
New Local Move Operators for Learning the Structure of
Bayesian Networks

Jimmy Vandel and Brigitte Mangin and Simon de Givry
UBIA, UR 875, INRA, F-31320 Castanet Tolosan, France

{jvandel,mangin,degivry}@toulouse.inra.fr

Abstract. We propose new local move operators incorporated into
a score-based stochastic greedy search algorithm to efficiently escape
from local optima in the search space of directed acyclic graphs. We
extend the classical set of arc addition, arc deletion, and arc reversal
operators with a new operator replacing or swapping one parent to
another for a given node, i.e. combining two elementary operations
(arc addition and arc deletion) in one move. The old and new opera-
tors are further extended by doing more operations in a move in order
to overcome the acyclicity constraint of Bayesian networks. These
extra operations are temporally performed in the space of directed
cyclic graphs. At the end acyclicity is restored and newly defined
operators actually lead to a gain in graph score. Our experimental
results on standard Bayesian networks and challenging gene regula-
tory networks show large BDeu score and recall value improvements
compared to state-of-the-art structure learning algorithms when the
sample size is small.

1 Introduction

Learning the structure of Bayesian networks from fully observed
data is known to be an NP-hard problem [5] which has received
a lot of attention from researchers during the last two decades [8].
Due to its difficulty, heuristic methods have been widely used to
learn Bayesian network structures. Two main approaches have been
studied: constraint-based methods and score-based methods [18].
Constraint-based methods aim at satisfying as much independence
present in the data as possible using conditional independence tests.
Unfortunately, these methods can be sensitive to failures in individ-
ual independence tests. Score-based methods use a scoring function
f to score a network structure with respect to the data. They score the
whole network at once, being therefore less sensitive to individual
failures. Different Bayesian and non-Bayesian scoring metrics can
be used such as the Bayesian Information Criterion (BIC) [26] or the
Bayesian Dirichlet criterion (BDeu) [16]. Score-based methods ex-
plore the space of network structures to find the highest-scoring net-
work. This space being superexponential in the number of variables,
local search methods are used such as greedy ascent search (also
called hill-climbing), tabu search, simulated-annealing, and other
complex metaheuristics like ant colony optimization [7]. In spite of
its simplicity, the (repeated randomized or stochastic) greedy search
method reveals to be a competitive method compared to more com-
plex algorithms [12]. Starting from an initial network structure, it
performs a series of local moves until a local optimum is found. Each
move selects and applies the best elementary operation(s) on the cur-
rent network structure. The set of candidate neighboring structures

is called the neighborhood in the sequel. A classical neighborhood
is composed of single arc additions, deletions, and reversals. Using
larger neighborhoods efficiently allows to find better local optima,
and thus better network structures.

[20] proposed an optimal reinsertion of a target node by remov-
ing all its edges and reinserting it optimally. However this approach
is limited to small problems only. [17] used a restricted form of
look ahead called LAGD, combining several operations in a sin-
gle move. In this paper, we follow a similar approach by focusing
our local operations on a target node and combining several opera-
tions guided by the global acyclicity constraint of Bayesian networks.
By doing so, we are able to exploit large neighborhoods efficiently.
Other approaches use a compact representation of a set of network
structures. They explore either the search space of variable order-
ings (an optimal structure compatible with the order being easier to
find) [6, 28, 25, 2], or the search space of Markov-equivalent network
classes like Greedy Equivalence Search (GES) [3, 21, 7].

In Section 2, we give Bayesian network background. Next, we de-
fine a specific stochastic greedy search algorithm and introduce the
new local move operators in Section 3. We report experimental re-
sults in Section 4 and conclude.

2 Bayesian network structure learning

A Bayesian network [18] denoted by B = (G,PG) is composed of
a directed acyclic graph (DAG) G = (X,E) with nodes represent-
ing p random discrete variables X = {X1, . . . , Xp}, linked by a set of
directed edges or arcs E1, and a set of conditional probability dis-
tributions PG = {P1, . . . , Pp} defined by the topology of the graph:
Pi = �(Xi|Pa(Xi)) where Pa(Xi) = {X j ∈ X | (X j → Xi) ∈ E} is the set
of parent nodes of Xi in G. A Bayesian network B represents a joint
probability distribution on X such that: �(X) =

∏p
i=1 �(Xi|Pa(Xi)).

Conditional probability distributions PG are determined by a set
of parameters. Given the network structure G, and the fully observed
data D, parameters can be estimated by simple counting, following
the maximum likelihood principle.

Learning the structure of a Bayesian network consists in finding
a DAG G maximizing the posterior distribution �(G|D). We have
�(G|D) ∝ �(D|G)�(G) since �(D) is independent of G. Under spe-
cific assumptions, the marginal loglikelihood log(�(D|G)) can be ex-
pressed as a consistent decomposable scoring function f , such as the
BIC and BDeu criteria [3] :

1 In the paper, we use G = E when the set of nodes is implicit.

f (D,G) =

p∑
i=1

fXi (D,G) =

p∑
i=1

fXi (D, Pa(Xi)) (1)

As f is consistent, maximizing f when the sample size tends to
infinity leads to select the true structure or one among the Markov-
equivalent structures set. A set of Bayesian networks are Markov-
equivalent if they imply exactly the same set or map of independence
constraints among variables2. Next, we describe a novel greedy
search method maximizing f in the space of DAGs.

