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Abstract In many environmental management prob-
lems, the construction of occurrence maps of species of
interest is a prerequisite to their effective management.
However, the construction of occurrence maps is a chal-
lenging problem because observations are often costly
to obtain (thus incomplete) and noisy (thus imperfect).
It is therefore critical to develop tools for designing effi-
cient spatial sampling strategies and for addressing data
uncertainty. Adaptive sampling strategies are known to
be more efficient than non-adaptive strategies. Here,
we develop a model-based adaptive spatial sampling
method for the construction of occurrence maps. We
apply the method to estimate the occurrence of one
of the world’s worst invasive species, the red imported
fire ant, in and around the city of Brisbane, Australia.
Our contribution is threefold: i) a model of uncertainty
about invasion maps using the classical image analy-
sis probabilistic framework of Hidden Markov Random
Fields (HMRF), ii) an original exact method for op-
timal spatial sampling with HMRF and approximate
solution algorithms for this problem, both in the static
and adaptive sampling cases, i) an empirical evalua-
tion of these methods on simulated problems inspired
by the fire ants case study. Our analysis demonstrates
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that the adaptive strategy can lead to substantial im-
provement in occurrence mapping.
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1 Introduction

In many environmental management problems, estima-
tion of occurrence maps of species of interest, includ-
ing endangered and invasive species, is a prerequisite
to their effective management (Elith and Leathwick,
2009). Map estimation is a complex problem because
observations are imperfect (detectability of individuals
is usually imperfect) and incomplete (it may be infea-
sible to survey the entire area that might contain indi-
viduals). There is often a prohibitive cost of conducting
surveillance with perfect sensitivity in all locations that
might contain individuals. Therefore, there is a need
for methodological tools for designing efficient sampling
strategies and for using the resulting imperfect and in-
complete observations to estimate occurrence maps.

In adaptive spatial sampling, a set of locations to
sample is built sequentially, taking the results of previ-
ous sampling steps into account. Such a strategy, which
takes into account intermediate observations to moni-
tor sampling, is more efficient than non adaptive meth-
ods (Thompson and Seber, 1996). In addition, to deal
with the uncertainty of the observation, a model-based
approach (Gruijter et al., 2006) for sampling should
be preferred. Geostatistical models and tools (Chiles
and Delfiner, 1999), such as kriging, have been applied
to model and solve problems of sampling design for
map reconstruction (Buesco et al., 1998; Fuentes et al.,



2007). However those methods are adapted to continu-
ous data such as pollution levels or temperatures. The
application of these tools is not straightforward if the
variable to sample and to map is of presence/absence
type (0/1 variable), and when observations are noisy
(see Bonneau et al., 2010 for a proposition of modeling
in the geostatistical framework). In the problem we con-
sider, we are interested in occurrence maps and the only
data available are located on a regular grid of spatial
sampling units. Therefore, rather than applying com-
monly used geostatistical models and tools, we propose
to adopt a classical image analysis probabilistic frame-
work: Hidden Markov Random Fields (HMRF, Geman
and Geman, 1984). In addition to being suited to oc-
currence data on a regular grid of sampling units, an-
other advantage of the HMRF approach is that it can
represent dependencies which are not linked to space
(for example social networks, transportation networks)
while in geostatistics, correlations are strongly linked
to the notion of spatial distances.

Image reconstruction from imperfect data is a clas-
sical problem tackled by HMRF (Li, 1995; Winkler,
1995) even with missing data (Blanchet and Vignes,
2009). Estimation of HMRF parameters has also been
widely studied and efficient algorithms are available
(Chalmond, 1989; Comer and Delp, 2000; Celeux et al.,
2003). This model has been recently used in the context
of static sampling and spatial decision making when
taking into account the value of information (Bhat-
tacharjya et al., 2010). In this article, we propose to use
the HMRF framework not only for map construction
from an incomplete observation set but also to build
efficient adaptive sampling strategies for the purpose of
mapping. We present an original model-based adaptive
spatial sampling method and we illustrate its perfor-
mance on a case study focusing on an invasive species
management problem. The campaign to eradicate the
Red Imported Fire Ant from around Brisbane, Aus-
tralia, which we considered, involves one of the world’s
100 worst invasive species (Lowe et al., 2000). For com-
parison purposes, we consider both adaptive and static
variants of the optimization problem. We use the Maxi-
mum Posterior Marginal criterion to measure map qual-
ity and sample values. Under this approach, solving the
optimization problems (both static and adaptive) re-
quires the evaluation of conditional marginal probabili-
ties for each possible output of each sampling strategy.
Those problems are intractable in most realistic circum-
stances, including those considered here, and, therefore,
we propose an approximation of the optimal strategy in
both the static and dynamic cases.

The paper is organized as follows. In Section 2, we
provide background information on the fire ant sam-

pling problem which motivated the methodological work
presented in this article. In Section 3, we describe the
HMRF model that we propose for modeling uncertainty
about fire ant occurrence maps. The exact formulation
of the optimization problems (static and adaptive) and
their approximate resolution are derived in Section 4.
In Section 5, we analyze the performance of the adap-
tive sampling method and we compare it to the static
method and two classical sampling methods, using sim-
ulated data inspired by the fire ant problem. We also
illustrate map reconstruction on the fire ants mapping
problem. Possible extensions of our work are identified
in the concluding section (Section 6).

