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A fundamental molecular question, the regulation of gene expression
An ethical and economic breeding problem, survival at birth
A statistical question, modelization of gene co-expression with adding biological information

INRA/GenPhySE,
Yvette Lahbib-Mansaisand Co.

Cytogenetics

Functional genomics Statistics

n
0
argming y ()d- - .i}rx,-"} + Al Gille, +
=1

I (J E (.fjria)?+ Z (.fy:]zj
of type 1 Foftype

INRA/GenPhySE, INRA/MIA-T,
Laurence Liaubet and Co. Nathalie Vialaneixand Co.



Interpretation of phenotypes not explained only by genetic approach.
The same genome sequence produce a wide range of differentiated cells.
Modulation of gene expression: Epigenetic marks and chromatin regulation, cis and trans

regulation = 3D nuclear topography......

Response to physiological context: growth, health, reproduction, adaptation

WS foﬁﬁﬁBJ

”"E','“ Em Dﬂ:" Mawwe e Cedbon Ot

Acloque H et al. 2009




Chromosome 14

Ve i

TRy
B
- Chromosoma 11
i

Topalogically asseciating domain {TAD)

SLOGAS

A2 %
a7

Hierarchical Transcription in a Multigene Complex

Fanucchi et al. Cell 2013



15

14

13

12

11

10

9

8

T
1975 1980 1985 1990 1995 2000 2005 2010 2015

=g Total births per litter  eese] jve-bom per litter

g weaned per litter s Still-bomn per litter

1.1

0.9

0.8

0,7

0.6

0.5

0.4

The selection for more prolificacy and
meat production has been
accompanied by a substantial increase
in mortality of piglets at birth

14 % of newborns died between birth
and weaning

Peak of mortality in the first two days
after birth €¢==) maturity

Figure 1. Evolution of average number of piglets per litter in France from 1975 to 2015. The data
used to build this graph were collected and treated by the GTTT (Technical Management of Sow Herds)

of the French Porc and Pig Institut (IFIF).

Theése de Maria Marti-Marimon, 2018



Maturity = plain development allowing survival at birth

u h ‘ maturation process

Fetal breed-specific mechanisms
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Wilson et al., 1998 ; Biensen et al., 1998 ; Leenhouwers et al., 2002 ; Canario, 2006 ; Thése de Valentin Voillet, 2016



ANR project PORCINET (2010)
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5,167 genes differential between 90 and 110
dg in the fetal muscle (Bonferroni 1%)

With 1,131 DEGs for age x genotype (maturity)
found in Voillet et al. (2014)



IGF2, a gene of fundamental importance in pig muscle development
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IGF2 (pat), insulin-like growth factor 2

Pig =» QTL for adiposity muscle mass
Human = fetal growth and intrauterine growth restriction

Co-expression = co-regulation? = nuclear co-localization?
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1. Network inference with GGM

2. Coming back to our problem: gene expression and FISH
experiments



Hypothetizing that co-expression is related to co-location:

= have an automated process to automatically find relevant
pairs of genes for which co-location can be tested (because

FISH experiments are time consumming and targeted experiments)

= improve network inference using co-location information



1. Network inference with GGM




Data: large scale gene expression data

individuals X XJ,
n

variables (gene expressions), p
here: micro-array experiment, n = 61 (gestational age: 90
days) and p = 13,855 uniquely annotated genes



Data: large scale gene expression data

individuals X XJ,

n

variables (gene expressions), p

here: micro-array experiment, n = 61 (gestational age: 90
days) and p = 13,855 uniquely annotated genes

What we want to obtain: a network with
= nodes: genes;

» edges: large and direct co-expression between two genes
(track transcription regulations)



Butte and Kohane (1999, 2000)

First (naive) approach: calculate correlations between
expressions for all pairs of genes, threshold the smallest ones
and build the network.
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swimming pool drownings