3 Stochastic Greedy Search

We define the Stochastic Greedy Search (SGS) algorithm3 for struc-
tural learning of Bayesian networks in Algorithm 1. It collects the
best DAG found by r randomized hill climbing algorithms. Stochas-
ticity comes from two random draws. The first one, common in the
structure learning community, is due to InitGraph that returns a
random DAG used by the inner greedy search loop. The second is
more original. It is the random DAG drawn among the best neighbors
in the neighborhood of the current DAG G (SelectRandom at line 1
of Algorithm 1). The neighborhood of G, returned by Neighbors, is
composed of the usual elementary operations on DAGs: arc addition
(ADD), arc deletion (DELETE), and arc reversal (REVERSE). This
classical neighborhood is denoted NADR in the sequel. Only feasible
operations are considered, which do not create cycles. In the next
subsections, we are going to extend this set of operations. We empir-
ically observe that the first random draw may be counter-productive
and starting from an empty graph is often better than from a random
DAG, as also observed in [19].

Algorithm 1: Stochastic Greedy Search algorithm.
Input : An iid sample D, a scoring function f , number of

repeats of different GS r
Output : A directed acyclic graph
G∗ ← ∅ /* Best DAG initialized with the empty graph */ ;
s∗ ← f (D,G∗) /* score of the empty graph */ ;
/* Repeat r randomized greedy searches */ ;
for i← 1 to r do

G ←InitGraph() /* Choose an initial DAG */ ;
s← f (D,G) ;
repeat

improvement ← false ;
smax ← maxG′∈Neighbors(G) f (D,G′);
if smax > s then

/* Select at random among the best neighbors */ ;
Gmax

← {G′ ∈Neighbors(G)| f (D,G′) = smax} ;
G ←SelectRandom(Gmax) ;1
s← smax ;
improvement ← true ;

until ¬ improvement ;
/* Keep the best DAG of r greedy searches */ ;
if s > s∗ then2

G∗ ← G ;
s∗ ← s ;

return G∗ ;

Proposition 1. Let D be a dataset of n records that are identically
and independently sampled from some distribution �(·). Let f be a

2 BIC/BDeu give the same score for Markov-equivalent DAGs.
3 Don’t mistake for the SGS algorithm in [27] which is a constraint-based

algorithm, but ours is score-based.

locally consistent scoring function. The inner loop of the SGS algo-
rithm returns a minimal independence map of �(·) as the sample size
n grows large.

The local consistency of f ensures that adding any arc that elim-
inates an independence constraint that does not hold in the gener-
ative distribution �(·) increases the score. Conversely, deleting any
arc that results in a new independence constraint that holds in �(·)
also increases the score. Hence, starting from any DAG, by select-
ing strictly improving moves, the algorithm terminates (because of
a finite number of DAGs) and returns an independence map of �(·)
(I-map of �(·): every independence implied by the resulting DAG is
verified in �(·), in the worst case it can be a complete graph) which
is minimal thanks to arc deletion operations and local consistency.

The main interest of our randomization approach is to sim-
ulate a search in the space of score-equivalent networks. Each
greedy search moves from a randomly-selected DAG instance of a
Markov-equivalence class E(G) to another randomly-selected DAG
of an adjacent4 Markov-equivalence class E(G′) thanks to our
SelectRandom function. It results in a stronger property:

Proposition 2. Let D be a dataset of n iid fully observed samples of
some faithful distribution �(·). Let f be a locally consistent scoring
function. SGS returns a perfect map of �(·) as both the sample size n
and the number of restarts r grow large.

Recall that a faithful distribution admits a unique perfect map cor-
responding to the optimal structure. Compared to the GES algorithm
[3], which offers the same optimality guarantee within a two-phase
greedy search, SGS chooses the orientation of some compelled arcs5

of the true DAG at random, whereas GES waits while no v-structures
impose orientation constraints. See an example in Figure 1.

Notice that neither GES nor SGS find an optimal structure in poly-
nomial time in the worst case, even when using a constant time con-
sistent scoring function and a faithful distribution6. In general, with-
out the faithfulness assumption, learning the optimal structure is NP-
hard even when the sample size is large and when each node has at
most k parents, for all k ≥ 3 [4].

We observe in the experiments that a small number of restarts r
allows to find DAGs with better scores than GES, especially when the
sample size n is limited, in this case GES found a local optimum and
SGS is able to find other better local optima thanks to randomization.
This was also observed in [21].

When the sample size is small the learning problem becomes more
difficult: the empirical distribution may be far from a perfect map
resulting in many local optima and the scoring function is no more
consistent, i.e. the likelihood does not dominate the penalty term of
the scoring function which increases with the parent variable domain
sizes [3]. In this complex situation, we propose a new operator to
escape from some local optima.

3.1 SWAP operator
Consider the 3-variable example in Figure 2 with observed data D,
scoring function f , and initial DAG G0 = {X2 → X3}. Let assume
f (D, {X1 → X3}) > f (D, {X2 → X3}) > f (D, {X1 → X3, X2 →

4 Two equivalence classes E(G), E(G′) are adjacent iff G is an I-map of G′ or
vice-versa and the number of edges in the graphs G and G′ differs by one.

5 An arc X → Y in G is compelled if that arc exists in every DAG of E(G),
otherwise it is said reversible.

6 The number of possible sets S in the GES operator ADD(E,S) is exponential
in the maximum degree d of the current graph in the worst case and r is
unbounded for SGS.

Figure 1. Four adjacent Markov-equivalence classes found by GES during its first phase of edge and v-structure insertions. (a) GES and SGS start from the
empty graph . (d) The true DAG is found after three moves. The orientation of X3→ X4 and X1→ X3 edges are chosen at random by SGS, whereas GES
waits until its third move to decide on edge orientations based on DAG score comparisons (enforcing the v-structure X1→ X3← X2 as stated by the extra

ADD parameter {X1}, and forbidding X1→ X3← X4 in its second move).