2 Fire ants detection problem and data

The red imported fire ant (Solenopsis invicta) was first
discovered in Australia near Brisbane in February 2001
and the National Fire Ant Eradication Program for-
mally commenced in September 2001. Two forms of
treatment are applied. Injection of poison directly into
fire ant nests is the method applied when nests are de-
tected with targeted surveillance by trained personnel.
The effectiveness of this method depends on the pro-
portion of nests that are detected during surveillance
operations. The second method used is to apply a corn-
based bait several times across general areas of infesta-
tion, with the bait then taken into the nest by foraging
individuals. Targeted surveillance activity is conducted
primarily in areas near nests detected by private cit-
izens near their residences, business places and pub-
lic spaces. To distinguish between targeted surveillance
and citizen monitoring we refer to those surveillance
methods as active and passive surveillance, respectively.
Active surveillance is discretionary surveillance, that is,
surveillance whose placement is determined by the erad-
ication program manager, the Biosecurity Queensland
Control Center (BQCC). In contrast, there is no dis-
cretion regarding the placement of citizen monitoring
because that form of monitoring occurs primarily in ur-
ban areas whose locations are fixed. Since no decision
is made on the placement of citizen monitoring, it can
be described as a form of passive surveillance.

The method used by BQCC to estimate the current
spatial distribution of fire ants in Brisbane is a vari-
ant of the Adaptive Cluster Sampling (ACS) method
(Thompson and Seber, 1996). Nests detected by passive
surveillance are used as an initial sample. Then, loca-
tions neighboring infected locations in the initial sam-
ple are explored. New infected locations are added to
the sampling set. They neighboring locations are sam-
pled and so on until no more nests are found. This is
classical ACS. Here, information on the locations where



surveillance activity occurred (both passive and active)
and information on locations where treatment occurred
have also been used to increase the sampling set at each
step.

The study region is a 73.7km x 96.2km rectangle,
including the city of Brisbane and surrounding rural
areas around the city. It is represented by a grid of
cells of size 100m x 100m, thus the complete zone com-
prises n = 737 x 962 cells. Detection and treatment
efforts occurred each year since 2001. The cells which
are actively searched during year t are listed in a search
action vector, a’: al = 1 if cell number i was actively
searched during year ¢, and a! = 0 otherwise. A list of
detected nests is also maintained for each year t. These
observations are represented in an observation vector
o', where of = 1 if ants nests were found in cell 4 dur-
ing year ¢, and o} = 0 otherwise. If o} = 1, it may be
that nests where actively searched for (af = 1), but it is
possible as well that they were discovered accidentally
(a! = 0, passive search). If o} = 0, either there were
no nests in cell ¢ or they were not detected. Informa-
tion about treatment actions is also maintained in the
form of treatment vectors e, where e! = 1 if cell i is
eradicated at the end of year ¢, and e} = 0 otherwise.
A given year, treatment occurs after observation. It is
possible to observe OE-H = 1 even when ¢! = 1, either
because the eradication treatment failed or because cell
1 was colonized again by invasion from the neighboring
cells. Figure 1 shows the treatment, search and obser-
vation informations for the whole area under study for
the first two years of the campain.

3 A HMRF model of the invasion map

In this section we present our model of uncertainty on
invasion map knowledge. This model is based on the
HMRF framework (Geman and Geman, 1984), which
allows to represent the conditional probability distri-
butions of a map, given observations (obtained by sam-
pling). Here and in the following, upper-case letters rep-
resent random variables and lower-case letters represent
realizations of the same random variables.

In the fire ant problem, a graph G = (V, E) is asso-
ciated to the n cells of the regular grid dividing the area
under study. The set of sites is V = {1,...,n} and the
set E of edges is defined by the neighborhood system.
A first order neighborhood is chosen: for any cell 4, the
neighborhood N(7) is composed of the four closest cells
to cell ¢ (except on the edge of the grid). Other neigh-
borhood systems could be considered: 8-closest cells, or
non regular neighborhood systems in the case where an
irregular network of locations is considered. A random
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Fig. 1 Top line: eradication for years 2000 and 2001 (no eradica-
tion in 2000). Middle line: search actions for years 2001 and 2002.
Bottom line: observations for years 2001 and 2002 The value nz
indicates the number of non zero cells in the image.

variable X; is associated to cell 7 and can take two val-
ues: 0 if there are no ants nests in the corresponding cell,
1 if there is at least one. The set X = {X;,i € 1,...,n}
is referred to as the set of hidden variables. The ob-
jective is to recover their values from observations. If
e is the vector representing the treatment actions ap-
plied the year before on all cells, then P.(X = z) will
be modeled as a 2-state Potts model with external field
(Wu, 1982), defined by:

Vo € {0,1}", P.(X = x|, B) = (1)
1
Z“P(Zaei%‘f' > ﬁGQ(wi,CEj))7
eV (1,7)€E

where eq(z;, z;) is the Kronecker function, equal to 1 if
x; = x; and 0 otherwise. For a given treatment vector
e, values ae, € a = {ag, @1} model different “strength



levels” of invasion, depending on whether treatment
was performed or not on the cell. The parameter (3,
when positive, leads to higher probability for maps x
where neighboring cells are in the same state, as ex-
pected when there is spatial aggregation of nests. Z is
a normalizing constant, ensuring that P, sums to one.
If the state of neighbor cells is known, the probability of
a cell infection is independent of the state of the other
cells (conditional independences are represented on Fig-
ure 2). If xn¢;y = {x;,7 € N (i)}, then the conditional
distribution is defined by:

eXP (e, +5Ni1
Pe(XizllxN(i)aaaﬁ): ( )

N} counts the number of neighbors of cell i in state 1,
while N? counts those in state 0. They can be computed
as N} =35,y ¢y and NP = card(N (i) — N}

A second variable, O; is attached to a cell 4. It can
take values in {0,1} and represents the result of the
sampling: an ant nest has been found (1) or not (0) in
cell 4. A classical assumption in HMRF is that the con-
ditional distribution of observations given hidden vari-
ables admits the following decomposition (again, see
Figure 2):

Po|xz) =[] Ploi| ). (2)
i€V

In the fire ant problem, these probabilities depend

on whether active or passive search occurred on the cell.

