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Abstract In many environmental management prob-

lems, the construction of occurrence maps of species of
interest is a prerequisite to their effective management.

However, the construction of occurrence maps is a chal-

lenging problem because observations are often costly

to obtain (thus incomplete) and noisy (thus imperfect).

It is therefore critical to develop tools for designing effi-
cient spatial sampling strategies and for addressing data

uncertainty. Adaptive sampling strategies are known to

be more efficient than non-adaptive strategies. Here,

we develop a model-based adaptive spatial sampling
method for the construction of occurrence maps. We

apply the method to estimate the occurrence of one

of the world’s worst invasive species, the red imported

fire ant, in and around the city of Brisbane, Australia.

Our contribution is threefold: i) a model of uncertainty
about invasion maps using the classical image analy-

sis probabilistic framework of Hidden Markov Random

Fields (HMRF), ii) an original exact method for op-

timal spatial sampling with HMRF and approximate
solution algorithms for this problem, both in the static

and adaptive sampling cases, iii) an empirical evalua-

tion of these methods on simulated problems inspired

by the fire ants case study. Our analysis demonstrates
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that the adaptive strategy can lead to substantial im-

provement in occurrence mapping.

Keywords Hidden Markov Random Fields · Optimal

sampling approximation · Fire ant sampling for
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1 Introduction

In many environmental management problems, estima-

tion of occurrence maps of species of interest, includ-
ing endangered and invasive species, is a prerequisite

to their effective management (Elith and Leathwick,

2009). Map estimation is a complex problem because

observations are imperfect (detectability of individuals
is usually imperfect) and incomplete (it may be infea-

sible to survey the entire area that might contain indi-

viduals). There is often a prohibitive cost of conducting

surveillance with perfect sensitivity in all locations that

might contain individuals. Therefore, there is a need
for methodological tools for designing efficient sampling

strategies and for using the resulting imperfect and in-

complete observations to estimate occurrence maps.

In adaptive spatial sampling, a set of locations to

sample is built sequentially, taking the results of previ-

ous sampling steps into account. Such a strategy, which

takes into account intermediate observations to moni-

tor sampling, is more efficient than non adaptive meth-
ods (Thompson and Seber, 1996). In addition, to deal

with the uncertainty of the observation, a model-based

approach (Gruijter et al., 2006) for sampling should

be preferred. Geostatistical models and tools (Chiles
and Delfiner, 1999), such as kriging, have been applied

to model and solve problems of sampling design for

map reconstruction (Buesco et al., 1998; Fuentes et al.,
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2007). However those methods are adapted to continu-

ous data such as pollution levels or temperatures. The

application of these tools is not straightforward if the

variable to sample and to map is of presence/absence

type (0/1 variable), and when observations are noisy
(see Bonneau et al., 2010 for a proposition of modeling

in the geostatistical framework). In the problem we con-

sider, we are interested in occurrence maps and the only

data available are located on a regular grid of spatial
sampling units. Therefore, rather than applying com-

monly used geostatistical models and tools, we propose

to adopt a classical image analysis probabilistic frame-

work: Hidden Markov Random Fields (HMRF, Geman

and Geman, 1984). In addition to being suited to oc-
currence data on a regular grid of sampling units, an-

other advantage of the HMRF approach is that it can

represent dependencies which are not linked to space

(for example social networks, transportation networks)
while in geostatistics, correlations are strongly linked

to the notion of spatial distances.

Image reconstruction from imperfect data is a clas-

sical problem tackled by HMRF (Li, 1995; Winkler,

1995) even with missing data (Blanchet and Vignes,
2009). Estimation of HMRF parameters has also been

widely studied and efficient algorithms are available

(Chalmond, 1989; Comer and Delp, 2000; Celeux et al.,

2003). This model has been recently used in the context
of static sampling and spatial decision making when

taking into account the value of information (Bhat-

tacharjya et al., 2010). In this article, we propose to use

the HMRF framework not only for map construction

from an incomplete observation set but also to build
efficient adaptive sampling strategies for the purpose of

mapping. We present an original model-based adaptive

spatial sampling method and we illustrate its perfor-

mance on a case study focusing on an invasive species
management problem. The campaign to eradicate the

Red Imported Fire Ant from around Brisbane, Aus-

tralia, which we considered, involves one of the world’s

100 worst invasive species (Lowe et al., 2000). For com-

parison purposes, we consider both adaptive and static
variants of the optimization problem. We use the Maxi-

mum Posterior Marginal criterion to measure map qual-

ity and sample values. Under this approach, solving the

optimization problems (both static and adaptive) re-
quires the evaluation of conditional marginal probabili-

ties for each possible output of each sampling strategy.

Those problems are intractable in most realistic circum-

stances, including those considered here, and, therefore,

we propose an approximation of the optimal strategy in
both the static and dynamic cases.

The paper is organized as follows. In Section 2, we

provide background information on the fire ant sam-

pling problem which motivated the methodological work

presented in this article. In Section 3, we describe the

HMRF model that we propose for modeling uncertainty

about fire ant occurrence maps. The exact formulation

of the optimization problems (static and adaptive) and
their approximate resolution are derived in Section 4.

In Section 5, we analyze the performance of the adap-

tive sampling method and we compare it to the static

method and two classical sampling methods, using sim-
ulated data inspired by the fire ant problem. We also

illustrate map reconstruction on the fire ants mapping

problem. Possible extensions of our work are identified

in the concluding section (Section 6).

2 Fire ants detection problem and data

The red imported fire ant (Solenopsis invicta) was first

discovered in Australia near Brisbane in February 2001

and the National Fire Ant Eradication Program for-
mally commenced in September 2001. Two forms of

treatment are applied. Injection of poison directly into

fire ant nests is the method applied when nests are de-

tected with targeted surveillance by trained personnel.
The effectiveness of this method depends on the pro-

portion of nests that are detected during surveillance

operations. The second method used is to apply a corn-

based bait several times across general areas of infesta-

tion, with the bait then taken into the nest by foraging
individuals. Targeted surveillance activity is conducted

primarily in areas near nests detected by private cit-

izens near their residences, business places and pub-

lic spaces. To distinguish between targeted surveillance
and citizen monitoring we refer to those surveillance

methods as active and passive surveillance, respectively.