→

Figure 2. The operator SWAP(X2|X1→ X3) applied to a 3-variable
problem.

X3}) > f (D, {X3 → X1, X2 → X3}) > f (D, {X2 → X1, X2 →
X3}) > f (D, ∅). Then G0 is a local minimum for the classical neigh-
borhood NADR. Our new operator, denoted SWAP(X|Y → Z), con-
sists in changing one parent X to another parent Y for one tar-
get node Z. This is equivalent to a simultaneous pair of ADD and
DELETE operators restricted to the same target node. In our exam-
ple, applying SWAP(X2|X1 → X3) corresponds to DELETE(X2 →
X3),ADD(X1 → X3), resulting in the better DAG G1 = {X1 → X3}
as shown in Figure 2. The extended neighborhood using the four op-
erators is denotedNADRS and SGS usingNADRS (respectivelyNADR)
is denoted SGS2 (Stochastic Greedy Search with Swap) (resp. SGS1)
in the sequel.

A typical suboptimality problem that we observed in our exper-
iments happens when two nodes have the same parents. Figure 3
shows such an example with four variables. Because child nodes X3
and X4 are highly correlated due to their common parents X1 and
X2, the first arc usually added is either X3 → X4 or X4 → X3 espe-
cially if the conditional probability distributions of X3 and X4 given
X1 and X2 are close. Then adding a first parent to X3 and further-
more a second parent to X4 and X3 give the DAG G4. Here deleting
X3 → X4 is going to decrease the score and the same negative ef-
fect results when adding X1 → X4 because it leads to a three-parent
node. For this node, the increase in likelihood may not overcome the
penalization term. But doing both operations simultaneously thanks
to our SWAP operator results in a better local optimum DAG.

Let p be the number of variables in the current DAG and k be
the maximum number of parents per node. Assuming a sparse graph,
p � k, the number of SWAP operations is bounded by O(kp2) in
the extended neighborhood NADRS , whereas it is bounded by O(p2)
for ADD and O(kp) for DELETE and REVERSE. The complexity

of NADRS is therefore in O(kp2), whereas it is in O(p2) for the clas-
sical neighborhood NADR. Notice that other approaches using larger
neighborhoods such as h-look ahead in l good directions (LAGD)
has a worst-case complexity in O(lh−1 p2) [17] and optimal reinsertion
(OR) neighborhood is in O(2k pk+1) [20]. In particular, LAGD com-
plexity does not benefit from sparsity, lh−1 being constant, whereas
our approach is faster when k decreases. Moreover computing the
score difference of two DAGs before and after a SWAP operation is
easy to do as it remains local to a single target node thanks to score
decomposition.

Another source of suboptimality comes from the global acyclicity
constraint of Bayesian networks.

3.2 Breaking cycles by successive deletions and
swaps

→

Figure 4. Applying an extended SWAP∗ operation breaking a cycle by an
additional SWAP operation:

SWAP∗(X2|X7→ X3) = {SWAP(X2|X7→ X3), SWAP(X4|X5→ X6)}.

Consider the 7-variable DAG example in Figure 4. Swapping the
parent X2 of X3 by X7 in DAG G (Fig. 4.left) introduces a directed
cycle {X7 → X3, X3 → X4, X4 → X6, X6 → X7} and is there-
fore forbidden in our NADRS neighborhood. However it may corre-
spond to a large local score improvement with respect to variable X3.
Let us denote this improvement by ∆X3(G,SWAP(X2|X7 → X3)) =

fX3(D,G′) − fX3(D,G) with G′ obtained by applying the SWAP op-
eration on G (G′ is not a valid DAG), and D and f being the sample
and scoring function. Our idea is to heuristically guide the search
for a second (or more) local operator to be applied on G′ in order

Figure 3. Problems with the classical neighborhood NADR when two nodes (here X3 and X4) have the same parents. True DAG is G6. Starting from the
empty graph (not shown), G4 can be locally optimum for NADR when the sample size is small (score of G5 lower than G4), whereas in NADRS ,

SWAP(X3|X1→ X4) moves directly from G4 to G6.

to restore graph acyclicity (G′ becomes valid) and such that the true
score of the final DAG is greater than the score of the original one.
In Figure 4, it is obtained by applying a second SWAP.

Algorithm 2: SWAP∗(X|Y → Z) operator.
Input : operation X|Y → Z, sample D, score f , DAG G(X,E)
Output : a set of local operations L
L← ∅ /* Initialize output operations to the empty set */ ;
X’← X /* Candidate parent set for future swaps */ ;
G′ ← G /* Copy of input DAG */ ;
∆ = ∆Z(G′,SWAP(X|Y → Z)) /* Putative score improvement */ ;3
if ∆ > 0 then

L← L ∪ {SWAP(X|Y → Z)} ;
Apply SWAP(X|Y → Z) to G′ ;
/* Repeat deletion or swap operations until no more cycles
*/ while ∆ > 0 ∧ (C←NextCycle(G′)) , ∅ do4

X’← X’ \ nodes(C) ;5
/* Choose the best deletion to break cycle C */ ;
(U∗ → W∗)←6
argmax(U→W)∈C\{Y→Z} ∆W (G′,DELETE(U → W)) ;
/* Test if the sum of local score changes is positive */ ;
if ∆ + ∆W∗ (G′,DELETE(U∗ → W∗)) > 0 then

L← L ∪ {DELETE(U∗ → W∗)} ;
∆← ∆ + ∆W∗ (G′,DELETE(U∗ → W∗)) ;
Apply DELETE(U∗ → W∗) to G′ ;

else
/* Choose the best swap to get a positive change */ ;
(U∗|V∗ → W∗)←7
argmax(U→W)∈C,V∈X’ ∆W (G′,SWAP(U |V → W)) ;
∆← ∆ + ∆W∗ (G′,SWAP(U∗|V∗ → W∗)) ;
if ∆ > 0 then

