

Prédiction de l'usage des sols
sur un zonage régulier à différentes résolutions
et à partir de covariables facilement accessibles.
Application à l'enquête Teruti-Lucas

Raja Chakir (INRA-AgroParisTech), Thibault Laurent (TSE-R), Anne Ruiz-Gazen (TSE-R), Christine Thomas-Agnan (TSE-R) and Céline Vignes (TSE-R)

Séminaire INRA - MIAT - 1er avril 2016

Introduction

Objectives :

- ① predict land use in the Midi-Pyrénées region of France (in 5 categories) using data easily accessible
- ② at different spatial scales (points level and on regular grids).
- ③ Determine the different components of the prediction error.
- ④ Understand better the prediction error.

We focus on two quality criteria :

- The percentage of good prediction at the point level.
- The mean squared error of the estimated proportions (MSE), or the squared root of the MSE, or the Brier score ($1/2$ MSE), or the weighted Brier score, at the point and grid levels .

- 1 Introduction
- 2 Preliminary study
 - Data description
 - From points to a grid
 - Different scales
 - Classification tree for prediction at the Teruti-point level
- 3 Simulated data set
- 4 At the point level
 - Prediction error decomposition
 - Understanding the prediction error
- 5 At aggregated levels
 - Aggregating probabilities
 - Analysing the prediction error
- 6 To conclude

1 Introduction

2 Preliminary study

- Data description
 - From points to a grid
 - Different scales
 - Classification tree for prediction at the Teruti-point level

3 Simulated data set

4 At the point level

- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

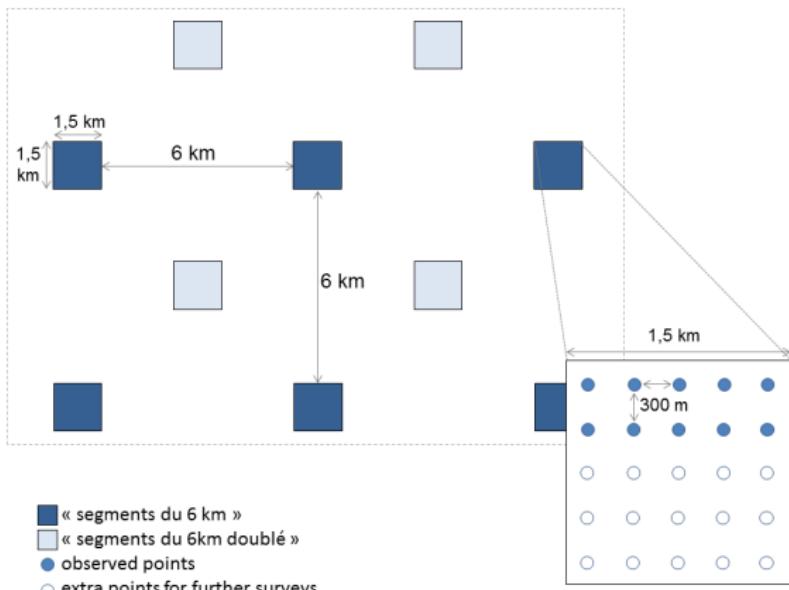
- Aggregating probabilities
- Analysing the prediction error