Active surveillance is discretionary surveillance, that is,

surveillance whose placement is determined by the erad-

ication program manager, the Biosecurity Queensland
Control Center (BQCC). In contrast, there is no dis-

cretion regarding the placement of citizen monitoring

because that form of monitoring occurs primarily in ur-

ban areas whose locations are fixed. Since no decision
is made on the placement of citizen monitoring, it can

be described as a form of passive surveillance.

The method used by BQCC to estimate the current

spatial distribution of fire ants in Brisbane is a vari-

ant of the Adaptive Cluster Sampling (ACS) method
(Thompson and Seber, 1996). Nests detected by passive

surveillance are used as an initial sample. Then, loca-

tions neighboring infected locations in the initial sam-

ple are explored. New infected locations are added to
the sampling set. They neighboring locations are sam-

pled and so on until no more nests are found. This is

classical ACS. Here, information on the locations where
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surveillance activity occurred (both passive and active)

and information on locations where treatment occurred

have also been used to increase the sampling set at each

step.

The study region is a 73.7km × 96.2km rectangle,

including the city of Brisbane and surrounding rural

areas around the city. It is represented by a grid of

cells of size 100m×100m, thus the complete zone com-
prises n = 737 × 962 cells. Detection and treatment

efforts occurred each year since 2001. The cells which

are actively searched during year t are listed in a search

action vector, at: at
i = 1 if cell number i was actively

searched during year t, and at
i = 0 otherwise. A list of

detected nests is also maintained for each year t. These

observations are represented in an observation vector

ot, where ot
i = 1 if ants nests were found in cell i dur-

ing year t, and ot
i = 0 otherwise. If ot

i = 1, it may be
that nests where actively searched for (at

i = 1), but it is

possible as well that they were discovered accidentally

(at
i = 0, passive search). If ot

i = 0, either there were

no nests in cell i or they were not detected. Informa-
tion about treatment actions is also maintained in the

form of treatment vectors et, where et
i = 1 if cell i is

eradicated at the end of year t, and et
i = 0 otherwise.

A given year, treatment occurs after observation. It is

possible to observe ot+1
i = 1 even when et

i = 1, either
because the eradication treatment failed or because cell

i was colonized again by invasion from the neighboring

cells. Figure 1 shows the treatment, search and obser-

vation informations for the whole area under study for
the first two years of the campain.

3 A HMRF model of the invasion map

In this section we present our model of uncertainty on

invasion map knowledge. This model is based on the

HMRF framework (Geman and Geman, 1984), which
allows to represent the conditional probability distri-

butions of a map, given observations (obtained by sam-

pling). Here and in the following, upper-case letters rep-

resent random variables and lower-case letters represent

realizations of the same random variables.

In the fire ant problem, a graph G = (V, E) is asso-

ciated to the n cells of the regular grid dividing the area

under study. The set of sites is V = {1, . . . , n} and the
set E of edges is defined by the neighborhood system.

A first order neighborhood is chosen: for any cell i, the

neighborhood N(i) is composed of the four closest cells

to cell i (except on the edge of the grid). Other neigh-
borhood systems could be considered: 8-closest cells, or

non regular neighborhood systems in the case where an

irregular network of locations is considered. A random

Fig. 1 Top line: eradication for years 2000 and 2001 (no eradica-
tion in 2000). Middle line: search actions for years 2001 and 2002.
Bottom line: observations for years 2001 and 2002 The value nz

indicates the number of non zero cells in the image.

variable Xi is associated to cell i and can take two val-
ues: 0 if there are no ants nests in the corresponding cell,

1 if there is at least one. The set X = {Xi, i ∈ 1, . . . , n}

is referred to as the set of hidden variables. The ob-

jective is to recover their values from observations. If
e is the vector representing the treatment actions ap-

plied the year before on all cells, then Pe(X = x) will

be modeled as a 2-state Potts model with external field

(Wu, 1982), defined by:

∀x ∈ {0, 1}n, Pe(X = x|α, β) = (1)

1

Z
exp

(

∑

i∈V

αei
xi +

∑

(i,j)∈E

β eq(xi, xj)
)

,

where eq(xi, xj) is the Kronecker function, equal to 1 if

xi = xj and 0 otherwise. For a given treatment vector

e, values αei
∈ α = {α0, α1} model different “strength
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levels” of invasion, depending on whether treatment

was performed or not on the cell. The parameter β,

when positive, leads to higher probability for maps x

where neighboring cells are in the same state, as ex-

pected when there is spatial aggregation of nests. Z is
a normalizing constant, ensuring that Pe sums to one.

If the state of neighbor cells is known, the probability of

a cell infection is independent of the state of the other

cells (conditional independences are represented on Fig-
ure 2). If xN(i) = {xj , j ∈ N(i)}, then the conditional

distribution is defined by:

Pe(Xi = 1 | xN(i), α, β) =
exp (αei

+ βN1
i )

exp (βN0
i ) + exp (αei

+ βN1
i )

.

N1
i counts the number of neighbors of cell i in state 1,

while N0
i counts those in state 0. They can be computed

as N1
i =

∑

j∈N(i) xj and N0
i = card(N(i))−N1

i .

A second variable, Oi is attached to a cell i. It can
take values in {0, 1} and represents the result of the

sampling: an ant nest has been found (1) or not (0) in

cell i. A classical assumption in HMRF is that the con-

ditional distribution of observations given hidden vari-
ables admits the following decomposition (again, see

Figure 2):

P (o | x) =
∏

i∈V

P (oi | xi). (2)

In the fire ant problem, these probabilities depend

on whether active or passive search occurred on the cell.
This information is represented by the search action

vector a = {ai, i ∈ V } (see Section 2). Let θ = {θ0, θ1}

denote the respective probabilities that a nest present

in an arbitrary cell i be discovered, either passively or
actively, then:

Pai
(Oi = 1 | Xi = 1, θ) = θai

,

Pai
(Oi = 1 | Xi = 0, θ) = 0 and (3)

Pa(O = o|x, θ) =
∏

i∈V

Pai
(Oi = oi | xi, θ).