L← L ∪ {SWAP(U∗|V∗ → W∗)} ;
Apply SWAP(U∗|V∗ → W∗) to G′ ;

else
L← ∅ /* Abort all local operations */ ;8

return L ;

For that purpose, we define an extended SWAP operator, denoted
SWAP∗, able to break all directed cycles by performing a succession
of deletion or swap operations. It can be seen as a kind of greedy
descent search in the space of directed cyclic graphs, trying to re-
move the less important arcs or to swap them in order to compen-
sate for their loss, until a better valid DAG is found. We use lo-
cal score changes to guide the search: ∆Xi(G,OP) = fXi(D,G′) −
fXi(D,G), with G′ the result of applying the local move operator
OP ∈ {DELET E, S WAP} to G. A negative sum of local changes
aborts the search. Recall that finding a minimum number of arc dele-

tions in order to restore acyclicity is NP-hard, see minimum feed-
back arc set problem in [10]. We use a greedy approach instead. The
pseudo-code of SWAP∗ is given in Algorithm 2. The local score im-
provement of the initial SWAP operation is evaluated at line 3. It
corresponds to a putative gain on the current score. If it is positive
then this operation is applied to a copy of the input DAG G, checking
next if it creates some directed cycles. Each cycle is retrieved by the
NextCycle function7 and the algorithm searches for an arc deletion
in this cycle with minimum deterioration of the local score at line 6.
If the combined local score change of the SWAP and DELETE op-
erations is positive then it applies the selected arc deletion and con-
tinues to test if there are no more directed cycles at line 4. If the
combined local score change is negative then it tries to swap an arc
of the cycle such that the combined local score change is maximized
(line 7) and positive. If it fails to find such an operation then it stops
breaking cycles and returns an empty operation set. Finally if it suc-
ceeds, breaking all cycles, then it returns a feasible set of SWAP and
DELETE operations resulting into a new valid DAG G′ with a better
score than G. The true score improvement is equal to ∆.

Algorithm 2 terminates because there are at most O(pk) directed
cycles to break, assuming p nodes and k maximum number of parents
per node. Arcs newly created by swap operations cannot be swapped
again more than p times thanks to our restricted list of alternative
candidate parent nodes X’ used at line 7, initialized to all the vari-
ables at the beginning, and updated by the list of nodes present in the
current cycle at line 5.

We apply the same approach to extend the other operators ADD∗

and REVERSE∗, breaking cycles with deletions or swaps. Because
REVERSE∗(X → Y) = ADD∗(Y → X), we use only ADD∗. The re-
sulting neighborhood exploiting these extended operators is denoted
NA∗DS ∗ and SGS using this neighborhood is denoted SGS3 (Stochas-
tic Greedy Search with Successive Swaps) in the experiments.

4 Experimental Results

In this section, we describe a set of experiments aimed at test-
ing the performance of SGSi algorithms compared with state-of-
the-art Bayesian network structure learning algorithms on standard
Bayesian networks and challenging gene regulatory networks.

7 We implemented an incremental acyclicity test [14] which returns a shortest
directed cycle using breadth first search.

4.1 Results on Standard Bayesian Networks

We used four gold-standard networks from the Bayesian Network
Repository8 whose main properties are shown in Table 1. In this ta-
ble, Nodes and Arcs specify the number of nodes and arcs respec-
tively in the DAG. The Max in-degree is the maximum number of
parents of a node. The Min-max states are the minimum and max-
imum number of states in the domain of a variable associated to a
node. Finally, Longest path is the length of the longest directed path
between any pair of nodes in the DAG. 100 samples of size n = 500
and n = 5000 were generated for each network using Causal Ex-
plorer [1].

Table 1. Bayesian network properties

Alarm Insurance Hailfinder Pigs
Nodes 37 27 56 441
Arcs 46 52 66 592
Max in-degree 4 3 4 2
Min-max states 2-4 2-5 2-11 3-3
Longest path 11 10 14 6

We compared SGSi algorithms with LAGD [17], available in the
WEKA software [15] and GES [3] implemented in Tetrad 4.4.0 [24].
LAGD was shown to outperform repeated hill-climbing, order-based
search, tabu search, and simulated annealing in [23]. GES, which is
considered the reference algorithm for Bayesian network structure
learning, was reported having similar performance to the most re-
cent order-based search algorithms in [2]. Recall that SGS1 is similar
to repeated hill-climbing, SGS2 uses the SWAP operator, and SGS3

breaks cycles by successive DELETE and SWAP operators. Experi-
ments were performed on a 3 GHz Intel Core2 computer with 4GB
running Linux 2.6.

We fixed the maximum number of parents per node at k = 5 for
SGSi and LAGD. LAGD exploits a h = 2-look ahead in l = 5 max-
imum improving directions. GES was restricted on the number of
adjacent nodes: d = 7 for Hailfinder and d = 10 for Pigs network
as done in [2]. All methods were initialized by an empty graph and
optimized the BDeu score with equivalent sample size α = 1 and
no prior on the network structures. For each sample, we recorded
the best score obtained by GES, and by r = 10 randomized greedy
searches for SGSi (Algorithm 1 at line 2) as for LAGD9.