This information is represented by the search action

vector a = {a;,i € V'} (see Section 2). Let 0 = {6y, 01}

denote the respective probabilities that a nest present

in an arbitrary cell ¢ be discovered, either passively or
actively, then:

P (0;=1|X;=1,0) =0,,,

P, (0;=1]X,;=0,0) =0 and (3)
P,(O = o|z,0) = H P,,(0; =0; | z;,0).
eV

Probability 6; of discovering a nest after a search action
was applied is naturally assumed to be larger than 6,
the probability if no active search was performed. Ex-
pression (3) of the conditional distribution P,(O = o|z)
relies on several assumptions. First, observation proba-
bilities (A, 61) are independent of the precise cell which
is searched. Then, we assume that observation proba-
bilities do not depend on whether ants were eradicated
in the preceding year. Finally, observation conditional
probabilities are purely local and do not depend on
whether ants nests are present in neighbor cells. The
two first assumptions could be relaxed by increasing
the number of parameters. Modifying the third one
would imply changes in the structure of the HMRF and

exp (BNY) + exp (o, + BN})’
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D

Fig. 2 Hidden Markov random field for the fire ants invasion
map, with hidden variables (top) and observed variables (bot-
tom). Hidden variables can take values 0 (absence, white sites)
or 1 (presence, black sites). Observations can take values 0 (no
nest detected, white sites) or 1 (nests detected, black sites). If
the state of a hidden variable is 0, the corresponding observation
is 0.

the sampling methods described in section 4 would no
longer be applicable.

Let us now express the joint distribution of X con-
ditionally to o, a and e. In the fire ant model P, (O; =
1]1X; = 0,0) = 0 because we assume that there are no
false positive observations. Consequently, if A = {«, 3, 6},
P, (x|, 0) = 0 as soon as there exists ¢ such that o; = 1
and x; = 0. Therefore we can write:

Pea(zX0) o [ ] i | Pe(ale, B)Pa(olz,0).  (4)

i,Oizl

Exploiting (1), (2) and (4), we get

H T; X exp <Z O, T+

1,0,=1 %

1
Pealelo-N) = 75y

Ié] Z eq(xi, ;) + Z log(1 —64,)z; | - (5)
(4,§)€E 4,0;=0

where Z’()\) is a normalizing constant, function of the
model’s parameter \. Equation (5) defines how the ini-
tial knowledge P.(z|\) about the invasion map is up-
dated when observation actions are applied and result-
ing observations are taken into account. In this section
and in the following ones we omit reference to time, for
sake of simplicity. In the above conditional distribution,
if x is the hidden map at time ¢, then e, o and a stand

respectively for et~ !, of, and a’.

4 Spatial sampling policies

We now define the problem of designing a spatial sam-
pling policy (strategy) for fire ants map construction as
a problem of optimization under uncertainty. To do so,
we first need to define the value of the uncertain knowl-
edge about the actual invasion map, P = P, ,(x|o, ),
as well as an estimator of the invasion map associated
to this value (Section 4.1). The optimization problem



can be modeled as non-sequential (static, Section 4.2)
or sequential (adaptive, Section 4.3), depending on the
conditions of the search process.

A sampling policy is static if the cells chosen for
search are chosen once and for all at the beginning of
the year, and active search is limited to them. In the
adaptive spatial sampling problem, only a few cells are
chosen for active search at the beginning of the year.
Then, given the results of the active search in those
cells (presence or absence of ants nests), new cells are
chosen for active search. This process is repeated until
a specified stopping criterion is met (for example the
total budget, expressed in terms of number of cells that
can be searched, is exhausted). Note that in adaptive
spatial sampling problems, cells can be searched more
than once, unlike in the static case. In both cases, we
assume that a first arbitrary sample (a’,0°) is avail-
able (for example, a few regularly spaced cells will be
sampled before the sampling policy is computed).

4.1 Information value of a map distribution

In spatial sampling problems, it is important to de-
fine the “information value” of a probability distribu-
tion over maps, describing current knowledge. Sampling
strategies will aim at maximizing a criterion based on
this information value.

Let us assume that z* is an unknown map, and
that the only available knowledge about z* is modeled
by distribution P. The Maximum Posterior Marginal
(MPM) estimator (Besag, 1986) of z* is the configura-
MPM yerifying:

eMPM — {xMPM,xﬁpr = argmax P;(X; = xz)} (6)
T

tion

K2

The information value of P is defined as VMPM (P), the
sum of the marginal probabilities of the most probable
state for all sites:

vMEM(p) =" max P;(X; = ;). (7)
2%
This value is equal to the expected number of correctly
“classified” sites. It is a direct measure of the informa-
tion value of P. Other information value criteria could
be considered, such as the mode of distribution P (Max-
imum a Posteriori criterion, MAP, Guyon, 1995; Li,
1995), or its entropy. The former is a valid alternative
and the corresponding optimal sampling problem has
been studied from a computational complexity perspec-
tive (Peyrard et al., 2010). Using MPM does not lead
to a simpler computational problem. However, MPM
should be more discriminant than MAP since the mode
of a joint distribution with large state space may not be
very peaked. We did not consider the entropy criterion

since it does not directly lead to an estimator of the
hidden map.

4.2 Static spatial sampling

In the static spatial sampling problem, a typical sam-
pling sequence can be decomposed into the following
steps:

1. An initial arbitrary sample (a°,0°) is performed,
which will be used both as prior information and
for estimating the HMRF parameters A = {3, «, 6}.

2. A search action vector a representing the set of
cells which will be explored is chosen on the ba-
sis of P, 40(z[0% A\). The size of a is constrained:
{i € V,a; = 1}| < Apaz, with A4, the maximum
affordable sample size.

3. A set of observations is produced. It can be com-
pleted by passive observations, leading to the obser-
vation vector o.