Probability θ1 of discovering a nest after a search action

was applied is naturally assumed to be larger than θ0,
the probability if no active search was performed. Ex-

pression (3) of the conditional distribution Pa(O = o|x)

relies on several assumptions. First, observation proba-

bilities (θ0, θ1) are independent of the precise cell which

is searched. Then, we assume that observation proba-
bilities do not depend on whether ants were eradicated

in the preceding year. Finally, observation conditional

probabilities are purely local and do not depend on

whether ants nests are present in neighbor cells. The
two first assumptions could be relaxed by increasing

the number of parameters. Modifying the third one

would imply changes in the structure of the HMRF and

Hidden variables

Observations

Fig. 2 Hidden Markov random field for the fire ants invasion
map, with hidden variables (top) and observed variables (bot-
tom). Hidden variables can take values 0 (absence, white sites)
or 1 (presence, black sites). Observations can take values 0 (no
nest detected, white sites) or 1 (nests detected, black sites). If
the state of a hidden variable is 0, the corresponding observation
is 0.

the sampling methods described in section 4 would no
longer be applicable.

Let us now express the joint distribution of X con-

ditionally to o, a and e. In the fire ant model Pai
(Oi =

1|Xi = 0, θ) = 0 because we assume that there are no
false positive observations. Consequently, if λ = {α, β, θ},

Pe,a(x|λ, o) = 0 as soon as there exists i such that oi = 1

and xi = 0. Therefore we can write:

Pe,a(x|λ, o) ∝





∏

i,oi=1

xi



 Pe(x|α, β)Pa(o|x, θ). (4)

Exploiting (1), (2) and (4), we get

Pe,a(x|o, λ) =
1

Z ′(λ)

∏

i,oi=1

xi × exp

(

∑

i∈V

αei
xi+

β
∑

(i,j)∈E

eq(xi, xj) +
∑

i,oi=0

log(1− θai
)xi



 . (5)

where Z ′(λ) is a normalizing constant, function of the

model’s parameter λ. Equation (5) defines how the ini-

tial knowledge Pe(x|λ) about the invasion map is up-

dated when observation actions are applied and result-
ing observations are taken into account. In this section

and in the following ones we omit reference to time, for

sake of simplicity. In the above conditional distribution,

if x is the hidden map at time t, then e, o and a stand
respectively for et−1, ot, and at.

4 Spatial sampling policies

We now define the problem of designing a spatial sam-

pling policy (strategy) for fire ants map construction as

a problem of optimization under uncertainty. To do so,

we first need to define the value of the uncertain knowl-
edge about the actual invasion map, P = Pe,a(x|o, λ),

as well as an estimator of the invasion map associated

to this value (Section 4.1). The optimization problem
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can be modeled as non-sequential (static, Section 4.2)

or sequential (adaptive, Section 4.3), depending on the

conditions of the search process.

A sampling policy is static if the cells chosen for

search are chosen once and for all at the beginning of
the year, and active search is limited to them. In the

adaptive spatial sampling problem, only a few cells are

chosen for active search at the beginning of the year.

Then, given the results of the active search in those
cells (presence or absence of ants nests), new cells are

chosen for active search. This process is repeated until

a specified stopping criterion is met (for example the

total budget, expressed in terms of number of cells that

can be searched, is exhausted). Note that in adaptive
spatial sampling problems, cells can be searched more

than once, unlike in the static case. In both cases, we

assume that a first arbitrary sample (a0, o0) is avail-

able (for example, a few regularly spaced cells will be
sampled before the sampling policy is computed).

4.1 Information value of a map distribution

In spatial sampling problems, it is important to de-

fine the “information value” of a probability distribu-

tion over maps, describing current knowledge. Sampling

strategies will aim at maximizing a criterion based on
this information value.

Let us assume that x∗ is an unknown map, and

that the only available knowledge about x∗ is modeled

by distribution P . The Maximum Posterior Marginal
(MPM) estimator (Besag, 1986) of x∗ is the configura-

tion xMPM verifying:

xMPM =
{

xMPM
i , xMPM

i = arg max
xi

Pi(Xi = xi)
}

. (6)

The information value of P is defined as V MPM (P ), the

sum of the marginal probabilities of the most probable

state for all sites:

V MPM (P ) =
∑

i∈V

max
xi

Pi(Xi = xi). (7)

This value is equal to the expected number of correctly
“classified” sites. It is a direct measure of the informa-

tion value of P . Other information value criteria could

be considered, such as the mode of distribution P (Max-

imum a Posteriori criterion, MAP, Guyon, 1995; Li,

1995), or its entropy. The former is a valid alternative
and the corresponding optimal sampling problem has

been studied from a computational complexity perspec-

tive (Peyrard et al., 2010). Using MPM does not lead

to a simpler computational problem. However, MPM
should be more discriminant than MAP since the mode

of a joint distribution with large state space may not be

very peaked. We did not consider the entropy criterion

since it does not directly lead to an estimator of the

hidden map.

4.2 Static spatial sampling

In the static spatial sampling problem, a typical sam-
pling sequence can be decomposed into the following

steps:

1. An initial arbitrary sample (a0, o0) is performed,

which will be used both as prior information and

for estimating the HMRF parameters λ = {β, α, θ}.

2. A search action vector a representing the set of

cells which will be explored is chosen on the ba-
sis of Pe,a0(x|o0, λ). The size of a is constrained:

|{i ∈ V, ai = 1}| ≤ Amax, with Amax the maximum

affordable sample size.

