Fast tree aggregation for consensus hierarchical clustering A. Hulot^{1,2,3}, J. Chiquet², F. Jaffrézic¹, G. Rigaill^{4,5} GABI, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France MIA-Paris, AgroParis Tech, INRA, Université Paris-Saclay, 75005 Paris, France INSERM UMR 1173, Université de Versailles-Saint-Quentin-en-Yvelines, 78180 France LaMME, UEVE, CNRS/ENSIIE/USC INRA, 91000 Evry, France ⁵ Institute of Plant Sciences Paris-Saclay, UMR 9213/ULR 1403 CNRS INRA, Université Paris-SUD, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, ## A tree and its interpretation ### Definition (Graph Theory) Undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. - Exploratory method, unsupervised - Graphical representation of the dissimilarities between clusters/individuals (height of fusion) - Efficiently visualize group structure in the data for various number of groups ## How to build a tree? ## Agglomerative hierarchical clustering - Compute distances/dissimilarities between individuals (bottom of the tree) - Aggregate the closest individuals or clusters agglomerative criterion and update the distance matrix - Repeat the (2) until all individuals are in one group ## Pros / cons - + Require no prior information - + Require no/very little treatment of the data - $-\mathcal{O}(n^2)+$ (not a huge number of leaves) - Not directly adapted to the treatment of multiple datasets / heterogeneous data # Why a consensus of trees? - Multiple table providing multiple trees (multi-omics) - Bootstrap (Phylogenetics) - Hope for a more stable information - Hope for less diluted group information (shared among the trees) Field of interest: multi-omics analysis. #### Multi-Omics - Recent development in the last decade about clustering - They do not return a tree - Phylogenetics methods not applicable here # Context: single / multi-omics data analysis ## Why? - + Better understanding of biological processes - + Better understanding of entities relationships - \hookrightarrow Better diagnosis / Earlier diagnosis - \hookrightarrow Better treatments ### **Difficulties** - Heterogeneous data (continuous, counts, percentage...) - High-dimensional data $(n \ll p)$ - Noisy ## Methods ### **Direct Clustering** - Merge all datasets into one - Scale the data - 3 Compute distance and apply aggregation criterion - + Very easy to compute and highly interpretable - Giant matrix \rightarrow memory issues ## Average Distance ### Merge Trees ## Methods ## **Direct Clustering** - + Very easy to compute and highly interpretable - Giant matrix \rightarrow memory issues ### Average Distance - Distance on each dataset - 2 Average all of the matrices - Apply aggregation criterion on this new matrix - + Easy / highly interpretable - Not very robust to noise ### Merge Trees ## Methods ## Direct Clustering - + Very easy to compute and highly interpretable - Giant matrix \rightarrow memory issues ### Average Distance - + Easy / highly interpretable - Not very robust to noise ## Merge Trees - Distance on each dataset - 2 Build hierarchical clustering - Merge the trees ## Tree definition #### Definition Let T be a tree. T is a succession of (n-1) splits. Characterized by: - height of the division - the 2 clusters created by the division # Merging method #### Definition Let $\mathcal{T} = \{T_1, \dots, T_d\}$ be a set of d trees obtained by a hierarchical clustering method. \longrightarrow list of $(n-1) \times d$ possible splits ## Merging the trees: (divisive clustering method) - Order all of the possible splits by decreasing height - For each split: check if it is active in the current situation i.e. if at least one element is impacted by the division - If it is active, apply it, else, go to the next split - Stop when every variable is in its own group ## An example ### Definition **Active split:** split that impacts the current situation of the tree. We call **consensus tree** the tree formed by the active splits Result tree is not always a binary tree! # Timing Complexity #### Theorem The consensus tree can be obtained in $\mathcal{O}(dn \log(n))$ - Able to aggregate a large number of trees - Able to aggregate trees with lot of individuals ## Breast cancer data ## Omics data - 4 datasets - Heterogeneous data - Different dimensions and scales | Data | | Features | |-------------|---------------|----------| | methylation | percentage | 21 123 | | miRNA | continuous | 725 | | proteins | continuous | 156 | | genes | counts (log2) | 19 738 | ### Individuals - 104 patients - 4 Subtypes - ER/PR status (+/-) | Subtype | Individuals | | | |---------------|-------------|--|--| | Luminal A | 44 | | | | Luminal B | 20 | | | | HER2-enriched | 18 | | | | Basal-like | 22 | | | Data downloaded from TCGA website # Treatment of data/trees (1) #### Data treatment - All datasets: centered, not scaled - Divided by the first singular value ## Clustering building - Distance: Euclidean - Aggregation criterion: Ward Murtagh F. & Legendre P. (2014) Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of Classification, 31,274-295 #### Performance evaluation NID Normalized Information Distance: distance between classifications ## Performance evaluation ### NID (Normalized Information Distance) $$1 - \frac{I(U,V)}{\max(H(U),H(V))}$$ ightarrow Distance between classifications, $\in [0,1]$ | U/V | V_1 | V_2 | | V_C | Sums | |-------|-----------------|-----------------|---|------------------------|------------------------| | U_1 | n ₁₁ | n_{12} | | n_{1C} | $n_{ullet 1}$ | | U_2 | n ₂₁ | n_{22} | | n_{2C} | $n_{\bullet 2}$ | | : | : | : | ٠ | : | : | | U_R | n_{R1} | n_{R2} | | n _{RC} | $n_{\bullet R}$ | | Sums | n _{1•} | n _{2•} | | $n_{C\bullet}$ | $\sum_{ij} n_{ij} = N$ | | | | | | | | ### Entropy: $$H(U) = -\sum_{i=1}^{R} \frac{n_{i\bullet}}{N} \log \frac{n_{i\bullet}}{N}$$ #### **Mutual Information** $$I(U, V) = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{n_{ij}}{N} \log \frac{n_{ij}/N}{n_{i \bullet} n_{\bullet j}/N^{2}}$$ N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. Journal of Machine Learning Research , 11(Oct):2837-2854, 2010. # Treatment of data/trees (2) - ullet Heterogeneous data o different range of values - ullet Different datasets o different number of variables \Rightarrow Different range of distances and height splits in the trees \hookrightarrow All of RNASeq's tree splits happen before any division of protein tree, consensus tree IS RNASeg tree # Treatment of data/trees (3) - ullet Heterogeneous data o different range of values - Different datasets → different number of variables - ⇒ Different range of distances and height splits in the trees #### Some ideas - Scale all the datasets - Divide each distance matrix by its maximum - Divide each tree by its maximum height (non binary tree result) - Not taking the height into account but the number of fusions - Divide each dataset by its first singular value (root square of first eigenvalue) # Treatment of data/trees (4) - ullet Heterogeneous data o different range of values - ullet Different datasets o different number of variables - \Rightarrow Dividing datasets by their first singular value Performance Results ## Breast cancer data: results | | ER status | | PR | PR status | | Subtype | | |-------------------|-----------|------|----|-----------|---|---------|--| | | N | NID | N | NID | N | NID | | | methyl | 3 | 0.77 | 4 | 0.78 | 9 | 0.69 | | | mirna | 2 | 0.72 | 2 | 0.71 | 4 | 0.67 | | | protein | 2 | 0.32 | 2 | 0.45 | 5 | 0.53 | | | rna | 2 | 0.40 | 2 | 0.55 | 4 | 0.59 | | | Average Distance | 2 | 0.61 | 2 | 0.66 | 4 | 0.54 | | | Direct Clustering | 2 | 0.63 | 2 | 0.74 | 4 | 0.60 | | | Merge Trees | 2 | 0.40 | 3 | 0.51 | 8 | 0.56 | | ## Conclusion and Perspective ## Summary: - Fast algorithm: $O(nd \log(n))$ - Consistant results on applications - R package mergeTrees available on the CRAN devs: A. Hulot, J. Chiquet, G. Rigaill ### Perspective - Weighting applied on data/trees - Spectral application - Judging quality of a hierarchical clustering ## Thank you for your attention! # Timing theorem and sketch of the proof #### Theorem The consensus tree can be obtained in $\mathcal{O}(dn \log(n))$ **Proof:** Based on a recurrence relation for T(n), the worst time scenario to build an n-elements-tree with our method. - Main idea to speed up the algorithm: at each split-activating step, consider only the smallest number of elements to split, n/2 variables at most - Leads to the recurrence relation: $$T(n) = \max_{i=1}^{n/2} \{i + T(i) + T(n-i)\}\$$ - Result of function bounderies: $T(n) \leqslant \frac{n}{2} \log_2(n)$ - Having d trees to consider: The merging algorithm is of complexity $\mathcal{O}(dn \log(n))$