4. The a priori knowledge is updated, using equation
(5), providing a new distribution P, 40 ,(z[0°,0, )
representing knowledge about fire ants nest presence
after sampling.

5. Finally, the MPM value VMPM (P, .0 ,(.[0°, 0,))) of
the new MRF is computed and the corresponding
MPM map zMPM is returned.

4.2.1 Ezact optimization problem

The optimal sampling strategy will be defined as fol-
lows. First, since the results of search actions are not de-
terministic, a set a of searched cells may result in many
different observations o. This implies that the output
observations (active and passive) o are only determined
through their probability distribution P, 40 ,(0/0%, X).
The value of a sampling action a can therefore be de-
fined as the expected value U of the updated MRF of
step 5, according to that probability distribution:

Ue,u,o,o0 (a‘) =
Z Pe,ao,a(o | 007 )‘)VMPM(Pe,a“,a('|007 o, )‘)) (8)

The probability P, 40 (0 | 0%, \) is obtained as:

Pe,a“,a(o | OO) = ZPG(O|‘Ta9)Pe,aU(:C|Oov>‘)'

Finally, solving the static spatial sampling problem amounts
to finding the sampling vector a* which maximizes U, 40 ,0(a)

under counstraints |{i € V,a; = 1}| < Apaz-



4.2.2 Approxzimate static spatial sampling

Computing the static sampling action a* is infeasible in
practice for large problems. When replacing MPM with
the MAP criterion, which does not make the problem
more complex, it has been shown that the latter prob-
lem is NP-hard (Peyrard et al., 2010), meaning that it is
highly unlikely that an efficient solution algorithm for it
can be designed (Cook, 1971). Computing a* requires a
maximization over the set of possible search action vec-
tors of an expression involving summation over the set
of possible observations. Both of these state spaces are
of size exponential in the number of sites. In addition, it
involves computations of VMFM (P, .o ,(||A, 0% 0)) for
all pairs (a,0), an operation of exponential complex-
ity as well. Given the size of the problems we wish to
address (tens of thousands of cells), we must turn to
approximation methods for computing the set of cells
that will be explored given the a priori knowledge about
invasion.

The approximation method we suggest relies on the
following simplifying assumptions:

A1 Current observations are reliable (the state of searched

cells is perfectly known after the search) and there
are no passive observations, i.e. 5 = 0 and §; =1
(this assumption is made only for the current sam-
pling action to choose, a, and not for the initial ob-
servation step (a°,0°)).

A2 The states of cells are independent given initial sam-
pling results. This leads to the following approxima-
tion:

Pe,ao (SC|OO, A) ~ H Pe,a“ (Xz = :Ci|005 A)

=1

where P, ,0(X; = ;|\, 0°) is the marginal distri-
bution of the resulting MRF on cell 4, given initial
observation result (a®,0°).

With these two assumptions, it can be shown that
optimizing a spatial sample amounts to choosing the
cells whose marginal occupation probabilities P, 40 (X; =
zilo%, \) are the closest to 0.5, that is, the cells whose
occupation status is most uncertain (a proof is given in
the Appendix). Computing exactly a marginal occupa-
tion probability is costly since it involves the marginal-
ization of the joint distribution (5) over all variables ex-
cept x;. This cannot be performed in reasonable time.
Therefore, we use a belief propagation algorithm (Pearl,
1988; Yedidia et al., 2000) in order to approximate those
marginal probabilities. This algorithm requires only a
time polynomial in the number of cells to compute the
approximate marginals.

Fig. 3 Part of an adaptive sampling strategy. Levels of gray
represent estimates of marginal occupation probabilities. Black
dots represent the current cell chosen for exploration.

4.3 Adaptive spatial sampling

In the adaptive spatial sampling problem, we assume
that the A,,q. cells we explore can be decomposed into
successive small groups, the next one being chosen tak-
ing into account observations of previously sampled cells.
For illustration purpose, we describe exact adaptive
sampling in the case where one cell is chosen (and ex-
plored) at each step. Thus the number of steps is exactly
Apaz. For this particular case, one step of adaptive
sampling is represented on Figure 3. One cell is chosen
for exploration (black dot in the top figure) and then,
depending on whether ants are detected (Yes branch)
or not (No branch), the MRF is updated in a different
way. Therefore, the next cell to explore according to the
strategy can be different (black dots in bottom maps).
In the following, since the action vector a contains only
one cell in state one, it will be identified to the indice of
that cell (a € V). Similiary, o is identified to the value
(0 or 1) observed on that celle.

4.8.1 Adaptive sampling strategy

As Figure 3 suggests, an adaptive sampling strategy
may well lead to many different sets of cells being sam-
pled, depending on the observations obtained. Thus the
sampling strategy can no more be represented as a sub-
set a of V of size Ajqz. It is now a tree, d, which ver-
tices are cells chosen for sampling and edges represent
observations (0/1 or Yes/No outputs when a single cell
is sampled). A part of such a tree is represented in Fig-
ure 4. Let a*,1 < k < A,,qz denote the cell which is
explored during the k" sampling phase: a” is chosen as
a function of past samples results (o!,...,0""1). From
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Fig. 4 Part of an adaptive sampling strategy tree.

§ we can define d, a function specifying the k*" cell to
sample, as a function of the kK — 1 observations which
were obtained from past sampling steps. For example,
on Figure 4, a® = d3(0', 0?).