3. A set of observations is produced. It can be com-
pleted by passive observations, leading to the obser-

vation vector o.

4. The a priori knowledge is updated, using equation

(5), providing a new distribution Pe,a0,a(x|o
0, o, λ)

representing knowledge about fire ants nest presence
after sampling.

5. Finally, the MPM value V MPM (Pe,a0,a(.|o
0, o, λ)) of

the new MRF is computed and the corresponding

MPM map xMPM is returned.

4.2.1 Exact optimization problem

The optimal sampling strategy will be defined as fol-

lows. First, since the results of search actions are not de-

terministic, a set a of searched cells may result in many
different observations o. This implies that the output

observations (active and passive) o are only determined

through their probability distribution Pe,a0,a(o|o0, λ).

The value of a sampling action a can therefore be de-
fined as the expected value U of the updated MRF of

step 5, according to that probability distribution:

Ue,a0,o0(a) =
∑

o

Pe,a0,a(o | o0, λ)V MPM (Pe,a0,a(.|o0, o, λ)). (8)

The probability Pe,a0,a(o | o0, λ) is obtained as:

Pe,a0,a(o | o
0) =

∑

x

Pa(o|x, θ)Pe,a0 (x|o0, λ).

Finally, solving the static spatial sampling problem amounts

to finding the sampling vector a∗ which maximizes Ue,a0,o0(a)

under constraints |{i ∈ V, ai = 1}| ≤ Amax.
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4.2.2 Approximate static spatial sampling

Computing the static sampling action a∗ is infeasible in

practice for large problems. When replacing MPM with

the MAP criterion, which does not make the problem
more complex, it has been shown that the latter prob-

lem is NP-hard (Peyrard et al., 2010), meaning that it is

highly unlikely that an efficient solution algorithm for it

can be designed (Cook, 1971). Computing a∗ requires a

maximization over the set of possible search action vec-
tors of an expression involving summation over the set

of possible observations. Both of these state spaces are

of size exponential in the number of sites. In addition, it

involves computations of V MPM (Pe,a0,a(.|λ, o0, o)) for
all pairs (a, o), an operation of exponential complex-

ity as well. Given the size of the problems we wish to

address (tens of thousands of cells), we must turn to

approximation methods for computing the set of cells

that will be explored given the a priori knowledge about
invasion.

The approximation method we suggest relies on the
following simplifying assumptions:

A1 Current observations are reliable (the state of searched

cells is perfectly known after the search) and there

are no passive observations, i.e. θ0 = 0 and θ1 = 1
(this assumption is made only for the current sam-

pling action to choose, a, and not for the initial ob-

servation step (a0, o0)).

A2 The states of cells are independent given initial sam-
pling results. This leads to the following approxima-

tion:

Pe,a0(x|o0, λ) ∼

n
∏

i=1

Pe,a0(Xi = xi|o
0, λ)

where Pe,a0(Xi = xi|λ, o0) is the marginal distri-

bution of the resulting MRF on cell i, given initial
observation result (a0, o0).

With these two assumptions, it can be shown that

optimizing a spatial sample amounts to choosing the
cells whose marginal occupation probabilities Pe,a0(Xi =

xi|o
0, λ) are the closest to 0.5, that is, the cells whose

occupation status is most uncertain (a proof is given in

the Appendix). Computing exactly a marginal occupa-

tion probability is costly since it involves the marginal-
ization of the joint distribution (5) over all variables ex-

cept xi. This cannot be performed in reasonable time.

Therefore, we use a belief propagation algorithm (Pearl,

1988; Yedidia et al., 2000) in order to approximate those
marginal probabilities. This algorithm requires only a

time polynomial in the number of cells to compute the

approximate marginals.

Fig. 3 Part of an adaptive sampling strategy. Levels of gray
represent estimates of marginal occupation probabilities. Black
dots represent the current cell chosen for exploration.

4.3 Adaptive spatial sampling

In the adaptive spatial sampling problem, we assume

that the Amax cells we explore can be decomposed into

successive small groups, the next one being chosen tak-

ing into account observations of previously sampled cells.
For illustration purpose, we describe exact adaptive

sampling in the case where one cell is chosen (and ex-

plored) at each step. Thus the number of steps is exactly

Amax. For this particular case, one step of adaptive

sampling is represented on Figure 3. One cell is chosen
for exploration (black dot in the top figure) and then,

depending on whether ants are detected (Yes branch)

or not (No branch), the MRF is updated in a different

way. Therefore, the next cell to explore according to the
strategy can be different (black dots in bottom maps).

In the following, since the action vector a contains only

one cell in state one, it will be identified to the indice of

that cell (a ∈ V ). Similiary, o is identified to the value

(0 or 1) observed on that celle.

4.3.1 Adaptive sampling strategy

As Figure 3 suggests, an adaptive sampling strategy

may well lead to many different sets of cells being sam-

pled, depending on the observations obtained. Thus the

sampling strategy can no more be represented as a sub-
set a of V of size Amax. It is now a tree, δ, which ver-

tices are cells chosen for sampling and edges represent

observations (0/1 or Yes/No outputs when a single cell

is sampled). A part of such a tree is represented in Fig-
ure 4. Let ak, 1 ≤ k ≤ Amax denote the cell which is

explored during the kth sampling phase: ak is chosen as

a function of past samples results (o1, . . . , ok−1). From
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Fig. 4 Part of an adaptive sampling strategy tree.

δ we can define δk, a function specifying the kth cell to

sample, as a function of the k − 1 observations which
were obtained from past sampling steps. For example,

on Figure 4, a3 = δ3(o
1, o2).

