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Our BioSys Lab

Our unit:
Bioinformatics and Systems Biology (Biosys)
Université de Liege, Belgium

Team biased towards large networks, machine learning and
algae...

Collaborating with three PhD students:

m Ngoc Pham (From Vietnam)
Expression-Based Transcriptional Networks

m Eoin Marron (From Ireland)
Chlamydomonas reinhardtii data-mining

m Pau Bellot (From Spain, co-tutelle with UPC)
Meta-network inference
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Notation

Introduction

Causality and
Expression
Data

X = (X1, Xy, ..., X,) : the set of n variables

X}, € X : one variable of the set

X C X: asubset of variables

X_ =X\ X : set of variables without X},

X_x : the set X without the subset of variables X g
Xij = {Xi, X;} : two variables of the set X
X_(i,j): set of variables X without X; and X

modENCODE

State of the
Art

Inference
Validation

Conclusions
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Mutual Information (MI)

Definition ([Thomas and Cover])

Introduction

Shonnaal  Let X; and X; be two (discrete) random variables, the mutual

Expression
i information between X; and X is
modENCODE

State of the . .
i 1X:X) = 3 plo o) log (P(x_f’fa)>
Inference lPZGX z; EX p(':vl )p(l‘])

Validation

Conclusions

m Mutual information is a divergence between the joint and
the product distribution.

m [(X;; X;) is maximal if X; or X is perfectly predictable
from the other.

m [(X;; X;) =0if X; or X are independent
(unpredictable).
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Conditional Mutual Information (CMI)

Introduction

Definition ([Thomas and Cover])

Causality and
Expression

Data Let X;, X; and X, be three random variables, the conditional
medENCODE mutual information between two random variables X; and X
e of the knowing X}, is

Inference

Validation I(X’La X]’Xk) - I((XZ7XI€)7X]) - I(Xk-, X])

Conclusions

m |t measures the gain of information on X (or X;) due to
the other variable X; (or X; ), when X}, is given.

m [(X;; X Xg) > 0 with equality iff X; and X are
conditionally independent given Xj..
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Transcriptional Network

Introduction m gene - RN A — protein

oy and m some protein (tf) can modify RNA production of target
Data genes (tg)

modENCODE

State of the = Each cell has an encoded network (circuit) in DNA.

Art

Inference

Validation m Each node is a gene.

Conclusions

m An arc connects a
regulator gene (tf) to

(D) a regulated one (tg).
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Problem Formalization

Introduction

Causality and

S?;;ession m inputs X: m X n matrix, where z,, is the realization of
modENCODE gene X; at measurement s,
State of the m output 7" list of triplets (¢f, weight,tg) of length
Inference #tf X #tg
Validation t t
Conclusions DATA X]. X2 . Xn Xf Ofu)l )f
sl 01109 ..]05 1 . 2
=
sm 02103)|..]|038
X#tf 09 X#tg
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Introduction

Shuub sl Definition (Cause [Neapolitan, 2003])

Expression
Data

mwesel X, is a cause of X, denoted by X; — X, if there exists a
S affiite value x; € X; such that setting X; = x; leads to a change in
At the probability distribution of Xj;.

Inference

Validation In other words: causality creates a (bivariate) dependency
Conclusions between a cause and its effect.

X; HXj =>I(XZ,XJ) >0

where X; <+ X; denote an undirected causal link, i.e.,
Xi — Xj or/and Xz — Xj.
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Assumption

Introduction

Xj — X; :>I(XZ,X]) >0

Causality and
Expression

Data This bivariate dependency is true in most cases but not always:

LECNERRI  cancellation of two causal pathways, the XOR.

State of the
Example ( XOR problem [Neapolitan 2003])

Art

Inference

Validation

Conclusions Xz Xk:
N\ Ve
Xj
X; 11100
X7 1 1[0
X;=X;®X, |0]1]1]0
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Indirect links

Introduction

Causality and

Sxpression

mENCODE m In most cases, X; « X; = I(X;;X;) >0

State of the m Unfortunately, reverse is not true:

Art There are three cases of indirect interaction with three
Inference variables:

VaIidatiz})n X] N Xk N X,L

Conclusions XJ P Xk N Xl

Xj — Xk — Xz
Two of them typically lead to high I(X; X;)
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Direct Causality

Introduction

Causality and Definition (Direct cause [Neapolitan, 2003])

Expression
Data X is a direct cause of X; if X; is a cause of X and there is
Ml 110 other variable X, such that once we know the value of X,
ot a manipulation of X; no longer changes the probability
Inference distribution of X;.
Validation

It means:

Conclusions

two dependent variables are no longer dependent once given
the direct cause.