In order to test the statistical significance of the difference in BDeu
score between two methods, we applied a non-parametric paired test,
the Wilcoxon signed-rank test [32]. Table 2 presents the test results
for all the pairs of methods by using an unilateral alternative (no dif-
ference versus better), the pairwise type I error is fixed to 6.2510−4

which corresponds to a familywise error rate of 5% with Bonferroni
correction for multiple comparisons. The above results were summa-
rized in Table 3, in a summarized Wilcoxon score for each method,
obtained by summing the positive comparisons and subtracting the
negative ones. The non significant comparisons were ignored.

SGS3 was the best method for the four networks, except for Pigs
network with n = 5000 which is more accurately estimated by GES.
We conjecture that in this case, GES was closed to its asymptotic op-
timal behavior, which may be due to the smallest network features
of Pigs network among all. SGS2 improved over SGS1 and reached
the second position especially for small sample sizes, probably for

8 http://www.cs.huji.ac.il/site//labs/compbio/Repository/
9 We randomly permute the input variables at each run.

Table 2. Wilcoxon test comparing pairs of algorithms (familywise error
rate = 5%). For Method1 versus Method2, + means that Method1 is

significantly better than Method2, − means that Method1 is significantly
worse than Method2 and ∼ means there is no significant result

Alarm Insurance
Sample size 500 5 000 500 5 000
SGS3 vs SGS1 + + + +

SGS3 vs SGS2 + + + +

SGS2 vs SGS1 + ∼ ∼ ∼

SGS3 vs GES + + + +

SGS3 vs LAGD + + + +

SGS2 vs GES + ∼ + +

SGS2 vs LAGD ∼ ∼ + +

SGS1 vs GES + ∼ + +

SGS1 vs LAGD ∼ ∼ + +

LAGD vs GES + ∼ + +

Hailfinder Pigs
SGS3 vs SGS1 ∼ + + +

SGS3 vs SGS2 ∼ + + +

SGS2 vs SGS1 ∼ ∼ ∼ ∼

SGS3 vs GES + + + -
SGS3 vs LAGD ∼ + n/a n/a
SGS2 vs GES + + ∼ -
SGS2 vs LAGD ∼ + n/a n/a
SGS1 vs GES + + ∼ -
SGS1 vs LAGD ∼ + n/a n/a
LAGD vs GES + + n/a n/a

Table 3. Summarized Wilcoxon scores (the higher the score, the better the
method)

Alarm Insurance Hailfinder Pigs
SGS3 8 8 5 4
SGS2 0 2 2 -3
SGS1 -2 2 2 -3
LAGD -1 -4 -1 n/a
GES -5 -8 -8 2

Table 4. Number of spurious edges (+) and missing edges (-) to sum for
the structural Hamming distance. Both scores are in bold when giving the

best distance per configuration

Alarm Insurance
Sample size 500 5 000 500 5 000

SGS3 + 8 6 4 2
− 3 2 20 8

LAGD + 11 8 4 5
− 4 2 20 11

GES + 6 4 2 3
− 5 2 23 12

Hailfinder Pigs

SGS3 + 17 16 32 41
− 24 13 0 0

LAGD + 21 20 n/a n/a
− 26 19 n/a n/a

GES + 15 11 2 0
− 24 22 7 0

reasons commented in Figure 3. LAGD got poor results, the differ-
ence with SGS1 can be explained by a better randomization in SGS1

(Algorithm 1 at line 1). LAGD failed on the Pigs network due to the
large number of variables p = 441 that makes the exploration of 2-
look ahead neighborhoods infeasible in a reasonable time. GES was
the worst method of this evaluation (except for Pigs) due to limited
sample sizes.

Although the algorithms are designed to maximize a (BDeu) score,
we generally look for a network structure as close as possible to the
true one. When the sample size grows large, improving the BDeu
score leads to reduce the structural Hamming distance (SHD) be-
tween the learned and the true network. We report in Table 4 the
means over 100 datasets (rounded values to the nearest integer) of
the missing and spurious edges without taking into account the edge
orientations. The SHD is the sum of the above values. We do not
report SGS1 and SGS2 results that are outperformed by SGS3. SGS3

(resp. GES) got the best SHD in 4 (resp. 5) configurations and outper-
formed LAGD (which performed as SGS3 in 1 configuration). GES
performed extremely well on the Pigs network, finding the true net-
work with 5,000 samples, whereas SGS3 learned too many edges but
recovered all the true edges (even with n = 500). The spurious edges
learned by SGS3 are exclusively due to random orientations of com-
pelled arcs in v-structures (see Figure 1). Assuming X1→ X3← X2
in the true network (v-structures are very frequent in the Pigs net-
work) and a large sample size, if during its greedy search SGS3 adds
first X1 ← X3 and X3 → X2 then it will add next a covering edge
X1→ X2 or X1← X2 in order to find a minimal independence map
(see Proposition 1). We corrected this fault by comparing for each
covered v-structure the 3 possible non-covered v-structures indepen-
dently from the other variables and selecting the highest score con-
figuration. After this post-processing step on Pigs network, we had
only 1 (resp. 2) spurious edges for SGS3 with 500 (resp. 5000) sam-
ples without increasing the missing edges number. The same post-
processing had no effect on the other smaller networks.

4.2 Detailed analysis on the Alarm network
We conducted a series of algorithm analyzes on the Alarm network
with a fixed sample size n = 500.