4.3.2 Optimal sampling strategy computation

As in the static case, an initial arbitrary sample (a0, o0)

is used as prior information. The value of an adaptive

sampling policy is defined by extension of the value of

a static sampling policy (equation (8)), taking into ac-

count the fact that δ is a tree:

UAmax

e,a0,o0(δ) =
∑

(o1...oAmax )∈τδ

Pe,a0,δ(o
1 . . . oAmax | o0, λ)

×V MPM (Pe,a0,δ(.|λ, o0, o1, . . . , oAmax)). (9)

In (9), τδ denotes the set of possible observation se-

quences given δ, i.e. the set of paths from the root to

a leaf of the policy tree. The knowledge of δ enables to

recover the sequence of sampled cells: Pe,δ(o
1 . . . oAmax |

λ, a0, o0) =def Pe,a0,a1,...,aAmax (o0, o1 . . . oAmax | λ), whit
ai = δi(o

1, . . . , oi−1) the action defined by the sampling

policy at step i, given past observations. More precisely,

δi(o
1, . . . , oi−1) can be read from the policy tree repre-

sentation of δ, as the last node of the partial branch
defined by o1, . . . , oi−1.

Since multiple samplings at a same site are possi-

ble in adaptive sampling, Pe,a0,δ(x|λ, o0, o1, . . . , oAmax)

is obtained from a slight modification of equation (5),

taking into account repeated samplings of cells:

Pe,a0,δ(x|λ, o0, o1, . . . , oAmax)) ∝
∏

h∈S1

xah ×

exp





∑

i∈V

αei
xi + β

∑

(i,j)∈E

eq(xi, xj)

+
∑

h∈S0

log(1− θah)xah

)

,

where S0 = {h, 0 ≤ h ≤ Amax and oh = 0} and S1 =

{h, 0 ≤ h ≤ Amax and oh = 1} are respectively the

sets of observation steps h where the sampled cell ah

was found unoccupied or occupied. In the set S0 (or

S1) a same cell indice can appear more than once if the

correspond cell is explored several times.

The problem of optimizing δ with Amax cells to sam-

ple can be solved recursively, noting that

UAmax

e,a0,o0(δ
∗) = max

a1

{

∑

o1

Pe,a0,a1(o1|o0, λ)×

UAmax−1
e,a0,o0,a1,o1(δ

∗
|a1,o1)

}

,

where δ∗|a1,o1 is the optimal policy computed from the

HMRF resulting from observations a0, o0, a1, o1 and with

sampling budget Amax − 1.

Of course, the recursive algorithm explores a solu-

tion space of exponential size, which makes it unsuitable

to solve realistic problems. This is all the more true if we

can explore more than one cell in each sampling step.
In the following section, we propose an approximate

sampling algorithm which relies on the static sampling

approximate algorithm and directly applies to the case

where more than one cell is sampled at a time.

4.3.3 Approximate adaptive sampling

For our approximate adaptive algorithm, we propose to

use a greedy algorithm (as is usually done in heuristic

search problems), in conjunction with the approxima-

tion approach of the static sampling case. The set of
cells ak (now, ak represents a set of cells indices and

not a single index) which will be sampled during sam-

ple phase k will be computed on-line, by applying the

method of Section 4.2.2 and considering that the initial

sample is the sequence (a0, o0, a1, o1, . . . , ak−1, ok−1) of
actions/observations obtained so far. More precisely the

procedure is:

1. An initial arbitrary sample (a0, o0) is performed,
from which the model parameter λ is estimated.

2. Evaluate the marginal probabilities for the condi-

tional distribution Pe,a0(x|λ, o0).

3. Explore the cells whose marginal probabilities are

the closest to 0.5. This leads to (a1, o1).
4. Update the sampling informations:

(a0, o0)← (a0, o0, a1, o1).

5. Go to step 2 while the number of sampled cells is

less than Amax.

When we consider only two successive sample phases,

this on-line procedure can be related to the two-phase

adaptive method for optimal spatial sampling proposed
by Chao and Thompson (2001) in the case of log-normal

perfectly observable variables and a mean square error

criterion.
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5 Validation of the model-based sampling

methods

In this section, we present a validation of the heuristic

sampling approaches on simulated data. This validation
can only be performed on simulated data since as far

as real data is concerned, no validation with respect to

the “true” invasion status of cells is possible, this “true”

status being unobserved. However, the method is vali-
dated on simulated problems with various parameters

sets, covering the range of likely parameters values for

the fire ant problem. An illustration of parameters esti-

mation and map reconstruction based on the available

fire ant data (Section 5.2) is also presented.

5.1 Evaluation of the heuristic sampling methods

In order to evaluate the relative performances of the

static and adaptive heuristic sampling methods we com-

pared the methods using simulated data generated by a
HMRF model whose parameters (α, β) were unknown

to the sampling algorithms (section 5.1.1). The sam-

pling method used to collect the fire ant data set is

adaptive cluster sampling (ACS) method (Thompson
and Seber, 1996, and Section 2), therefore, the static

and adaptive heuristic sampling methods were com-

pared with the ACS method. A comparison was also

made with the purely random sampling method. ACS

is a method originally developed for estimating global
characteristics of spatially distributed populations un-

der the hypothesis of perfect observation (θ = (0, 1)).

The random sampling method (Thompson and Seber,

1996) consists in selecting a fixed number of cells to
observe (in a non-adaptive way), with each cell having

the same probability of being selected.

The evaluations presented below include a param-
eters estimation step. It is performed using the Simu-

lated Field EM algorithm (SF-EM, Celeux et al., 2003),

an approximation of the EM algorithm for parameters

estimation in HMRF. In SF-EM, at each iteration, the
MRF distribution is replaced by one of independent

variables, built by setting the state of the neighborhood

of each cell to a simulated value. We observed good per-

formance of the SF-EM algorithm for the parameters

values corresponding to an established epidemic, that
is when the correlation coefficient β is high. On the

contrary, when β is low, a low incidence (α) with high

probability of detection (θ) is confused with a higher in-

cidence with low probability of detection. This parame-
ters identifiability problem can be easily intuitively un-

derstood: when variables are independent (β = 0) and

we have no idea on incidence and detectability (α and

θ), it is impossibleto distinguish, in the model expres-

sion, between a highly incident but difficult to detect

process and a low incidence, easily detected one. Of

course, estimation of α poses no problem when θ is not

estimated but fixed at its true value. In the fire ants
problem, expert estimations of the detection probabili-

ties with active and passive search are available, there-

fore, we assumed in the following experiments that θ

was known and did not have to be estimated.