6 To conclude

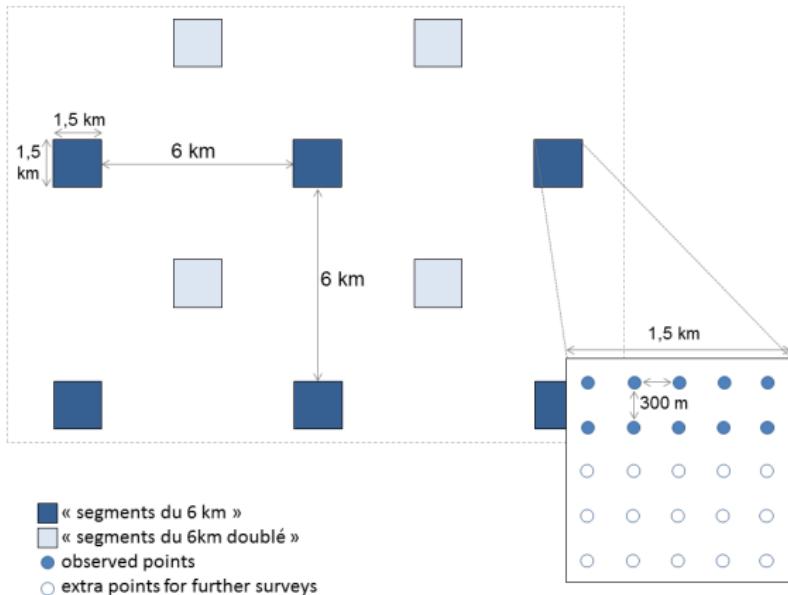
Data sources

Name	Geographical level	Source	Year
Land use (5 categories)	6km segment	Teruti-Lucas	2010
Soil constitution	UCS zones	BGSF (GISSOL)	1998
<i>main surface</i>			
<i>base material</i>			
<i>evolution of soil texture</i>			
<i>presence of a waterproof layer</i>			
Meteorology	grid 25x25km	Agri4cast	2010
<i>annual minimum of daily temperature</i>			
<i>annual maximum of daily temperature</i>			
<i>annual mean of daily temperature</i>			
<i>annual sum of rain quantity</i>			
<i>mean speed of wind</i>			
Land and empty meadow price	32 NRA	Agreste	2010
Socio-economic data		Insee	2010
<i>population density (new)</i>	grid 200x200m		
<i>percentage of farmers</i>	municipalities		
<i>percentage of executives</i>	municipalities		
<i>metropolitan center</i>	municipalities		
CLC2 (15 categories)	zones (> 25 ha)	Corine Land Cover	2006
Altitude	grid (250m)	BDAlti de l'IGN	-

Teruti-Lucas : points and segments



Teruti-Lucas : points and segments



Teruti Lucas

- 10 points per “segment” (or less)
- Dark blue : learning sample
- Light blue : test sample

1 Introduction

2 Preliminary study

- Data description
- **From points to a grid**
- Different scales
- Classification tree for prediction at the Teruti-point level

3 Simulated data set

4 At the point level

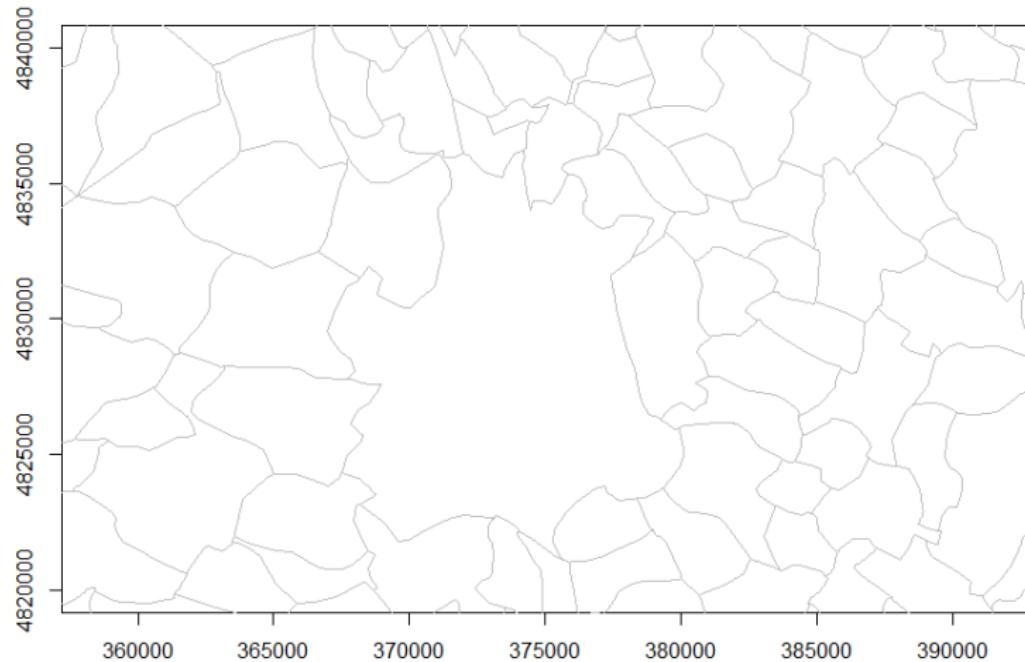
- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