4.8.2 Optimal sampling strategy computation

As in the static case, an initial arbitrary sample (a°, o%)
is used as prior information. The value of an adaptive
sampling policy is defined by extension of the value of
a static sampling policy (equation (8)), taking into ac-
count the fact that § is a tree:

Ulmes )= S Pogos(ot..omes [ 0,))
(01...0Amam)€7-5
XVMPM(Pe,aO,(S('p\,OO,Ol,. ..70’4”““”))_ (9)

In (9), 75 denotes the set of possible observation se-

quences given ¢, i.e. the set of paths from the root to

a leaf of the policy tree. The knowledge of § enables to

recover the sequence of sampled cells: P, 5(o! ... o%mas |

)\, ao, OO) =def Pe@o,al,___7aAmagc (00, o'... OA"”‘I | )\), whit
a® = §;(o%,...,0" 1) the action defined by the sampling

policy at step ¢, given past observations. More precisely,

di(ot,...,0°71) can be read from the policy tree repre-

sentation of §, as the last node of the partial branch

defined by o',...,0" L.

Since multiple samplings at a same site are possi-
ble in adaptive sampling, P, 40 5(z|\, 0%, 01, ..., ofmas)
is obtained from a slight modification of equation (5),
taking into account repeated samplings of cells:

Pe,a075(:€|)\,00,01,...,OA’"”I)) x H Tgh X

heS:
exp Zaeiferﬂ Z eq(x;, ;)
i€V (i,7)eE
+ Z 10g(1 - Gah)xah> ,
heSo

where Sy = {h,0 < h < A4 and 0" = 0} and S; =
{h,0 < h < Apae and o = 1} are respectively the
sets of observation steps h where the sampled cell a”

was found unoccupied or occupied. In the set Sy (or
S1) a same cell indice can appear more than once if the
correspond cell is explored several times.

The problem of optimizing § with A, cells to sam-
ple can be solved recursively, noting that

Ui (87) = max {Z Pe o0 (010, )X
a
O1

UAmaa:71 ( * )
e,a%,00,al,0t \"|al,0o! )

where (5|*‘a1701 is the optimal policy computed from the
HMRF resulting from observations a’, 0°, a!, o' and with
sampling budget Aqz — 1.

Of course, the recursive algorithm explores a solu-
tion space of exponential size, which makes it unsuitable
to solve realistic problems. This is all the more true if we
can explore more than one cell in each sampling step.
In the following section, we propose an approximate
sampling algorithm which relies on the static sampling
approximate algorithm and directly applies to the case
where more than one cell is sampled at a time.

4.3.8 Approximate adaptive sampling

For our approximate adaptive algorithm, we propose to
use a greedy algorithm (as is usually done in heuristic
search problems), in conjunction with the approxima-
tion approach of the static sampling case. The set of
cells a® (now, a* represents a set of cells indices and
not a single index) which will be sampled during sam-
ple phase k will be computed on-line, by applying the
method of Section 4.2.2 and considering that the initial
sample is the sequence (a°, 0%, al, 0!, ... Jak1, ok’l) of
actions/observations obtained so far. More precisely the
procedure is:

1. An initial arbitrary sample (a°,0°%) is performed,
from which the model parameter ) is estimated.

2. Evaluate the marginal probabilities for the condi-
tional distribution P, 4o (z|\,0°).

3. Explore the cells whose marginal probabilities are
the closest to 0.5. This leads to (a', o).

4. Update the sampling informations:
(a%, 0%) « (a%, 0% a',o!).

5. Go to step 2 while the number of sampled cells is
less than A, qz.

When we consider only two successive sample phases,
this on-line procedure can be related to the two-phase
adaptive method for optimal spatial sampling proposed
by Chao and Thompson (2001) in the case of log-normal
perfectly observable variables and a mean square error
criterion.



5 Validation of the model-based sampling
methods

In this section, we present a validation of the heuristic
sampling approaches on simulated data. This validation
can only be performed on simulated data since as far
as real data is concerned, no validation with respect to
the “true” invasion status of cells is possible, this “true”
status being unobserved. However, the method is vali-
dated on simulated problems with various parameters
sets, covering the range of likely parameters values for
the fire ant problem. An illustration of parameters esti-
mation and map reconstruction based on the available
fire ant data (Section 5.2) is also presented.

5.1 Evaluation of the heuristic sampling methods

In order to evaluate the relative performances of the
static and adaptive heuristic sampling methods we com-
pared the methods using simulated data generated by a
HMRF model whose parameters («, 3) were unknown
to the sampling algorithms (section 5.1.1). The sam-
pling method used to collect the fire ant data set is
adaptive cluster sampling (ACS) method (Thompson
and Seber, 1996, and Section 2), therefore, the static
and adaptive heuristic sampling methods were com-
pared with the ACS method. A comparison was also
made with the purely random sampling method. ACS
is a method originally developed for estimating global
characteristics of spatially distributed populations un-
der the hypothesis of perfect observation (6 = (0,1)).
The random sampling method (Thompson and Seber,
1996) consists in selecting a fixed number of cells to
observe (in a non-adaptive way), with each cell having
the same probability of being selected.

The evaluations presented below include a param-
eters estimation step. It is performed using the Simu-
lated Field EM algorithm (SF-EM, Celeux et al., 2003),
an approximation of the EM algorithm for parameters
estimation in HMRF. In SF-EM, at each iteration, the
MRF distribution is replaced by one of independent
variables, built by setting the state of the neighborhood
of each cell to a simulated value. We observed good per-
formance of the SF-EM algorithm for the parameters
values corresponding to an established epidemic, that
is when the correlation coefficient ( is high. On the
contrary, when 3 is low, a low incidence («) with high
probability of detection (6) is confused with a higher in-
cidence with low probability of detection. This parame-
ters identifiability problem can be easily intuitively un-
derstood: when variables are independent (6 = 0) and
we have no idea on incidence and detectability (o and

), it is impossibleto distinguish, in the model expres-
sion, between a highly incident but difficult to detect
process and a low incidence, easily detected one. Of
course, estimation of a poses no problem when 6 is not
estimated but fixed at its true value. In the fire ants
problem, expert estimations of the detection probabili-
ties with active and passive search are available, there-
fore, we assumed in the following experiments that 6
was known and did not have to be estimated.