Table 5. Single greedy search analysis on the Alarm network
(n = 500, r = 1)

BDeu score Iter. BDeu cache Time(s)
SGS3 -5490.53 66 4543 3.2
SGS2 -5513.89 58 4310 2.3
SGS1 -5541.55 55 3305 1.5
LAGD -5544.61 35 4782 3.2
GES -5659.26 72 5531 2.4

Table 5 shows a typical example of the BDeu score reached by the
algorithms for a single greedy search (r = 1) on a particular sample.
It also reports the number of local moves Iter. (Algorithm 1 at line 1),
the number of local score fXi(D,G) computations for different par-
ent configurations, i.e. assuming a perfect BDeu cache, and the CPU
time in seconds. As expected, the number of iterations for LAGD
was less than half that of other methods, since LAGD applies two
local operators (ADD, DELETE, or REVERSE) at each move. The
swap operations used by SGS2 and SGS3 slightly increased the num-
ber of moves allowing to find better local optima. Comparing CPU
times is a difficult task due to the various implementation details (lan-
guage choice, caching strategy, sample compilation techniques, see

for instance Chapter 18.4.3 in [18]). Nevertheless SGSi algorithms
are comparable. In our implementation, SGS3 was twice slower than
SGS1. A fairer comparison is the number of calls to new local score
computations. SGS1 needed the fewest number, whereas GES needed
the most as it tends to explore larger neighborhoods in the space of
Markov-equivalent networks. Notice that SGS2 and SGS3 required
less score computations than LAGD due to graph sparsity (see Sec-
tion 3.1). The greater BDeu cache size of SGS3 compared to SGS2 is
mainly due to the increased number of local moves.

0 5 10 15 20 25 30 35 40 45 50
−5800

−5750

−5700

−5650

−5600

−5550

−5500

Number of restart

B
D

eu
 s

co
re

Gold

SGS3 Empty

SGS3 Random

SGS2 Empty

SGS1 Empty

GES

SGS2 Random

SGS1 Random

Figure 5. Best BDeu scores, averaged on 30 Alarm samples (n = 500),
found by SGSi algorithms as the number of restarts r increases and starting

either from an empty (solid line) or a random graph (dashed line). Results of
GES (dotted line) and BDeu score of the true network Gold (dash-dotted

line) are also given. Methods are sorted from the best, SGS3 with an empty
graph, to the worst, SGS1 with a random initial graph, at r = 1.

We further analyzed the impact on performances of the number
of restarts r and the initial graph used by SGSi algorithms (see
InitGraph in Algorithm 1). Figure 5 reports averaged BDeu scores
on 30 Alarm samples (the length of the 95% confidence interval
of the BDeu score mean was around ±30). The 30 initial random
graphs, common for SGSi algorithms, are composed of 71 arcs with
at most two parents per node10. All SGSi methods reached a better
BDeu score than GES in this small sample size situation by the use
of less than r = 4 restarts. SGSi methods converged quite rapidly
as r increases. Only SGS3 found a better score than the true net-
work. Initial random graphs were counter-productive for all the meth-
ods, except for SGS3. It shows that starting from a random graph
is useful if the available operators allow to move efficiently in the
search space, which is illustrated by the following experiment. On
the contrary, using randomness within the greedy selection process
(see SelectRandom in Algorithm 1) was always beneficial.

Finally, we analyzed how often our new local move operators are
used during the search. Table 6 shows the mean number of local
moves using a specific operator averaged on r = 50 greedy searches
over 30 Alarm samples (n = 500). Labels ADD+ and SWAP+ mean
that at least two local operators were successively applied at a given
move in order to break cycles11. The new local move operators are

10 For each node, we randomly select two parents and remove a parent if it
creates a directed cycle.

11 We found at most 4 (resp. 5) successive operations for the 1500 runs start-
ing from an empty (resp. random) graph.

Table 6. Operator usage depending on the initial graph

Empty graph init. Random graph init.
SGS1 SGS2 SGS3 SGS1 SGS2 SGS3

ADD 53 53 52 53 9.5 11.5
DELETE 0.5 0.1 1.4 64 20 43
REVERSE 0.9 1.1 0.7 5.3 3.4 1.9
SWAP 0 1.1 3.2 0 47 33
ADD+ 0 0 2 0 0 14
SWAP+ 0 0 1.6 0 0 9.5

mostly used when starting from a random graph (there are more cy-
cles to break), but when starting from an empty graph, only a few
applications of the extended moves allow to significantly improve
the BDeu score as previously shown in Figure 5 and Table 3.

4.3 Results on Gene Regulatory Networks

Gene regulatory network reconstruction from gene expression data
using Bayesian network structure learning was first proposed in [11].
We used simulated expression datasets of the Systems Genetics
Challenge A from the international reverse enginnering competition
DREAM5 [9]. Genetics data were not used as they require additional
modelling to be taken into account, see e.g. [31]. Expression data
were generated using the SysGenSIM generator [22] based on or-
dinary differential equation simulation. Five datasets are available
for three different sample sizes (n = 100, 300, and 999). The 15
datasets were obtained from different known gene networks com-
posed of 1, 000 variables and containing directed cycles. For each
sample size, the five network structures contain a different number of
edges varying from ≈ 2, 000 (Net1) to more than 5, 000 (Net5). We
discretized gene expression levels into 2 to 4 states using an adaptive
method based on an adapted k-means algorithm and the more general
framework of Gaussian mixture models as described in [31].

With such large networks, we had to adapt the learning procedure
of SGSi algorithms12. We decided to restrict their lists of candidate
parents as done in [13]: we selected for each variable X the set of
parents S such that each element Y of S improves the local BDeu
score when it is considered as a unique parent compared to the or-
phan situation (fX(D, {Y → X}) > fX(D, ∅)). This filtering process
was done prior to the search13. In these experiments, SGSi algo-
rithms have a maximum number of parents per node fixed at k = 5
and use r = 10 restarts. Instead of LAGD (which was too slow),
we used MMHC [30] having two steps similar to SGSi. It first se-
lects the skeleton of the graph using mutual information measures
(MMPC [29] filtering step) and then orientates edges in a greedy
manner. We recorded the best BDeu score of 10 runs for MMHC,
by randomly permuting the input variables at each run. The skeleton
being built locally for each variable, MMHC can handle large net-
works. All the methods started from an empty graph and optimized
the BDeu score with α = 1 and no prior on the network structures.

