Fast tree aggregation for consensus hierarchical clustering

A. Hulot^{1,2,3}, J. Chiquet², F. Jaffrézic¹, G. Rigaill^{4,5}

GABI, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
MIA-Paris, AgroParis Tech, INRA, Université Paris-Saclay, 75005 Paris, France
INSERM UMR 1173, Université de Versailles-Saint-Quentin-en-Yvelines, 78180 France
LaMME, UEVE, CNRS/ENSIIE/USC INRA, 91000 Evry, France

⁵ Institute of Plant Sciences Paris-Saclay, UMR 9213/ULR 1403 CNRS INRA, Université Paris-SUD, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité,

A tree and its interpretation

Definition (Graph Theory)

Undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph.

- Exploratory method, unsupervised
- Graphical representation of the dissimilarities between clusters/individuals (height of fusion)
- Efficiently visualize group structure in the data for various number of groups

How to build a tree?

Agglomerative hierarchical clustering

- Compute distances/dissimilarities between individuals (bottom of the tree)
- Aggregate the closest individuals or clusters agglomerative criterion and update the distance matrix
- Repeat the (2) until all individuals are in one group

Pros / cons

- + Require no prior information
- + Require no/very little treatment of the data
 - $-\mathcal{O}(n^2)+$ (not a huge number of leaves)
- Not directly adapted to the treatment of multiple datasets / heterogeneous data

Why a consensus of trees?

- Multiple table providing multiple trees (multi-omics)
- Bootstrap (Phylogenetics)
- Hope for a more stable information
- Hope for less diluted group information (shared among the trees)

Field of interest: multi-omics analysis.

Multi-Omics

- Recent development in the last decade about clustering
- They do not return a tree
- Phylogenetics methods not applicable here

Context: single / multi-omics data analysis

Why?

- + Better understanding of biological processes
- + Better understanding of entities relationships
 - \hookrightarrow Better diagnosis / Earlier diagnosis
 - \hookrightarrow Better treatments

Difficulties

- Heterogeneous data (continuous, counts, percentage...)
- High-dimensional data $(n \ll p)$
- Noisy

Methods

Direct Clustering

- Merge all datasets into one
- Scale the data
- 3 Compute distance and apply aggregation criterion
 - + Very easy to compute and highly interpretable
 - Giant matrix \rightarrow memory issues

Average Distance

Merge Trees

Methods

Direct Clustering

- + Very easy to compute and highly interpretable
- Giant matrix \rightarrow memory issues

Average Distance

- Distance on each dataset
- 2 Average all of the matrices
- Apply aggregation criterion on this new matrix
 - + Easy / highly interpretable
 - Not very robust to noise

Merge Trees

Methods

Direct Clustering

- + Very easy to compute and highly interpretable
- Giant matrix \rightarrow memory issues

Average Distance

- + Easy / highly interpretable
- Not very robust to noise

Merge Trees

- Distance on each dataset
- 2 Build hierarchical clustering
- Merge the trees

Tree definition

Definition

Let T be a tree.

T is a succession of (n-1) splits.

Characterized by:

- height of the division
- the 2 clusters created by the division

Merging method

Definition

Let $\mathcal{T} = \{T_1, \dots, T_d\}$ be a set of d trees obtained by a hierarchical clustering method.

 \longrightarrow list of $(n-1) \times d$ possible splits

Merging the trees: (divisive clustering method)

- Order all of the possible splits by decreasing height
- For each split: check if it is active in the current situation i.e. if at least one element is impacted by the division
- If it is active, apply it, else, go to the next split
- Stop when every variable is in its own group

An example

Definition

Active split: split that impacts the current situation of the tree. We call **consensus tree** the tree formed by the active splits

Result tree is not always a binary tree!