Number of people who drowned by falling into a pool

correlates with
Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004)
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set.seed(2807); x <- runif(100)

y <= 2*x+1+rnorm(100,0,0.1); cor(x,y);
z <- 2*x+1+rnorm(100,0,0.1); cor(x,z);

cor(y,z); [1] 0.9971105

[1] 0.9988261
(1] 0.998751




set.seed(2807); x <- runif(100)

y <= 2xx+1+rnorm(100,0,0.1); cor(x,y); [1] 0.9988261
z <- 2*x+1+rnorm(100,0,0.1); cor(x,z); [1] 0.998751
cor(y,z); [1] 0.9971105

f Partial correlation
cor (Im(y~x) $residuals,lm(z~x) $residuals) [1]

-0.1933699




Networks are built using partial correlations, i.e., correlations
between gene expressions knowing the expression of all the
other genes (residual correlations).



(Xi)i=1,..n are i.i.d. Gaussian random variables N (0,X) (gene
expression); then

j+— J(genes jand j are linked) < Cor (Xj, Xj/|(Xk)k¢J-J/) #0



(Xi)i=1,..n are i.i.d. Gaussian random variables N (0,X) (gene
expression); then

j+— J(genes jand j are linked) < Cor (X, X' |(X¥)szis ) # 0
Fjod

Cor (Xf, Xj'|(Xk)k¢j’j/> o~ (Z_l)jj, = find the partial

correlations by means of (£7)~1,



(Xi)i=1,..n are i.i.d. Gaussian random variables N (0,X) (gene
expression); then

j+— J(genes jand j are linked) < Cor (Xj, Xj/|(Xk)k¢j,j/) #0
DA% ~ (v-1 - -

Cor (XJ,XJ |(X )k#j/) ~ (2: )j,j’ = find the partial

correlations by means of (£")1.

Problem: ¥ is a p-dimensional matrix (with p large) and n is
small compared to p = (£7)~! is a poor estimate of ¥ !



Relation between partial correlation and LM: if S =¥~ and
writing
X = 5J-TX_j + €

Sy . .
we have: 3y = 2. So edges (non zero partial correlations)
g
also correspond to coefficients different to zero in the p
regression models above (for j=1,...,p).



Relation between partial correlation and LM: if S =¥~ and
writing
g — 3T x—J
X=p X7+e
Sy : .
we have: 3y = 2. So edges (non zero partial correlations)
g

also correspond to coefficients different to zero in the p
regression models above (for j=1,...,p).

To ensure sparsity of 3;: Meinshausen and Bithlmann (2006)
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Suppose that we have some clues that:

= for some pairs (j, /), an edge is likely to occur between j
and J

= for some pairs (j, /), it is likely that there is no edge
between j and /
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Suppose that we have some clues that:

= for some pairs (j, /), an edge is likely to occur between j
and J

= for some pairs (j, /), it is likely that there is no edge
between j and /

then, we want to drive [

» toward +a with a some positive value (the sign is that of
the correlation Cor(X/, X))

= toward 0

10
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smooth penalty for co-localized (or not) pairs
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smooth penalty for co-localized (or not) pairs
In practice:

= a =1 (after scaling of gene expressions)

» )\ chosen with stability selection based on bootstrap for a
fixed p

= 4 chosen as the minimum value recovering exactly prior

knowledge 1



2. Coming back to our problem:
gene expression and FISH

experiments
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= restricted to a list of genes likely involved in foetal
development (1,131 DEGs between 90 and 110 days of
gestation as found in Voillet et al. (2014))

13



= restricted to a list of genes likely involved in foetal
development (1,131 DEGs between 90 and 110 days of
gestation as found in Voillet et al. (2014))

= started from an even more restricted list including genes
of interest (IGF2, DLKI and MEG3) and the genes highly
correlated to these genes (p = 359 genes at the end)

13



1
Screening (R?20,84) 359 DEGs

Gene Ontology
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1. Node importance

2. Clustering of nodes (and comparison of clustering with
NMI)

3. GO analysis
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For every node, computation of:

= degree (number of edges afferent to a given node)
= betweenness centrality measure

—

The orange node's degree is equal to 2, its betweenness
to 4.
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For every node, computation of:

= degree (number of edges afferent to a given node)
= betweenness centrality measure

—L .
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For every node, computation of:

= degree (number of edges afferent to a given node)
= betweenness centrality measure

l/
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For every node, computation of:

= degree (number of edges afferent to a given node)
= betweenness centrality measure
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For every node, computation of:

= degree (number of edges afferent to a given node)
= betweenness centrality measure

e —
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The modularity Newman and Girvan (2004) of the partition
(C1,...,Ck) is equal to:

Q(Cy,...,Ck) = %Z S (W - Py)
k=1 Xi,XjECk

with P;: weight of a “null model” (graph with the same
degree distribution but no preferential attachment):

_ G

P 2m
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A good clustering should maximize the modularity:

= Q " when (x; x;) are in the same cluster and Wj; > P;

= Q \,when (x;, x;) are in two different clusters and

di =15 : d; =20

VV,'J':5: VV,J—P,J:—25

i and j in the same cluster decreases the modularity

18



A good clustering should maximize the modularity:

= Q " when (x; x;) are in the same cluster and Wj; > P;

= Q \,when (x;, x;) are in two different clusters and

P; = 0.05

i and j in the same cluster increases the modularity

18



A good clustering should maximize the modularity:

= Q " when (x; x;) are in the same cluster and Wj; > P;
= Q \,when (x;, x;) are in two different clusters and
W > P;
= Modularity
= helps separate hubs
= is not an increasing function of the number of clusters:
useful to choose the relevant number of clusters

Approximate optimization with the Louvain algorithm Blondel
et al. (2008) (among others)

18



359 DEGs were selected for being highly correlated with IGF2, DLK1 and MEG3 (R? > 0.84)

=>» Network 0 to 3 with 359 nodes
=>» Network 0 without a priori, 2,279 edges (density: 3.55%)

Sub-network extracted

Marti-Marimon et al., 2018.



Network inference iteration and 3D FISH validations

359 DEGs were selected for being highly correlated G#2, DLK1 andMEG3 (R2>0.84)

=» Network 0 to 3 with 359 nodes
=>» Network 0 withouta priori, 2,279 edges (density: 3.55%)

Screening (R?20,84) 359 DEGs
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Network inference iteration and 3D FISH validations

359 DEGs were selected for being highly correlated with IGF2, DLK1 and MEG3 (R? > 0.84)

=>» Network 0 to 3 with 359 nodes
=>» Network 0 without a priori, 2,279 edges (density 3.55%)
=>» Network 1 with triple co-localization of IGF2, DLK1 and MEG3, 2,250 edges (density 3.50%)

COL5A1 ITGA9

\

PM20D1

SMIMS P4HA3

\ ! =» Test FISH 3D

ISYNA1

MEG3

/ |GF2 andRPL32 were associated in 20%
PPRICC of the analysed nuclei (threshold 10%)

PHLDB1
CDK9Y

Marti-Marimon et al., 2018.



Network inference iteration and 3D FISH validations

359 DEGs were selected for being highly correlated with IGF2, DLK1 and MEG3 (R? > 0.84)

=>» Network 0 to 3 with 359 nodes

=>» Network 0 without a priori, 2,279 edges and density 3.55%

=>» Network 1 with co-localization of IGF2, DLK1 and MEG3, 2,250 edges and density 3.50%
=>» Network 2 with test of MEST and DCN associations, 2,091 edges and density 3.25%
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Network inference iteration and 3D FISH validations

359 DEGs were selected for being highly correlated with IGF2, DLK1 and MEG3 (R? > 0.84)

=>» Network 3 with test co-localization with MYH3 (ntw 0 and 1)

Network O TMI
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0l
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Marti-Marimon et al., 2018.
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Network inference iteration and 3D FISH validations

359 DEGs were selected for being highly correlated with IGF2, DLK1 and MEG3 (R? > 0.84)

=>» Network 3 with test co-localization with MYH3 (ntw 0 and 1)

MYH3 = Embryonic myosin, excellent biomarker of muscle maturity (Voillet et al., 2018)
No functional link known with IGF2!
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Network inference iteration and 3D FISH validations

359 DEGs were selected for being highly correlated with IGF2, DLK1 and MEG3 (R? > 0.84)

=>» Network 3 with test co-localization with MYH3 (ntw 0 and 1), 2,091 edges and density 3.25%

=» Test FISH 3D -

Network inference = \/
SLC2A12
/ SSR2
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Marti-Marimon et al., 2018.