It was difficult to perform statistics with the results of this exper-
iment. Indeed, contrary to the standard network experiment, there
were no replicated samples of the same network. We decided to pool
results per sample size and we performed the Wilcoxon test on the
groups. With only five results per group to compare the methods, we
are aware that the power of the test is very low. So, we applied a

12 GES managed in ∼1-hour CPU time each network thanks to its better im-
plementation of caching and heap data structure.

13 It could also be done during the search as in [12].

Table 7. Wilcoxon test (error rate = 5%) for different gene network sample
sizes

100 300 999
SGS3 vs MMHC + + +

SGS3 vs GES + + +
MMHC vs GES - ∼ +

pairwise type I error of 5% and we did not try to correct for multiple
comparisons, see Table 7. However, it is worth noting that SGS3 was
always the best method and that it increased the BDeu score by about
2% in average.

Surprisingly, GES appeared to be better on smaller sample sizes
compared to MMHC. As explained below, MMHC was penalized by
its filtering process, especially on the smallest sample size, whereas
GES had no restrictions on the candidate parent sets.

In these experiments, the structural Hamming distance (SHD) was
not informative due to the poor results reached by all tested algo-
rithms for such large networks. SHD, equal to the sum of spurious
edges (s) and missing edges (m), was greater than the number of
edges (e) of the true graph. In this situation, even the empty struc-
ture appears better. For this reason, we computed another aggregated
structural quality measure based on the precision (e−m

e−m+s) and recall
(e−m

e) measures and took the Euclidean distance to the origin to com-
bine them (

√
precision2 + recall2). Contrary to SHD, a high distance

indicates a better structural quality. We observed in Table 8 con-
trasted performances between the tested methods depending on the
sample size: for n=100, MMHC got the best results, for n = 300, it
was GES, and finally SGS3 performed the best for the largest sample
size. Better BDeu scores are not always synonymous with a better
structural quality, the limited sample size in addition to the non faith-
fulness of the data (generated by ordinary differential equations with
cycles) could explain this behavior. We should notice that the good
optimization behavior of SGS3 in terms of BDeu scores resulted in
a better structural quality than GES and MMHC as sample size in-
creases.

Table 8. Euclidean distances to the origin of the (precision, recall) values.
Best distances per sample size are in bold

n SGS3 MMHC GES
Net1 0.170 0.218 0.196
Net2 0.213 0.295 0.232

100 Net3 0.214 0.266 0.236
Net4 0.201 0.265 0.214
Net5 0.206 0.247 0.243

Net1 0.510 0.483 0.464
Net2 0.342 0.337 0.385

300 Net3 0.484 0.488 0.505
Net4 0.453 0.478 0.498
Net5 0.419 0.397 0.428

Net1 0.578 0.537 0.549
Net2 0.581 0.510 0.505

999 Net3 0.454 0.441 0.484
Net4 0.476 0.450 0.476
Net5 0.479 0.471 0.458

Moreover, we compared the quality of the filtering process used by
MMPC and SGS3. Table 9 reports for the first network (Net1) of each
sample size, the total number of arcs kept by the filtering process
and the recall value, which represents the percentage of true edges
in the filter. Our first observation is the poor recall of both filtering
processes, which indicates strong structural differences between the

true network and the learned network even with n = 999 sample
size. Our filtering approach obtained better recall values with similar
compression sizes than MMPC.

Finally, we tried the same methods as in Section 4.1 on 50 small
gene regulatory networks (Web50 Artificial Gene Networks with 50
nodes and 50 arcs) without doing any filtering process. For a sample
size n = 500, SGS3 was significantly better than GES and LAGD
in terms of BDeu scores and slightly better in terms of Euclidean
distances to the origin of the (precision, recall) values.

Table 9. Total size and recall of candidate parent lists for SGS3 and
MMPC on the most sparse gene network Net1

100 300 999

BDeu test size 2670 2430 5984
recall 9% 18% 35%

MMPC size 2568 3064 3842
recall 5% 12% 23%

5 Conclusion
We have presented in this paper a new greedy search algorithms
called SGSi exploiting stochasticity from two random draws. We
have developed a new local move operator called SWAP and ex-
tended versions for ADD and SWAP operators to overcome frequent
limitations of local search methods which are local maxima and
cyclic situations. We compared SGS3 using SWAP and extended op-
erators to state-of-the-art methods and we obtained significant BDeu
and recall value improvements on classical benchmarks when the
sample size is small. The complexity of SGS3 stays moderate with
sparse networks. In case of large networks with many variables we
applied a filtering process in preprocessing using the same criterion
as for the search. This process kept more edges from the true network
than mutual information-based methods with significant reduction of
the search space.

In the future, we would like to test our new operators with other
local search methods like tabu search.

REFERENCES
[1] C. Aliferis, I. Tsamardinos, A. Statnikov, and L. Brown, ‘Causal Ex-

plorer: A Probabilistic Network Learning Toolkit for Biomedical Dis-
covery’, in Proceedings of the International Conference on Mathemat-
ics and Engineering Techniques in Medicine and Biological Sciences,
(2003).

[2] J. Alonso-Barba, L. de la Ossa, and J. Puerta, ‘Structural learning of
bayesian networks using local algorithms based on the space of order-
ings’, Soft Comput, 1881–1895, (2011).

[3] D. Chickering, ‘Optimal structure identification with greedy search’,
Journal of Machine Learning Research, 3, 507–554, (2002).