5.1.1 Comparison procedure

In order to compare the four sampling methods, we
considered eight configurations for («,,6), reported
in Table 1. This corresponds to four different choices
for («, 8), and for each of this choice, two values of
were considered. In Figure 5, a realization of the hid-
den Potts model for each of the four parameter choices
is presented. The experimental protocol was the fol-
lowing. For each set of parameters values we simulated
ten different hidden maps of 50 x 50 cells, according
to P(z). The grid was divided into four equal squares
and treatment efforts were applied to the top-left and
the bottom-right squares. For each map we started by
applying an arbitrary regular sampling action a®
prising around 10% of the total number of cells (see
first image of Figure 7, top) and then simulated an ob-
servation set o according to the hidden map and 6.
This initial sample was used to compute an estimate
(&, 3) of the MRF parameters, using the SF-EM algo-
rithm. The same estimate was used for the static and
adaptive heuristic methods (these estimates are also
used in the random sampling and the ACS procedure
but only in the map restoration step). Then, for each
of the ten initial samples (z,a’,0%) we ran the four
methods (heuristic static, heuristic adaptive, ACS and
random) five times. The number of cells that could be
sampled by the static heuristic method varied from 5%
to 90% of the total number of cells. For the adaptive
heuristic method, a maximum of 5% of the cells could
be sampled at each time step and there was a maxi-
mum of 18 sampling steps, implying that a maximum
of 90% of the cells could be sampled. Under the ACS
method, the number of cells sampled during each sam-
pling phase is not fixed in advance, nor is the total
number of cells sampled. The random approach sam-
pled from 5% to 90% of the total number of cells, as
in the heuristic static method. After the list of sampled
sites is established, the corresponding observations are
simulated. Based on all observations (0° plus the ones
obtained after sampling), the MPM restoration of the
map is computed (equation (6) with P(x) updated as
described in Section 3 or Section 4.3.2). We compared,

com-



Config a B 0

1 (0,-2) | 0.8 | (0.5,0.8)
2 (0,-2) | 0.8 (0,0.8)
3 (-2,-3) | 0.2 | (0.5,0.8)
4 (-2,-3) | 0.2 (0,0.8)
5 (0,0) 0.5 | (0.5,0.8)
6 (0,0) 0.5 (0,0.8)
7 (1,-1) | 0.4 | (0.5,0.8)
8 (1,-1) | 0.4 (0,0.8)

Table 1 The eight configurations of («, 3, 6) tested.

(a) (b)

Fig. 5 Realizations of a two-state Potts model with external field
on a 50 x 50 grid (obtained for 10000 iteration of the Gibbs Sam-
pling). ao (resp. 1) is attached to the top-right and the bottom-
left squares (resp. to the top-left and the bottom-right squares)
of the grid.(a) o = (0,—-2),8 = 0.8, (b) a = (—2,-3),5 = 0.2,
(¢) «=1(0,0),8=0.5,(d) a=(1,-1),8=0.4.

for each method, the average proportion of (i) misclas-
sified empty cells (cells where there are no nests, incor-
rectly classified as occupied) (ii) misclassified occupied
cells (invaded cells incorrectly classified as empty) (iii)
misclassified cells (cells which are incorrectly classified
as either invaded or empty).

5.1.2 Comparison of the methods performances

The parameters («, 3,0), as well as the budget allo-
cated to sampling influence the performances of the four
methods. For configurations 3 and 4, none of the meth-
ods are efficient in reconstructing the map since the
proportion of occupied cells is very low. For the other
configurations, several general qualitative conclusions
can be made. We discuss them and present numerical
results for configurations 2, 6 and 8 (Figure 6). The
changes observed when 6y increases from 0 to 0.5 are
discussed at the end of this section.

First, the ACS method is clearly dominated
by the three other sampling methods in terms of
quality of the restored invasion map. The ACS method
is not designed to reconstruct maps of spatial processes,
but rather to estimate global statistics of these pro-
cesses, such as average densities of occupation. Thus
this poor performance is not surprising. The random
approach is dominated by the two model-based
heuristic approaches. When sampling resources (per-
centage of cells sampled) increase, results of random
sampling become closer to those of heuristic static sam-
pling because in both cases almost all cells are sampled.

Another general conclusion is that the heuristic
adaptive sampling method has superior perfor-
mance than the static method, with the differ-
ence being small in two specific situations: low
sampling ressource and low spatial structure.
First, when the sampling budget is low, the adaptive
method selected cells to explore based on similar in-
formation to that which was available under the static
approach, and, therefore, explored similar or identical
cells. If the sampling budget is large enough, the adap-
tive sampling approach can exploit the first observa-
tions that were made, while the static approach cannot.
Therefore, under the adaptive approach, exploration is
more informed, leading to a strategy for space explo-
ration different to that of the static method. This is
demonstrated in Figure 7 representing the locations
of sampled sites and the corresponding observations
respectively for the heuristic static method and the
heuristic adaptive method, for configuration 8 (a =
(1,-1),=10.4,0 = (0,0.8)). In the heuristic static ap-
proach, whatever the percentage of area sampled, the
only information used is that illustrated on the top left
image (initial arbitrary regular sample), while in the
heuristic adaptive method, for a given percentage of
sampled area, information on each intermediate image
was also used. Under an adaptive strategy, it can be
more informative to revisit a site that was previously
sampled, if uncertainty remains high on this site, than
to systematically explore new cells. The resulting es-
timated marginal probabilities of presence for a sam-
pling size of 90% of the whole area are displayed on
Figure 8. In that case, despite the large sample size, un-
certainty remains substantially higher with static than
with adaptive sampling. The latter strategy eventually
leads to an improved restoration of the hidden pro-
cess. This example also illustrates that for both heuris-
tic methods, sampling is preferably performed near de-
tected occupied sites in low density areas (the top left
and bottom right squares of the area under study are
explored first in configuration 8): in these areas, a sam-
pled cell with o; = 0 has only few neighbor cells with
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0j = 1: enough to maintain uncertainty (was presence
missed or is it a true absence?) but not enough to in-
fluence belief strongly towards z; = 1.