Network mining (network structure with key genes)

The degree of a node is the number of edges afferent to this gene. High degree genes are
connected to many other genes (hub).

The betweenness of the node is the number of shortest paths between pairs of genes in
the network that pass through that gene. High-betweenness genes are central and more
likely to disconnect the network if removed.



Network mining (network structure with key genes)

Comparison between

Network 0 Network 1 Network 2 Network 3 Network 0 and Network 3
(% of variation)
gene symbol degree betweeness degree betweeness degree betweeness degree betweeness Degree betweeness
ADIPOR2 15 646,65 14 487,32 15 628,78 14 660,97 -7 2
AKR7A2 19 492,63 17 436,71 15 474,10 14 291,90 -26 -41
CD81 17 551,17 18 616,7 15 478,76 17 600,58 0 9
CRAT 19 716,24 15 518,26 16 738,30 14 573,58 -26 -20
DCN 16 438,86 18 560,83 9 288,82 6 357,74 -63 18 \J
DLK1 10 103,52 6 81,7 5 74,22 5 24,13 -50 -77 N
DPP4 15 568,91 16 672,01 15 674,94 15 597,87 0 5
EGFR 16 624,92 12 375,87 12 385,35 11 354,78 -31 -43
GHITM 16 578,58 17 588,76 16 592,35 14 496,63 -13 -14
GLUD1 13 575,69 13 553,28 12 574,48 12 586,27 -8 2
IGF2 10 118,26 11 231,09 8 260,58 7 622,44 -30 426 /)
LPAR4 14 464,31 17 644,76 18 812,81 16 798,82 14 72
MEG3 13 282,32 5 55,75 6 120,18 5 24,13 -62 91 \J
MESP1 12 228,49 14 320,34 14 483,27 14 775,31 17 239
MEST 13 148,2 12 121,44 10 345,69 7 385,27 -46 160 N
MRPS28 16 743 15 743,29 16 953,42 15 796,14 -6 7
MYH3 14 610,73 14 656,6 11 455,62 4 0,00 -71 100 N
NMNAT3 17 562,63 18 664,84 16 473,55 17 573,15 0 2
RAVER1 16 613,84 16 665,73 16 696,35 16 745,66 0 21
RPL32 18 717,96 15 557,65 7 149,80 5 243,11 -72 -66 N
SELO 18 692,52 14 438,35 14 459,46 15 587,32 -17 -15
SYDE1 15 436,75 17 530,29 14 459,66 18 745,52 20 71
TFRC 15 595,1 15 534,83 13 437,38 17 846,81 13 42
TYRO3 20 785,95 18 659,9 16 603,94 17 700,03 -15 -11
YWHAB 20 670,22 17 470,35 17 538,41 17 547,17 -15 -18

Marti-Marimon et al., 2018.



Network clustering

To analyse the evolution of the network structure from Network 0 to Network 3, clustering
of the genes was performed on each network.

Normalized mutual information (NMI) measure the similarity between two clusterings.
The value is comprised between 0 and 1 and is equal to 1 when the two clusterings are
identical.

=>» clusterings become more consistent when introducing new biological information in
each network inference iteration

Network O Network 1 Network 2 Network 3
Network O 1 0.3893 0.3381 0.3244
Network 1 0.3893 1 0.4007 0.3923
Network 2 0.3381 0.4007 1 0.4152
Network 3 0.3244 0.3923 0.4152 1

Marti-Marimon et al., 2018.



Network clustering: Networks 0 and 3 were analysed in depth to
search for any correspondence between clusters

Pairwise contingency tables between clusterings. Percentage of genes for each cluster in
Network O found in each cluster of Network 3. In bold and red, the most resembling values
between clusters.