[4] D. Chickering, D. Heckerman, and C. Meek, ‘Large-Sample Learning
of Bayesian Networks is NP-Hard’, Journal of Machine Learning Re-
search, 5, 1287–1330, (2004).

[5] D. Chickering and D. Heckermann, ‘Learning bayesian networks is NP-
complete’, In learning from data: Al and Statistics, (1996).

[6] G Cooper and E Hersovits, ‘A Bayesian method for the induction
of probabilistic networks from data’, Machine Learning, 9, 309–347,
(1992).

[7] R. Daly and Q. Shen, ‘Learning Bayesian Network Equivalence Classes
with Ant Colony Optimization’, Journal of Artificial Intelligence Re-
search, 35, 391–447, (2009).

[8] R. Daly, Q. Shen, and S. Aitken, ‘Learning Bayesian networks: ap-
proaches and issues’, The Knowledge Engineering Review, 26(2), 99–
157, (2011).

[9] ‘The DREAM5 Systems Genetics Challenges’.
http://wiki.c2b2.columbia.edu/dream/index.php/D5c3, 2010.

[10] Paola Festa, Panos M. Pardalos, and Mauricio G. C. Resende, ‘Feed-
back Set Problems’, in Encyclopedia of Optimization, 1005–1016,
Springer, (2009).

[11] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, ‘Using bayesian net-
works to analyse expression data’, Journal of computational biology,
7(3/4), 601–620, (2000).

[12] J. Gámez, J. Mateo, and J. Puerta, ‘Learning Bayesian networks by
hill climbing: efficient methods based on progressive restriction of the
neighborhood’, Data Min. Knowl. Discov., 22, 106–148, (2011).

[13] A. Goldenberg and A. Moore, ‘Tractable learning of large Bayes net
structures from sparse data’, in Proc. of ICML’04, pp. 44–51, (2004).

[14] B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. Tarjan, ‘Faster al-
gorithms for incremental topological ordering’, in Proc. of ICALP, pp.
421–433, (2008).

[15] M. Hall, F. Eibe, G. Holmes, B. Pfahringer, P. Reutemann, and I. Wit-
ten, ‘The WEKA Data Mining Software’, SIGKDD Explorations, 11,
(2009).

[16] D. Heckerman, D. Geiger, and D. Chickering, ‘Learning Bayesian Net-
works: The Combination of Knowledge and Statistical Data’, in Ma-
chine Learning, volume 20, pp. 197–243, (1995).

[17] A. Holland, M. Fathi, M. Abramovici, and M. Neubach, ‘Competing
fusion for bayesian applications’, in Proc. of IPMU 2008, pp. 378–385,
(2008).

[18] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques, MIT Press, 2009.

[19] G. Melançon, I. Dutour, and M. Bousquet-Mélou, ‘Random generation
of directed acyclic graphs’, Electronic Notes in Discrete Mathematics,
10, 202–207, (2001).

[20] A. Moore and W.K. Wong, ‘Optimal reinsertion: A new search operator
for accelerated and more accurate bayesian network structure learning’,
in Proc. of ICML ’03, pp. 552–559, (2003).

[21] J. Nielsen, T. Kocka, and J. Pefia, ‘On Local Optima in Learning
Bayesian Networks’, in Proc. of UAI-03, pp. 435–442, (2003).

[22] A. Pinna, N. Soranzo, I. Hoeschele, and A. de la Fuente, ‘Simulat-
ing system genetics data with SysGenSIM’, Bioinformatics, 27, 2459–
2462, (2011).

[23] E. Salehi and R. Gras, ‘An empirical comparison of the efficiency of
several local search heuristics algorithms for Bayesian network struc-
ture learning’, in Learning and Intelligent OptimizatioN Workshop
(LION 3), (2009).

[24] R. Scheines, P. Spirtes, C. Glymour, C. Meek, and T. Richardson, ‘The
TETRAD Project: Constraint Based Aids to Causal Model Specifica-
tion’, Multivariate Behavioral Research, 33(1), 65–117, (1998).

[25] M. Schmidt, A. Niculescu-Mizil, and K. Murphy, ‘Learning graphical
model structure using L1-regularization paths’, in Proc. of AAAI’07, pp.
1278–1283, (2007).

[26] G. Schwarz, ‘Estimating the dimension of a model’, The annals of
statistics, (1978).

[27] P. Spirtes, C. Glymour, and R. Scheines, ‘Causality from probability’,
Evolving knowledge in the natural and behavioral sciences, 181–199,
(1990).

[28] M. Teyssier and D. Koller, ‘Ordering-based Search: A Simple and
Effective Algorithm for Learning Bayesian Networks’, in Proc. of
UAI’05, pp. 584–590, (2005).

[29] I. Tsamardinos, C. Aliferis, and A. Statnikov, ‘Time and sample effi-
cient discovery of Markov blankets and direct causal relations’, in Proc.
of KDD’03, pp. 673–678, (2003).

[30] I. Tsamardinos, L. Brown, and C. Aliferis, ‘The max-min hill-climbing
Bayesian network structure learning algorithm’, Mach. Learn., 65, 31–
78, (2006).

[31] M. Vignes, J. Vandel, D. Allouche, N. Ramadan-Alban, C. Cierco-
Ayrolles, T. Schiex, B. Mangin, and S. de Givry, ‘Gene Regulatory Net-
work Reconstruction Using Bayesian Networks, the Dantzig Selector,
the Lasso and Their Meta-Analysis’, PLoS ONE, 6, (2011).

[32] F. Wilcoxon, ‘Individual Comparisons by Ranking Methods’, Biomet-
rics Bulletin, 1, 80–83, (1945).