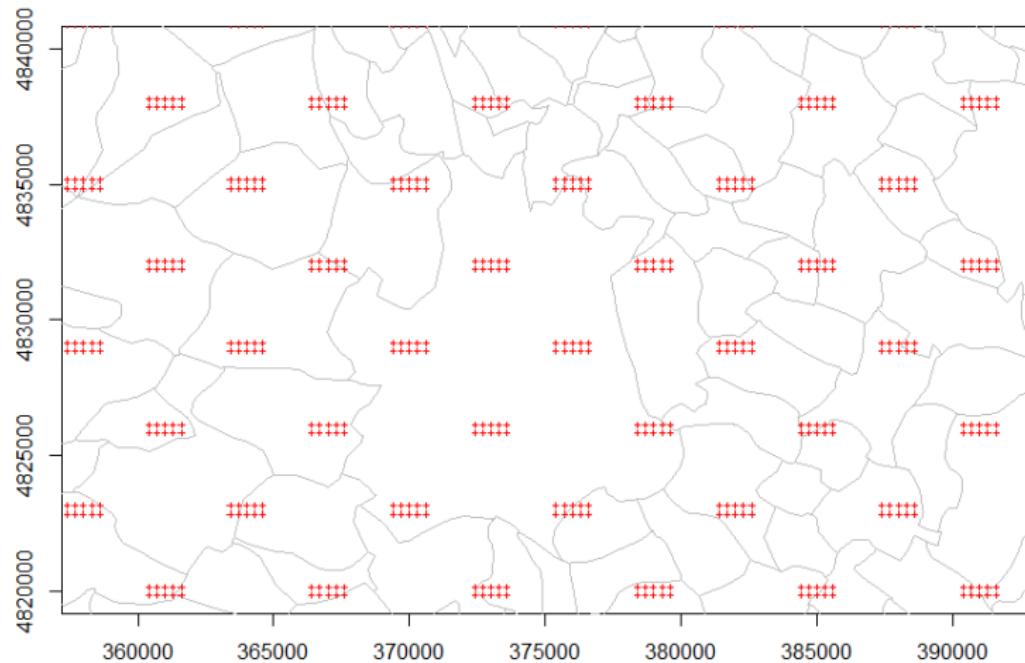
- Aggregating probabilities
- Analysing the prediction error

6 To conclude

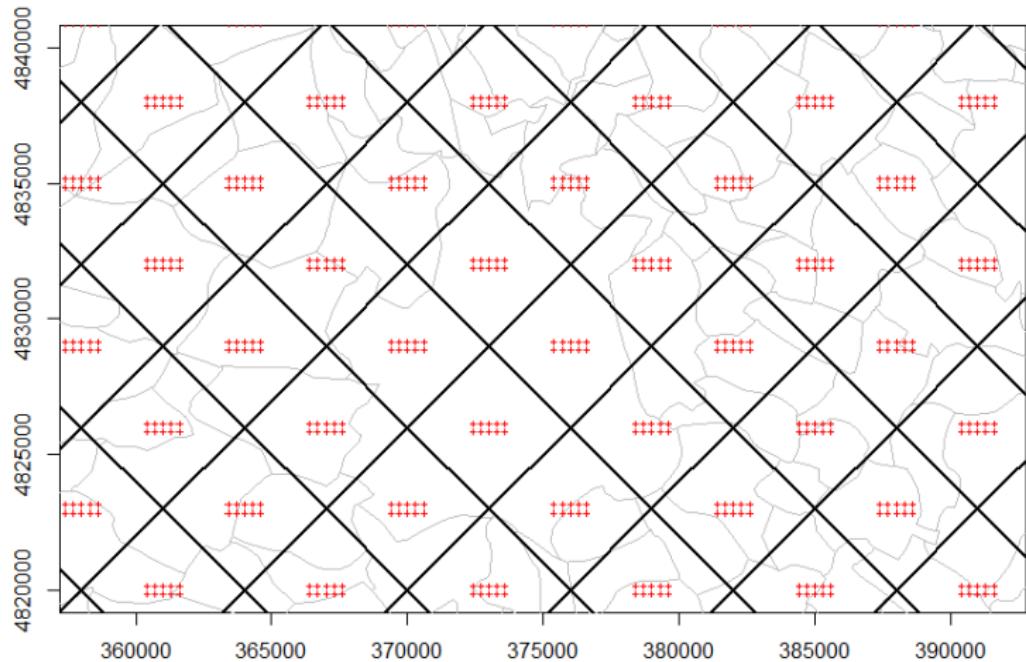
Municipalities



Teruti Lucas points



The grid (level A1)