We also observed (Figure 6) that the difference in
performance between the heuristic static and the heuris-
tic adaptive method increases with the hidden map
structure. Both methods lead to similar results in con-
figuration 6 (o = (0,0),8 = 0.5,0 = (0,0.8)), but if
the value of the spatial parameter 3 is increased then
the adaptive method outperforms the static one (results
not shown). Because treatment actions are applied to
create a chessboard pattern if the difference of weights
(a1 — «p) increases, this creates large scale structure in
the map. In that case we observed better results for the
adaptive method.

Finally, when 6y = 0.5, the number of invaded cells
found after the initial arbitrary sample will be higher
than when 6y = 0, because it includes cells in passively
sampled areas. The consequence of that, as expected,
is that the classification errors will be lower. However,
the conclusions on relative performances of the
four methods are not significantly altered by the
choice of 6.

Fig. 8 Estimations of the marginals probabilities of presence for
a sample size of 90% of the whole area (blackness increases with
the probability of presence). Left, heuristic static sampling; right,
heuristic adaptive sampling.

5.2 Fire ant case study

We applied the methods for parameters estimation (SF-
EM) and map reconstruction (MPM) based on the sam-
pling actions actually applied and the resulting obser-
vations. We selected a sub-grid of the entire study re-
gion to ensure there was sufficient information in the
sample. The region was selected on the basis of its low
proportion of rural areas (where detection by passive
search is estimated to be close to zero). Only some years
in the data set where conisdered, those with high per-
centage of detections (otherwise it would be unrealistic
to obtain a reliable estimation of the model). The se-
lected grid was composed of 100 x 100 = 10000 cells.

2001 2002 2003

A=1 0 656 3593
% 0 6.4307 | 35.2220

O0=1 340 189 109
% 3.3330 1.8528 1.0685
E=1 7548 9473 10142
% 73.9927 | 92.8634 | 99.4216

Table 2 Number and percentage of cells with active search, ob-
served nests and eradication for year 2001 to 2003 on the sub-grid
selected for analysis.

2001 2002 2003
ap | 0.0006 | 0.3907 | -0.7548
al -1 0.1867 | 0.1299
5 1.1619 | 1.3810 | 1.2641
2002 2003
= 1.9224 | 0.8242
=1 | 1.8283 | 1.0873

Table 3 Top: estimation of the HMRF parameters of the fire
ants model. Bottom: percentage of observed nest in areas with
and without treatment (right) on the sub-grid selected for anal-
ysis

The statistics are summarized in Table 2 and the treat-
ment actions, search actions and observed nests are il-
lustrated in Figure 9. From Table 2 we can see that the
number of actively searched cells increases with time
and that the percentage of cells with observed nests is
initially significant but declines with time. We recall
that the eradication vector used in the HMRF model

of year t is et~ 1.

Three HMRF models have been estimated, using
treatment, sampling and observation data for years 2001
to 2003. The SF-EM algorithm was initialized with the
following values : a = (0,—1) and § = 0.5. Param-
eter 6 was not estimated, but fixed to the following
“plausible” values : § = (0.5,0.8) in urban areas and
6 = (0.01,0.8) in rural areas. The value of 6y was not
set to zero in rural areas, in order to account for the
passive observations of nests which actually occurred,
even though rare. The parameters estimation for the 3
years considered are reported in Table 3. In 2001, oy
cannot be estimated (and is arbitrary fixed to -1) be-
cause no treatment was applied in 2000. In 2002 and
2003, the orderings of o (without eradication) and oy
(with eradication) are consistent with the orderings of
the proportions of occupied cells in areas with and with-
out treatment (see Table 3, bottom). The two estima-
tions of ap in 2002 and in 2003 are also in agreement
with the proportions of cells with observed nests in the
area without treatment, namely 20% and 8 % in 2002
and 2003,. This proportion was equal to 33% in 2001.
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Fig. 6 Errors rates for the different sampling strategies and for different model parameters. Left: proportion of misclassified empty
cells in the map restoration for the four sampling methods tested, middle: proportion of misclassified occupied cells, right: proportion
of misclassified cells. From top to bottom rows, configurations 2, 6, and 8. Average number of infected cells are respectively 459.3,

1243 and 1249.6.

Figure 10 shows a restoration of the 2002 invasion
map, as well as the estimated marginals probabilities
of occupation based on the sole data a, o and e and of
estimated parameters values (ag, a1, 3) (listed in Table
3). The restored map is a smoothed version of the ob-
servation map o, with clusters of occupied cells of larger
size: After the restoration, 369 cells are considered likely
to be invaded (marginal occupation probability greater
than 0.5) while nests were only observed in 189 cells.

6 Concluding remarks and discussion

In this article, we have presented an original method
for designing approximate sampling strategies for esti-
mating occurrence maps of spatial processes. The main
innovation of our approach is that it is a model-based
approach which embeds the objective of map recon-
struction in the sample selection criterion. We formu-
lated the problem within the HMRF framework (Ge-

man and Geman, 1984; Guyon, 1995; Li, 1995), the
classical framework used in image analysis problems.
More precisely, we formulated the problem of select-
ing sampling strategies as a combinatorial optimization
problem in which the expectation of the value of the
possible resulting MRF is to be maximized. We formu-
lated static and adaptive versions of that approach. In
practice both are too complex to be applied directly to
problems of realistic size and, therefore, we proposed
approximate variants of those methods. We simplified
the methods in two ways: (i) approximating the com-
putation of marginal probabilities by using the belief-
propagation algorithm (Pearl, 1988) and (ii) replacing
the exact optimization problems (static and adaptive)
with the computation of simpler criteria based on those
approximate marginal probabilities.