Timing Complexity

Theorem

The consensus tree can be obtained in $\mathcal{O}(dn \log(n))$

- Able to aggregate a large number of trees
- Able to aggregate trees with lot of individuals

Breast cancer data

Omics data

- 4 datasets
- Heterogeneous data
- Different dimensions and scales

Data		Features
methylation	percentage	21 123
miRNA	continuous	725
proteins	continuous	156
genes	counts (log2)	19 738

Individuals

- 104 patients
- 4 Subtypes
- ER/PR status (+/-)

Subtype	Individuals		
Luminal A	44		
Luminal B	20		
HER2-enriched	18		
Basal-like	22		

Data downloaded from TCGA website

Treatment of data/trees (1)

Data treatment

- All datasets: centered, not scaled
- Divided by the first singular value

Clustering building

- Distance: Euclidean
- Aggregation criterion: Ward

Murtagh F. & Legendre P. (2014) Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of Classification, 31,274-295

Performance evaluation

NID Normalized Information Distance: distance between classifications

Performance evaluation

NID (Normalized Information Distance)

$$1 - \frac{I(U,V)}{\max(H(U),H(V))}$$

ightarrow Distance between classifications, $\in [0,1]$

U/V	V_1	V_2		V_C	Sums
U_1	n ₁₁	n_{12}		n_{1C}	$n_{ullet 1}$
U_2	n ₂₁	n_{22}		n_{2C}	$n_{\bullet 2}$
:	:	:	٠	:	:
U_R	n_{R1}	n_{R2}		n _{RC}	$n_{\bullet R}$
Sums	n _{1•}	n _{2•}		$n_{C\bullet}$	$\sum_{ij} n_{ij} = N$

Entropy:

$$H(U) = -\sum_{i=1}^{R} \frac{n_{i\bullet}}{N} \log \frac{n_{i\bullet}}{N}$$

Mutual Information

$$I(U, V) = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{n_{ij}}{N} \log \frac{n_{ij}/N}{n_{i \bullet} n_{\bullet j}/N^{2}}$$

N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research , 11(Oct):2837-2854, 2010.

Treatment of data/trees (2)

- ullet Heterogeneous data o different range of values
- ullet Different datasets o different number of variables

 \Rightarrow Different range of distances and height splits in the trees

 \hookrightarrow All of RNASeq's tree splits happen before any division of protein tree, consensus tree IS RNASeg tree

Treatment of data/trees (3)

- ullet Heterogeneous data o different range of values
- Different datasets → different number of variables
 - ⇒ Different range of distances and height splits in the trees

Some ideas

- Scale all the datasets
- Divide each distance matrix by its maximum
- Divide each tree by its maximum height (non binary tree result)
- Not taking the height into account but the number of fusions
- Divide each dataset by its first singular value (root square of first eigenvalue)

Treatment of data/trees (4)

- ullet Heterogeneous data o different range of values
- ullet Different datasets o different number of variables
 - \Rightarrow Dividing datasets by their first singular value

Performance Results

Breast cancer data: results

	ER status		PR	PR status		Subtype	
	N	NID	N	NID	N	NID	
methyl	3	0.77	4	0.78	9	0.69	
mirna	2	0.72	2	0.71	4	0.67	
protein	2	0.32	2	0.45	5	0.53	
rna	2	0.40	2	0.55	4	0.59	
Average Distance	2	0.61	2	0.66	4	0.54	
Direct Clustering	2	0.63	2	0.74	4	0.60	
Merge Trees	2	0.40	3	0.51	8	0.56	

Conclusion and Perspective

Summary:

- Fast algorithm: $O(nd \log(n))$
- Consistant results on applications
- R package mergeTrees available on the CRAN devs: A. Hulot, J. Chiquet, G. Rigaill

Perspective

- Weighting applied on data/trees
- Spectral application
- Judging quality of a hierarchical clustering

Thank you for your attention!

Timing theorem and sketch of the proof

Theorem

The consensus tree can be obtained in $\mathcal{O}(dn \log(n))$

Proof: Based on a recurrence relation for T(n), the worst time scenario to build an n-elements-tree with our method.

- Main idea to speed up the algorithm: at each split-activating step, consider only the smallest number of elements to split, n/2 variables at most
- Leads to the recurrence relation:

$$T(n) = \max_{i=1}^{n/2} \{i + T(i) + T(n-i)\}\$$

- Result of function bounderies: $T(n) \leqslant \frac{n}{2} \log_2(n)$
- Having d trees to consider:

The merging algorithm is of complexity $\mathcal{O}(dn \log(n))$