Xl—>Xk—>XJ
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Direct causality (2)

Introduction

Causality and Equivalently: if there are no set of variables that cancel the
Expression

Data dependency between two variables, then one of these variables
pevanee M is a direct cause of the other. More formally:

State of the

Art VXK g X?(

Inference

i)t 1(Xs X5l XK) > 0= X; X

Validation

Implicit assumption of causal sufficiency, that is all the
variables that cause at least two effects (two variables in the
dataset) should also be present in the dataset:

Conclusions

V(XZ‘,XJ') e X AXy, X; « X — Xj = X € X*(l}j)




Introduction

Causality and
Expression
Data

modENCODE

State of the
Art

Inference

Validation

Conclusions

On Network Inference and Validation Methods 13 / 32
Patrick E. Meyer November 2014 (NETBIO)

MRNET

Network Inference Based on Variable selection
min-redundancy-max-relevance (mMRMR) [Meyer et al., 2007]

XMAME — I(Xi X5) — —= I(X5 X
i argxggng{( 3l ]) | |X;{ ( @y k)}
k K

Bivariate approx. of I(X;; X;|Xx) — adapted to expression data
State-of-the-art
| Method [ RBN | ARACNe | Lasso | MRNET

Speed/Size - + T ¥
indirect arcs + - + +
non-linearity + + - T

Package: Bioconductor (50004 downloads/year/since 2008)
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modENCODE project

Introduction

Causality and

Expression m Model Organism Encyclopedia Of DNA Elements
(modENCODE) : the most comprehensive collections of

modENCODE

Sl he functional datasets for a single organism: D.melanogaster
Art [Celniker et al., Nature, 2009] (and C.elegans)

l\:::::n m 4 years of work from 504 different institutions

Conclusions m Kellis lab (CSAIL MIT + BROAD Institute) coordinating

the integrative analysis to gain insights into the regulatory
circuitry that controls gene expression in response to
changing environments. [The modENCODE Consortium et
al. Science 2010, genome Research 2012]
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Patrick E. Meyer

Problem

Introduction Drosophila melanogaster data:

Causality and m Publicly available data:

Expression
Data "]

modENCODE

State of the
Art

Inference
Validation

|
|
|
|
|
Conclusions m
|

list of >700 known tf

>14k genes

12 Drosophila genomes

139 known tf binding motifs

GO functional terms database

>1000 Protein-Protein Interactions

REDfly data

2 "big" microarray datasets (Flyatlas + GSE6186)

m modENCODE data:

2 RNAseq datasets
2 histone modifications datasets
76 tf-binding experiments (ChIP full genome)

— Transcriptional network?
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ChIP-binding based network

Binding experiments for 76 tfs (full genome)
Introduction
o aennmic DA o

v’mm'm e

eross-irk
ane shea”

Causality and
Expression

Data

modENCODE

State of the
e cond. tf

tl CG1674

chrom. | peakStart
chr2L 1

peakEnd
5954

intensity
0.9

Inference

Validation

Conclusions

— threshold on intensity
but lots of non-functional binding (not intensity dependent)
Gene annotation file from flybase.org

name

chrom

txStart

txEnd

cdsStart

cdsEnd

CG1678

chr4

251355

266500

252579

266389

—There is a link if binding near (+ - 500bp) of txStart
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ChIP-binding based network (2)

Introduction

Causality and

S For all tf-tg pairs, an edge weight is
ata

- odENCODE m 0 if no binding evidence at 500 bp near txStart
State of the m 0.1 if no data for a tf

Inference ] 1 |f blndlng

Validation tf w tg
Conclusions Xl 0 1 X2
- X 0 Xk

Xy | 1| Xy
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Binding motif-based network

From flybase.org
Introduction

Causality and m DNA sequence
Expression m 139 known tf blndlng motifs

Data

modENCODE

State of the
Art

Inference

Validation —search (GREP) binding motif in the genome.
Conclusions Problem: to many non-functional binding motifs

m gene annotation file

name chrom | txStart | txEnd | cdsStart | cdsEnd
CG1674 | chrd | 251355 | 266500 | 252579 | 266389

—There is a link if tf motif near (+ - 500bp) of txStart
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Binding motif-based network (2

Use 12 Drosophila genomes with Branch Length Score (BLS)
confidence [Kheradpour et al., gen.res., 2007]

D.mot.
D.sim.
D.sec.
D.yak
D.ere.
D.ana
D.pse.
D.per
o.wil,
D.moj.
D.vir
D.gr

CATTTATTAT

Toeomee] -ATC-~-AATTAATGGCGT!

~ARTTAATGGCGT!

TCGCAGC-GGCTGG-C:

TTAATGGCGT!

TCGCAGC-=GCTGE-C:

RTTAATGGCGT!

TCGCAGC=GLTGEC:

ARTTARTGGCGT!