5.1.1 Comparison procedure

In order to compare the four sampling methods, we

considered eight configurations for (α, β, θ), reported
in Table 1. This corresponds to four different choices

for (α, β), and for each of this choice, two values of θ

were considered. In Figure 5, a realization of the hid-

den Potts model for each of the four parameter choices

is presented. The experimental protocol was the fol-
lowing. For each set of parameters values we simulated

ten different hidden maps of 50 × 50 cells, according

to P (x). The grid was divided into four equal squares

and treatment efforts were applied to the top-left and
the bottom-right squares. For each map we started by

applying an arbitrary regular sampling action a0 com-

prising around 10% of the total number of cells (see

first image of Figure 7, top) and then simulated an ob-

servation set o0 according to the hidden map and θ.
This initial sample was used to compute an estimate

(α̃, β̃) of the MRF parameters, using the SF-EM algo-

rithm. The same estimate was used for the static and

adaptive heuristic methods (these estimates are also
used in the random sampling and the ACS procedure

but only in the map restoration step). Then, for each

of the ten initial samples (x, a0, o0) we ran the four

methods (heuristic static, heuristic adaptive, ACS and

random) five times. The number of cells that could be
sampled by the static heuristic method varied from 5%

to 90% of the total number of cells. For the adaptive

heuristic method, a maximum of 5% of the cells could

be sampled at each time step and there was a maxi-
mum of 18 sampling steps, implying that a maximum

of 90% of the cells could be sampled. Under the ACS

method, the number of cells sampled during each sam-

pling phase is not fixed in advance, nor is the total

number of cells sampled. The random approach sam-
pled from 5% to 90% of the total number of cells, as

in the heuristic static method. After the list of sampled

sites is established, the corresponding observations are

simulated. Based on all observations (o0 plus the ones
obtained after sampling), the MPM restoration of the

map is computed (equation (6) with P (x) updated as

described in Section 3 or Section 4.3.2). We compared,
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Config α β θ

1 (0,-2) 0.8 (0.5,0.8)
2 (0,-2) 0.8 (0,0.8)
3 (-2,-3) 0.2 (0.5,0.8)
4 (-2,-3) 0.2 (0,0.8)
5 (0,0) 0.5 (0.5,0.8)
6 (0,0) 0.5 (0,0.8)
7 (1,-1) 0.4 (0.5,0.8)
8 (1,-1) 0.4 (0,0.8)

Table 1 The eight configurations of (α, β, θ) tested.

(a) (b)

(a) (b)

Fig. 5 Realizations of a two-state Potts model with external field
on a 50×50 grid (obtained for 10000 iteration of the Gibbs Sam-
pling). α0 (resp. α1) is attached to the top-right and the bottom-
left squares (resp. to the top-left and the bottom-right squares)
of the grid.(a) α = (0,−2), β = 0.8, (b) α = (−2,−3), β = 0.2,
(c) α = (0, 0), β = 0.5, (d) α = (1,−1), β = 0.4.

for each method, the average proportion of (i) misclas-

sified empty cells (cells where there are no nests, incor-

rectly classified as occupied) (ii) misclassified occupied
cells (invaded cells incorrectly classified as empty) (iii)

misclassified cells (cells which are incorrectly classified

as either invaded or empty).

5.1.2 Comparison of the methods performances

The parameters (α, β, θ), as well as the budget allo-

cated to sampling influence the performances of the four

methods. For configurations 3 and 4, none of the meth-
ods are efficient in reconstructing the map since the

proportion of occupied cells is very low. For the other

configurations, several general qualitative conclusions

can be made. We discuss them and present numerical
results for configurations 2, 6 and 8 (Figure 6). The

changes observed when θ0 increases from 0 to 0.5 are

discussed at the end of this section.

First, the ACS method is clearly dominated

by the three other sampling methods in terms of

quality of the restored invasion map. The ACS method

is not designed to reconstruct maps of spatial processes,

but rather to estimate global statistics of these pro-
cesses, such as average densities of occupation. Thus

this poor performance is not surprising. The random

approach is dominated by the two model-based

heuristic approaches. When sampling resources (per-
centage of cells sampled) increase, results of random

sampling become closer to those of heuristic static sam-

pling because in both cases almost all cells are sampled.

Another general conclusion is that the heuristic

adaptive sampling method has superior perfor-

mance than the static method, with the differ-

ence being small in two specific situations: low

sampling ressource and low spatial structure.

First, when the sampling budget is low, the adaptive

method selected cells to explore based on similar in-
formation to that which was available under the static

approach, and, therefore, explored similar or identical

cells. If the sampling budget is large enough, the adap-

tive sampling approach can exploit the first observa-
tions that were made, while the static approach cannot.

Therefore, under the adaptive approach, exploration is

more informed, leading to a strategy for space explo-

ration different to that of the static method. This is

demonstrated in Figure 7 representing the locations
of sampled sites and the corresponding observations

respectively for the heuristic static method and the

heuristic adaptive method, for configuration 8 (α =

(1,−1), β = 0.4, θ = (0, 0.8)). In the heuristic static ap-
proach, whatever the percentage of area sampled, the

only information used is that illustrated on the top left

image (initial arbitrary regular sample), while in the

heuristic adaptive method, for a given percentage of

sampled area, information on each intermediate image
was also used. Under an adaptive strategy, it can be

more informative to revisit a site that was previously

sampled, if uncertainty remains high on this site, than

to systematically explore new cells. The resulting es-
timated marginal probabilities of presence for a sam-

pling size of 90% of the whole area are displayed on

Figure 8. In that case, despite the large sample size, un-

certainty remains substantially higher with static than

with adaptive sampling. The latter strategy eventually
leads to an improved restoration of the hidden pro-

cess. This example also illustrates that for both heuris-

tic methods, sampling is preferably performed near de-

tected occupied sites in low density areas (the top left
and bottom right squares of the area under study are

explored first in configuration 8): in these areas, a sam-

pled cell with oi = 0 has only few neighbor cells with
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oj = 1: enough to maintain uncertainty (was presence

missed or is it a true absence?) but not enough to in-

fluence belief strongly towards xi = 1.