Theoretical validation (for example, distance to the
value of the true optimal sample) of the heuristic static
and adaptive approaches remains difficult. Here, we pre-
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Static sampling: A and O

Fig. 7 Cumulative sampling locations and realization of corresponding observations for the heuristic static (top) and adaptive (bottom)
methods. Observations were simulated for 6 = (0, 0.8). The first top-left images corresponds to the initial regular sampling, then from
left to right and top to bottom images correspond to a sample size increasing from 5% to 90 % of the whole area.
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Fig. 9 Top line: eradication for years 2000 and 2001 (no erad-
ication in 2000). Middle line: search actions for years 2001 and
2002. Bottom line: observations for years 2001 and 2002. Zoom
on the sub-grid selected for analysis. The value nz indicates the
number of non zero cells in the image. .

sented an empirical validation approach based on sim-
ulated data. Our study demonstrated the superiority
of the model-based approach over two standard sam-
pling methods (random sampling and adaptive cluster
sampling (Thompson and Seber, 1996)). The utility of
developing adaptive strategies is clear in circumstances
where spatial structure is important, as in our fire ant
case study, provided that sufficient sampling resources
are available (at least 10% of the total area). In our
study we took constraints on resources into account
only through a limit on the sample size. Constraints
can be more complex: the cost of a sample could be
related to the time spent on exploration. In adaptive
sampling fixed sampling costs could be incurred when-
ever a new sampling phase starts, etc. Our assumption
was that sampling costs are negligible compared with
the cost of mapping errors. Introducing such costs in
the optimization problem and evaluating the impact
on the sampling designs remain open questions which
are of crucial interests in environmental management
problems. One question is of course how to scale costs
and map quality?
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Fig. 10 Observed nests in 2002 (top), marginals (bottom left)
and restored invasion map ( bottom right)

This work is one of the first attempts to combine
HMRF modeling and tools for sequential decision mak-
ing under uncertainty in order to solve optimal sam-
pling problems for occurrence map reconstruction. Our
proposed method led to substantial improvement com-
pared to classical design-based sampling methods, even
with the simple approximation we used in this paper.
These results confirm our approach is promising, par-
ticularly given that several improvements could be con-
sidered that would be expected to strengthen the ap-
proach.

The two heuristic approaches we have presented can
be improved in two different ways. Optimization can be
improved. The spatial sampling problems we tackled
are too complex to solve exactly. The approximation
we proposed is the simplest and, a priori, least efficient,
in the family of approximate algorithms that could be
applied to sampling problems involving stochasticity
(Spall, 2003). A natural direction to derive more effi-
cient algorithms is the exploration of simulation-based
optimization methods. We are currently studying solu-
tions using Reinforcement-Learning algorithms (Sutton
and Barto, 1998), which have been successful in the res-
olution of optimal sequential planning problems.

Parameters estimation can also be improved, in two
different ways. In the adaptive version, data obtained
during the sampling process can be used to improve the
current estimation of the HMRF model. Thus, alterna-
tion of sampling and estimation phases would improve
the method. In our case study, fire ant data are avail-
able for successive years of treatment, sample actions
and nests observations. This information could also be
taken into account to improve parameters estimation,
provided that knowledge about the temporal dynamics
of the ants propagation is available.
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Appendix

We demonstrate here that the approximate solution al-
gorithm for static spatial sampling presented in Sec-
tion 4.2.2 provides the exact solution when the HMRF
model satisfies assumptions A1 and A2.

Let us recall the definition of VMPM.

V]MP]VI (Pe,ao,a(X|A7 OOa 0)) =
Zmaxzipe,ao,a(Xi =T | )‘7 OOa 0)'
=1

If we assume that current observations o, obtained after
sampling actions a are reliable and that there is no pas-
sive observation (A1), and denoting x, = {0;, s.t. a; =
1}, we have

> Peaoalo] o” NVVMIM(P, 40 4(X | 0%,0,)))

n
= Zpe,ao,a(xa|ooa )‘) Zniajxpe,ao,a(Xi =T | OO; La, )‘)
Zq =1 ‘

= ZZPeaO,a($a|00, A) max P, g0 o(Xi =z | 0%, zq, N).

1=1 x4

If a; = 1, then maxy, P 40 o(Xi = ;| 00,24, A) =1
(cell 7 has been observed and observation was reliable).
If a; =0, from A2 z; is independent of z, conditionally
to 0¥ so that P. 40 o(X; = z; | 0%, 24, A) = Po g0 o(X; =
x; | o, \). Finally, under A1 and A2:

Z Pe,ao,a(0|007 )‘)V]MP]VI (Pe,a“,a(Xp\a 00; 0)) ~
o =1
where
If a; = 0,v;(a;) = maXPeﬁao(Xi = xi|00,)\).
If a; = 1,vi(ai) =1.

The corresponding approximation a(e, \,a, 0%) of
a*(e, \,a’, 0%) satisfies
Vi,a; = 1if —¢;(1) +1 > max (v;(0),1 —v;(0))  (10)

which is equivalent to

¢i(1) < 1—=max (v;(0), 1 — v;(0)) = min (v;(0),1 — v;(0)) .

Computing a(e, A, a®,0°) defined in (10) consists in
practice in ranking the cells ¢ in decreasing order of
{v(i) = min (v;(0),1 —v;(0)) — ¢;(1)}. Then, all the

Ui(ai)a

cells with positive value v(i) are sampled if sampling
resources are sufficient. Fewer cells are sampled if sam-
pling resources are not sufficient, the cells with higher
heuristic values being sampled in priority, since the
heuristic function models their contribution to map un-
certainty reduction.
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