TCGCAGC-=GCTGG-CTG:
TCGCAGC--GGTGE-C:

ARTTAATGGTAT!

CATTTATTAT- --TATTTATATT---AATTAATGAAGTTT-
==ATAATTAATTAATGAAGTT-
CATTAATTAT= == TemneweATA==~AATTAATGAAGT
CATTAATTATGAGT == == == -ATT-~~AATTAATGAAGTT

TATTAATTATGTA!

BLS=25%

==GAT === AATTAATGGAACTTTGGTCAGTT-TTGCTECCTGCCTG-TTCCCTGCTGCCTGTTCCTTTIGCTGT

TCTTGACTGGCTGC ~CTGCC = ~TGCCTGTTA= = TTIGTTGT"

BLS=83%

0.83 | X,




On Network Inference and Validation Methods 20 / 32
Patrick E. Meyer November 2014 (NETBIO)

Expression based Networks

_ Two steps:

::Z:::::d Co-expression network: compute MI/correlation for all
Expression couples of genes

but false positive trends because of indirect links

Assume X7 influence X3 through Xs

Data

modENCODE

State of the
Art

Inference / Xl
Validation X2 \ i
Conclusions X3

Then I(X1; X9) and I(X2; X3) will be high
but also 7(X7; X2), hence it adds a false link between X3
and X3.
Use an indirect-arc elimination algorithm on the
correlation/MIM matrix.
m ARACNE [Margolin et al, BMC Bioinfo, 2006]
m MRNET [Meyer et al., BMC Bioinfo., 2008]
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Principle

Introduction

Causality and
Expression
Data

m Networks from sequence and/or tf binding
m pro: physical connections (directed)

medENCODE m issue: elimination of non functional bindings
State of the . .
Art m Networks from expression and/or chromatin data
Inference m pro: functional connections (but undirected)
Validation m issue: elimination of indirect interactions
Conclusions
s P
G, N )
G3

— combine physical and functional networks to extract direct
functional interactions




On Network Inference and Validation Methods 22 /32
Patrick E. Meyer November 2014 (NETBIO)

Chromatin regulation with histone modification

Chromatin can compact the genome up to 40000 times

Introduction

Causality and
Expression
Data

modENCODE

State of the
Art

Inference

il m 5 families: H1, H2A, H2B, H3, H4

Conclusions

m The single-letter amino acid abbreviation (e.g., K for
Lysine) and the amino acid position in the protein
m The type of modification: 4 modifications: mel, me2,
me3, ac
— H3K4mel denotes the monomethylation of the 4th residue
(a lysine) from the start of the H3 protein.
51 distinct chromatin states suggests distinct biological roles
(Ernst et al Nature 2010)
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Co-chromatin network

e oduction We have two datasets of measurements (ChlP)

Causality and m Ts: H3K4mel, H3K4me3, H3K9me3, H3K27me3,
D" H3K27ac, H3K9ac

T HCOE m Ct: H3K4me2, H4K16ac, H3K36mel, H3K36me3,
Aote of the H3K79mel, H3K79me2, H3K23ac, H3K18ac, H4K12ac,
H4Kb5ac, H2BKb5ac, H4K8ac.

Inference

Validation

Conclusions Chromatin mark A Chromatin mark B

| ‘=1 1] | 1] |

[ T T T T
> | [ P— Y PP ——— »|

1kb upst;eam TSS 5 UTR Coding sequence 3'UTR 1kb downstream TES

MarkA [T TiJoe] o]
MarkB [@ @ [1 [1[1]

Binary feature vectors
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Functional networks

Introduction

Causality and

Expression gene M A R K 1 M A R K 2

Data

modENCODE tf 1 1 O 0 0 0
State of the tg 1 O 0 0 0 O 1 1 1 1

Art

[ay
—
—_

Inference squared Spearman correlation between
Validation

m tf and tg chromatin profiles (2 datasets)
— 2 co-chromatin networks

Conclusions

m tf and tg expression profiles (3 datasets)
— 3 co-expression networks

m 1 expression dataset kept for validation

— 5 functional networks inferred + 2 physical networks
inferred (ChIP and motif)
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Consensus Networks

Introduction - ' 7
A Transcripts orrelation of expression

Causality and T 0 T
— e ——
. - Carrelation of chromatin states
Expression e T Chromatin marks T P .. T
Data Matit ¥ TsSS r3 Y
< S & ¢ i 44 411 . U4 1l
modENCODE — [ . 1 > . 1
‘ Promater region Gene TF gene Target gene
itite of the Conserved motifs of TFs ChlIP binding of TFs Chromatin marks Gene expression
i
- Evolutionary conservation - ChIP-seq & ChiP-chip - ChiP-seq & ChIP-chip - ?;“5“5?';25;’”‘:’2“2;’37:“995
across 12 Drosophila species -T6TFs - 6marks, 12 dev. stages ° "
Inference 138 TFs o spe 20 mark, 2 cell ne + 11560 ganes, 20 dov. stages
h + 4278 genes, 26 tissues
Validation | Physical features Functional features
Conclusions S - N B I O _ c ,,,,,,,,,,,,,,,,, B !
i Input features i i Input features Known interactions (REDfly) :