We also observed (Figure 6) that the difference in

performance between the heuristic static and the heuris-

tic adaptive method increases with the hidden map
structure. Both methods lead to similar results in con-

figuration 6 (α = (0, 0), β = 0.5, θ = (0, 0.8)), but if

the value of the spatial parameter β is increased then

the adaptive method outperforms the static one (results
not shown). Because treatment actions are applied to

create a chessboard pattern if the difference of weights

(α1−α0) increases, this creates large scale structure in

the map. In that case we observed better results for the

adaptive method.

Finally, when θ0 = 0.5, the number of invaded cells
found after the initial arbitrary sample will be higher

than when θ0 = 0, because it includes cells in passively

sampled areas. The consequence of that, as expected,

is that the classification errors will be lower. However,

the conclusions on relative performances of the

four methods are not significantly altered by the

choice of θ0.
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Fig. 8 Estimations of the marginals probabilities of presence for
a sample size of 90% of the whole area (blackness increases with
the probability of presence). Left, heuristic static sampling; right,
heuristic adaptive sampling.

5.2 Fire ant case study

We applied the methods for parameters estimation (SF-

EM) and map reconstruction (MPM) based on the sam-

pling actions actually applied and the resulting obser-

vations. We selected a sub-grid of the entire study re-

gion to ensure there was sufficient information in the
sample. The region was selected on the basis of its low

proportion of rural areas (where detection by passive

search is estimated to be close to zero). Only some years

in the data set where conisdered, those with high per-
centage of detections (otherwise it would be unrealistic

to obtain a reliable estimation of the model). The se-

lected grid was composed of 100 × 100 = 10000 cells.

2001 2002 2003

A = 1 0 656 3593
% 0 6.4307 35.2220

O = 1 340 189 109
% 3.3330 1.8528 1.0685

E = 1 7548 9473 10142
% 73.9927 92.8634 99.4216

Table 2 Number and percentage of cells with active search, ob-
served nests and eradication for year 2001 to 2003 on the sub-grid
selected for analysis.

2001 2002 2003

α0 0.0006 0.3907 -0.7548
α1 -1 0.1867 0.1299
β 1.1619 1.3810 1.2641

2002 2003

e = 0 1.9224 0.8242

e = 1 1.8283 1.0873

Table 3 Top: estimation of the HMRF parameters of the fire
ants model. Bottom: percentage of observed nest in areas with
and without treatment (right) on the sub-grid selected for anal-
ysis

The statistics are summarized in Table 2 and the treat-
ment actions, search actions and observed nests are il-

lustrated in Figure 9. From Table 2 we can see that the

number of actively searched cells increases with time

and that the percentage of cells with observed nests is

initially significant but declines with time. We recall
that the eradication vector used in the HMRF model

of year t is et−1.

Three HMRF models have been estimated, using

treatment, sampling and observation data for years 2001

to 2003. The SF-EM algorithm was initialized with the

following values : α = (0,−1) and β = 0.5. Param-

eter θ was not estimated, but fixed to the following
“plausible” values : θ = (0.5, 0.8) in urban areas and

θ = (0.01, 0.8) in rural areas. The value of θ0 was not

set to zero in rural areas, in order to account for the

passive observations of nests which actually occurred,
even though rare. The parameters estimation for the 3

years considered are reported in Table 3. In 2001, α1

cannot be estimated (and is arbitrary fixed to -1) be-

cause no treatment was applied in 2000. In 2002 and

2003, the orderings of α0 (without eradication) and α1

(with eradication) are consistent with the orderings of

the proportions of occupied cells in areas with and with-

out treatment (see Table 3, bottom). The two estima-

tions of α0 in 2002 and in 2003 are also in agreement
with the proportions of cells with observed nests in the

area without treatment, namely 20% and 8 % in 2002

and 2003,. This proportion was equal to 33% in 2001.
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Fig. 6 Errors rates for the different sampling strategies and for different model parameters. Left: proportion of misclassified empty
cells in the map restoration for the four sampling methods tested, middle: proportion of misclassified occupied cells, right: proportion
of misclassified cells. From top to bottom rows, configurations 2, 6, and 8. Average number of infected cells are respectively 459.3,
1243 and 1249.6.

Figure 10 shows a restoration of the 2002 invasion

map, as well as the estimated marginals probabilities

of occupation based on the sole data a, o and e and of

estimated parameters values (α0, α1, β) (listed in Table
3). The restored map is a smoothed version of the ob-

servation map o, with clusters of occupied cells of larger

size: After the restoration, 369 cells are considered likely

to be invaded (marginal occupation probability greater
than 0.5) while nests were only observed in 189 cells.

6 Concluding remarks and discussion

In this article, we have presented an original method

for designing approximate sampling strategies for esti-

mating occurrence maps of spatial processes. The main

innovation of our approach is that it is a model-based
approach which embeds the objective of map recon-

struction in the sample selection criterion. We formu-

lated the problem within the HMRF framework (Ge-

man and Geman, 1984; Guyon, 1995; Li, 1995), the

classical framework used in image analysis problems.

More precisely, we formulated the problem of select-

ing sampling strategies as a combinatorial optimization
problem in which the expectation of the value of the

possible resulting MRF is to be maximized. We formu-

lated static and adaptive versions of that approach. In

practice both are too complex to be applied directly to
problems of realistic size and, therefore, we proposed

approximate variants of those methods. We simplified

the methods in two ways: (i) approximating the com-

putation of marginal probabilities by using the belief-

propagation algorithm (Pearl, 1988) and (ii) replacing
the exact optimization problems (static and adaptive)

with the computation of simpler criteria based on those

approximate marginal probabilities.