Clusters in Network 3

1 2 3 4 5 6

1 64,10 7,69 7,69 2,56 7,69 10,26

2 8,77 68,42 0,00 1,75 19,30 1,75

3 14,89 0,00 65,96 19,15 0,00 0,00

. 4 3,92 1,96 11,76 82,35 0,00 0,00
Clusters in

5 34,09 6,82 4,55 11,36 43,18 0,00
Network O

6 3,57 17,86 14,29 32,14 0,00 32,14

7 11,11 38,89 0,00 11,11 38,89 0,00

8 0,00 48,72 33,33 10,26 5,13 2,56

9 5,56 11,11 16,67 27,78 38,89 0,00

Marti-Marimon et al., 2018.



Functional enrichment analysis: Gene Ontology Biological Process

Functional enrichment analysis based on Gene Ontology was performed using the web tool
Webgestalt (WEB-based GEne SeT Analysis Toolkit)

Network 0 - Cluster 1 Network 3 - Cluster 1

GOBP Terms FDR FDR Target
Extracellular structure 5,76E-05 1,14E-08 DCN
Cellular response to organonitrogen compound 6,80E-04 1,16E-02 IGF2
Reponse to transformaing growth factor beta 2,35E-03
Multicellular organism metabolic process 2,35E-03 3,05E-03
Skin development 3,18E-03
Neuron migration 2,82E-02
Regulation of neuron projection development 3,07E-02
Mesoderm development MEST
Muscle organ development MYH3
Notch signaling pathway DLK1
Collagen fibril organization 1,10E-04 1,02E-05

Network 0 - Cluster 8 Network 3 - Cluster 2
GOBP Terms FDR FDR
Generation of precursor metabolites and energy 1,64E-02 1,32E-07
Oxidation-reduction process 7,25E-03 5,63E-09
Energy derivation by oxidation of organic compounds 8,17E-03 1,88E-06
Cellular respiration 8,17E-03 2,65E-07

Marti-Marimon et al., 2018.



Functional enrichment analysis: reconstructed network of genes in
cluster 1 of Network 3 with Ingenuity Pathway Analysis (IPA)

IPA proposed to connecting 49 (82%) out of 60 genes in a network.
MYOD1 and CTNNB1 were identified by upstream regulator analysis as potential transcriptional
factors for a group of genes including IGF2 and MYH3.
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' ] / 2 “Morphology of connective tissue cells”, 8 genes, p-value = 1.27e-04
-‘!'.-._'. : % -‘=

i ; “Formation of muscle”, 10 genes, p-value = 2.98e-05, involved IGF2 and
\\\. N @10 T MYH3 together with CTNNB1 and MYOD1.
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Marti-Marimon et al., 2018.
Villa-Vialaneix et al., 2013



Conclusions

* 82% of edges in Network O were conserved in Network 3

* The most important genes in Network O were among those showing the highest values of
betweenness and degree in Network 3.

=» Not major disturbances in the network structure

* Inthe local analysis, the NMI value revealed that the clusters resembled one another more with
each new network inferred.

* Four out of six clusters in the final network conserved more than 62% of genes in the corresponding
clusters of Network 0.

e |IGF2-MEST, (DLK1/MEG3)-MEST, (DLK1/MEG3)-DCN, that were observed to be connected in co-
expression networks in other studies.

e DLK1, MEG3, RPL32, MEST, DCN and MYH3 were less connected with the rest of the other genes in
Network 3 but not IGF2.

* No previous association between IGF2 and MYH3, even though the two genes are known to be
involved in muscle development =» overexpression and accumulation of 8-catenin in the nuclei of

differentiating murine myoblasts results in higher MyoD activation and Myhc induction (Ramazzotti et
al, 2016)

Marti-Marimon et al., 2018.



Conclusions - Perspectives

e What is published and what is not...
* Intermediate modelling is retained as valuable information on robust or non-robust
interactions =@ currently, new interactions are being tested by FISH 3D

* Dramatic change in gene expression at the end of gestation =2 Search of interaction
whole genome (Maria Marti-Marimon thesis)

= Interaction

05- depletion

= Interaction
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Rescaled gene expression levels
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Age

Whole genome interaction Maps
3D Chromosome conformation capture
Hi-C in progress
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