Training data

Sum-rule Classitier

707 TFs O 707 TFs

Cross-validation

Test data

14,444 genes O [o} [ (o]
H Supervised network

14,444 genes O O o) [e]
Unsupervised network
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Supervised Network

Method: supervised logistic regression

tput
Weight w;; from tf ¢ to tg j, wou put — 1+61 —

ChIP +

m=ap+ amotifw ol 4 QChI PW;;

chromtc
achromtcww + achromclw

RNAseqtc
QRN AseqtcW;; + QarraytcW;;

10 fold cross-validation

chromcl 4

arrayte flyatlas

+ aflyatlasw

positive set: random sampling (with replacement) of 2k
interactions of the 233 REDfly interactions

negative set: random sampling of 2k interactions out of
the 7k non-REDfly interactions

fitting using iterative reweighted least squares
final network: 318k edges (0.6 confidence)
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REDfly PR-Curves

Precision-recall for REDfly

27 / 32
November 2014 (NETBIO)

g = — fRN (supervised)
§ — fRN (unsupervised)
o Conserved motifs
s — TF binding (ChIP)
8 3 == Chromatin TC
o ~ Chromatin CL
c5 — RNA-seq
2 S o Microarray TC
'g 8 o] — Flyatlas
& E
°
2
Q
T
O o
a
ks)
5
S o
I o
T T T T T
0.0 0.1 0.2 0.3 0.4
Recall

Fraction of true interactions recovered

Logistic regression weights: ot f,chromte = 2,
QChIP,chromcl,RN Aseq — 1, Aarray, flyatlas = 0.4
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Structural properties: degree distributions

Introduction

log-log degree distribution of supervised network log-log degree distribution of unsupervised network
Causalle and - -
Expression 27° N
Data ° e °
o ° °

modENCODE ° o

State of the
Art

Inference

fraction of genes
1%
L

Validation

Conclusions i ¥ o commoooo  © -

2 | © out-degree © out-degree S
& o o in-degree %% — © in-degree Sam
T T T T T T T T T
0 10 100 1000 10000 0 10 100 1000 10000
no. of interactions no. of interactions

Similar to E.coli and S.Cerevisae known network topology
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Most frequent three-nodes patterns

I Network Motif Statistical Significance
N | Description llustration | Fold Enr.  Z-score
ntroduction Cross-regulating TFs A B
Causality and co-targeting another TF A R A3 10423
Expression (Double FFL) v
Data ‘ 235 238.43
Cross-regulatory A 8
modENCODE clique of TFs 7 2.891 10.65
(Six FFLs) v
itite aff 2 ¢ 14,669 1393
r Cross-regulating TFs :
Inference co-targeted by another TF 1.989 2372
(Double FFL) &3
Validation . ¢ 1725 383
. Cross-regulating TFs A B
Conclusions co-targeting a target gene N 7 1.594 69.01
(Double FFL) '
& 2368 125.43
A
Feedback loop between A 1537 324
three TFs §
[ .Y
8 ¢ 1.154 2.62
Cross-regulating TFs :
creating a feed-forward X 1.349 7.52
and a feedback loop %
u ¢ 1.439 16.55
D Unsupervised Supervised
network network

Transcription
@® Rna ® e @ tiroetrens
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Biological Insights on co-targeted genes

Introduction

Causality and Is the inferred network enriched in:

Expression
Data
Compared to e
0

modENCODE

State of the
Art

Inference

Validation
<t
Conclusions

protein-protein interactions(PPI)
co-expressed in developmental cycle (RNAseq)

similar function profiles (GO terms)
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Results

Introduction

Causality and
Expression
Data

ENCODE Fold enrichment of co-targeted genes

State of the

Art network PPl | GO | RNAseq
Inference motif 1.39 | 1.06 1.08
Validation ChIP 1.24 | 1.23 1.46
Conclusions unsupervised || 1.53 | 1.44 3.07
supervised 1.58 | 1.55 3.62
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Results

Introduction

Causality and
Expression

Data Our integrative networks outperform feature-specific networks
modENCODE m PR-Curves on REDfly

State of the
Art m Enrichment of co-targeted genes on PPI, expression and

Inference GO termS

Validation

Our integrative networks fit known topological properties
observed in E.coli and S.cerevisae

Conclusions

m In-degree and out-degree

m Most frequent three-nodes patterns
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Thank you!

Questions ?
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