Theoretical validation (for example, distance to the

value of the true optimal sample) of the heuristic static

and adaptive approaches remains difficult. Here, we pre-
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Fig. 7 Cumulative sampling locations and realization of corresponding observations for the heuristic static (top) and adaptive (bottom)
methods. Observations were simulated for θ = (0, 0.8). The first top-left images corresponds to the initial regular sampling, then from

left to right and top to bottom images correspond to a sample size increasing from 5% to 90 % of the whole area.
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Fig. 9 Top line: eradication for years 2000 and 2001 (no erad-
ication in 2000). Middle line: search actions for years 2001 and
2002. Bottom line: observations for years 2001 and 2002. Zoom
on the sub-grid selected for analysis. The value nz indicates the
number of non zero cells in the image. .

sented an empirical validation approach based on sim-
ulated data. Our study demonstrated the superiority

of the model-based approach over two standard sam-

pling methods (random sampling and adaptive cluster

sampling (Thompson and Seber, 1996)). The utility of

developing adaptive strategies is clear in circumstances
where spatial structure is important, as in our fire ant

case study, provided that sufficient sampling resources

are available (at least 10% of the total area). In our

study we took constraints on resources into account
only through a limit on the sample size. Constraints

can be more complex: the cost of a sample could be

related to the time spent on exploration. In adaptive

sampling fixed sampling costs could be incurred when-

ever a new sampling phase starts, etc. Our assumption
was that sampling costs are negligible compared with

the cost of mapping errors. Introducing such costs in

the optimization problem and evaluating the impact

on the sampling designs remain open questions which
are of crucial interests in environmental management

problems. One question is of course how to scale costs

and map quality?
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Fig. 10 Observed nests in 2002 (top), marginals (bottom left)
and restored invasion map ( bottom right)

This work is one of the first attempts to combine
HMRF modeling and tools for sequential decision mak-

ing under uncertainty in order to solve optimal sam-

pling problems for occurrence map reconstruction. Our

proposed method led to substantial improvement com-

pared to classical design-based sampling methods, even
with the simple approximation we used in this paper.

These results confirm our approach is promising, par-

ticularly given that several improvements could be con-

sidered that would be expected to strengthen the ap-
proach.

The two heuristic approaches we have presented can
be improved in two different ways. Optimization can be

improved. The spatial sampling problems we tackled

are too complex to solve exactly. The approximation

we proposed is the simplest and, a priori, least efficient,

in the family of approximate algorithms that could be
applied to sampling problems involving stochasticity

(Spall, 2003). A natural direction to derive more effi-

cient algorithms is the exploration of simulation-based

optimization methods. We are currently studying solu-
tions using Reinforcement-Learning algorithms (Sutton

and Barto, 1998), which have been successful in the res-

olution of optimal sequential planning problems.

Parameters estimation can also be improved, in two

different ways. In the adaptive version, data obtained

during the sampling process can be used to improve the

current estimation of the HMRF model. Thus, alterna-
tion of sampling and estimation phases would improve

the method. In our case study, fire ant data are avail-

able for successive years of treatment, sample actions

and nests observations. This information could also be
taken into account to improve parameters estimation,

provided that knowledge about the temporal dynamics

of the ants propagation is available.
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Appendix

We demonstrate here that the approximate solution al-

gorithm for static spatial sampling presented in Sec-

tion 4.2.2 provides the exact solution when the HMRF

model satisfies assumptions A1 and A2.
Let us recall the definition of V MPM :

V MPM (Pe,a0,a(X |λ, o0, o)) =
n
∑

i=1

maxxi
Pe,a0,a(Xi = xi | λ, o0, o).

If we assume that current observations o, obtained after
sampling actions a are reliable and that there is no pas-

sive observation (A1), and denoting xa = {oi, s.t. ai =

1}, we have
∑

o

Pe,a0,a(o | o0, λ)V MPM (Pe,a0,a(X | o0, o, λ))

=
∑

xa

Pe,a0,a(xa|o
0, λ)

n
∑

i=1

max
xi

Pe,a0,a(Xi = xi | o
0, xa, λ)

=

n
∑

i=1

∑

xa

Pea0,a(xa|o
0, λ)max

xi

Pe,a0,a(Xi = xi | o
0, xa, λ).

If ai = 1, then maxxi
Pe,a0,a(Xi = xi | o

0, xa, λ) = 1
(cell i has been observed and observation was reliable).

If ai = 0, from A2 xi is independent of xa conditionally

to o0 so that Pe,a0,a(Xi = xi | o
0, xa, λ) = Pe,a0,a(Xi =

xi | o
0, λ). Finally, under A1 and A2:

∑

o

Pe,a0,a(o|o0, λ)V MPM (Pe,a0,a(X |λ, o0, o)) ∼
n
∑

i=1

vi(ai),

where

If ai = 0, vi(ai) = max
xi

Pe,a0(Xi = xi|o
0, λ).

If ai = 1, vi(ai) = 1.

The corresponding approximation ã(e, λ, a0, o0) of
a∗(e, λ, a0, o0) satisfies

∀i, ãi = 1 if − ci(1) + 1 > max (vi(0), 1− vi(0)) (10)

which is equivalent to

ci(1) < 1−max (vi(0), 1− vi(0)) = min (vi(0), 1− vi(0)) .

Computing ã(e, λ, a0, o0) defined in (10) consists in

practice in ranking the cells i in decreasing order of

{ν(i) = min (vi(0), 1− vi(0)) − ci(1)}. Then, all the

cells with positive value ν(i) are sampled if sampling

resources are sufficient. Fewer cells are sampled if sam-

pling resources are not sufficient, the cells with higher

heuristic values being sampled in priority, since the

heuristic function models their contribution to map un-
certainty reduction.
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