors and affiliations

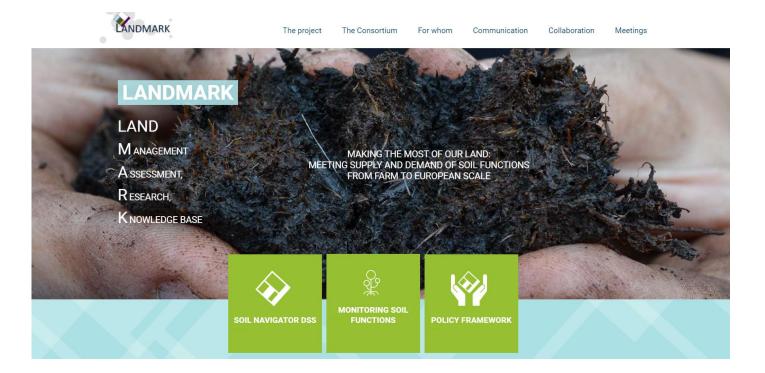
Aneta Trajanov 🖂 , Heide Spiegel, Marko Debeljak, Taru Sandén

Assessing the climate regulation potential of agricultural soils using a decision support tool adapted to stakeholders' needs and possibilities

Marijn Van De Broek* , Christian Bugge Henriksen, Ghaley Bahadur Bhim, Emanuele Lugato, Vladimir Kuzmanovski, Aneta Trajanov, Marko Debeljak, Taru Sandén, Adelheid Spiegel, Charlotte Lore Marie Decock, Rachel Creamer and Johan Six Original Research, Front. Environ. Sci. - Soil Processes Submitted on: 01 Feb 2019, Edited by: Hans-Joerg Vogel 🐹

Farming systems targeted to water regulation and purification in agricultural soils

David P Wall*, Antonio Delgado, Lilian M O'Sullivan, Marko Debeljak, Rachel Creamer and Christain Bugge Henriksen Review, Front. Sustain. Food Syst. - Agroecology and Ecosystem Services Submitted on: 01 Mar 2019, Edited by: Philippe C. Baveye 🔀


20/11/2020

www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

ACKNOWLEDGEMENT

ANDMARK

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 635201.

20/11/2020

www.landmark2020.eu email info.landmark@wur.nl twitter @Landmark2020

41

Final remarks

- Methodology for development DSS in agriculture is confirmed.
- Following modelling procedure is required.
- Large synergistic effects between data driven and knowledge driven modelling.
- Advanced information technology is needed for integration of modules into DSS.
- Knowledge of UI-UX design of interface is crucial.
- Digitalization and application of artificial intelligence stimulate fast development of DSS in agronomy.
- Development of DSS in agronomy is transdisciplinary task.

Thank you!