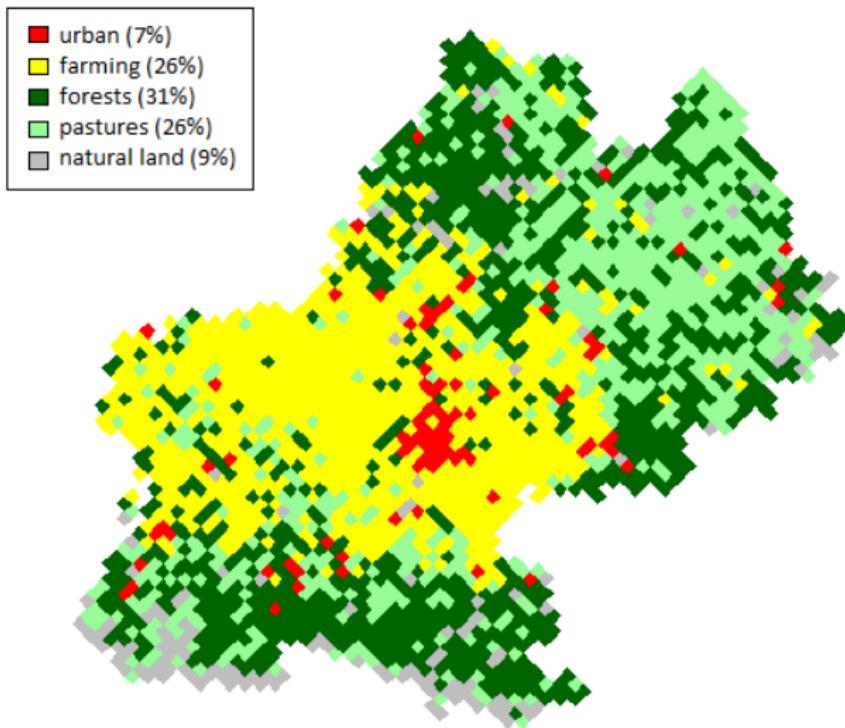


From points to a grid

Remark :

- Land use at the point level.
- Proportion of land use or main land use at a grid level.

Main land use



1 Introduction

2 Preliminary study

- Data description
- From points to a grid
- **Different scales**
- Classification tree for prediction at the Teruti-point level

3 Simulated data set

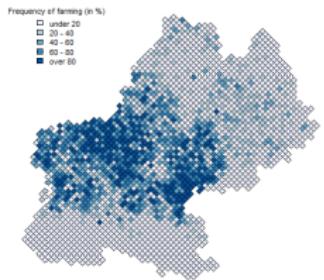
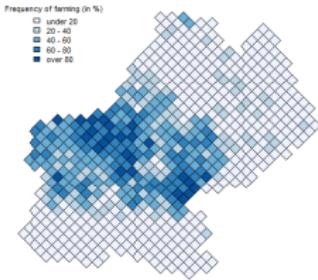
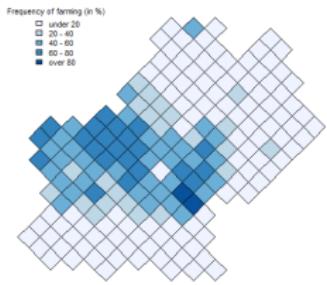
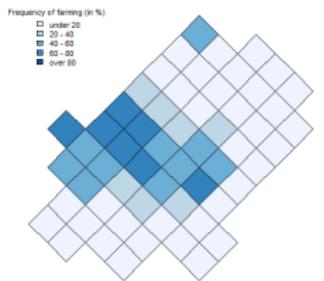
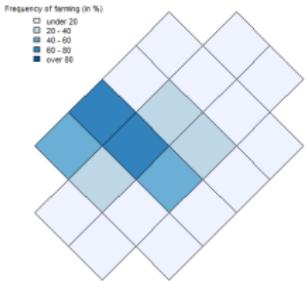
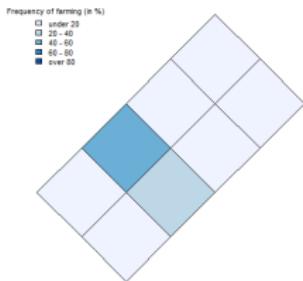
4 At the point level

- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

- Aggregating probabilities
- Analysing the prediction error

6 To conclude



Aggregation levels from A1 to A6

Summary of the spatial levels

TABLE: Characteristics of the grids

Grid	Number of aggregated “unit squares”	Approximate area	Number of points per square	Total number of squares
A_1	1	18 km^2	1 à 10	2 579 squares
A_2	4	72 km^2	1 à 40	689 squares
A_3	16	288 km^2	4 à 160	192 squares
A_4	64	1 152 km^2	10 à 640	59 squares
A_5	256	4 608 km^2	184 à 2 559	20 squares
A_6	1 024	18 432 km^2	184 à 6 605	8 squares

A_0 is the Teruti-Lucas points level and A_7 is the whole Midi-Pyrénées region.

1 Introduction

2 Preliminary study

- Data description
- From points to a grid
- Different scales
- Classification tree for prediction at the Teruti-point level

3 Simulated data set

4 At the point level

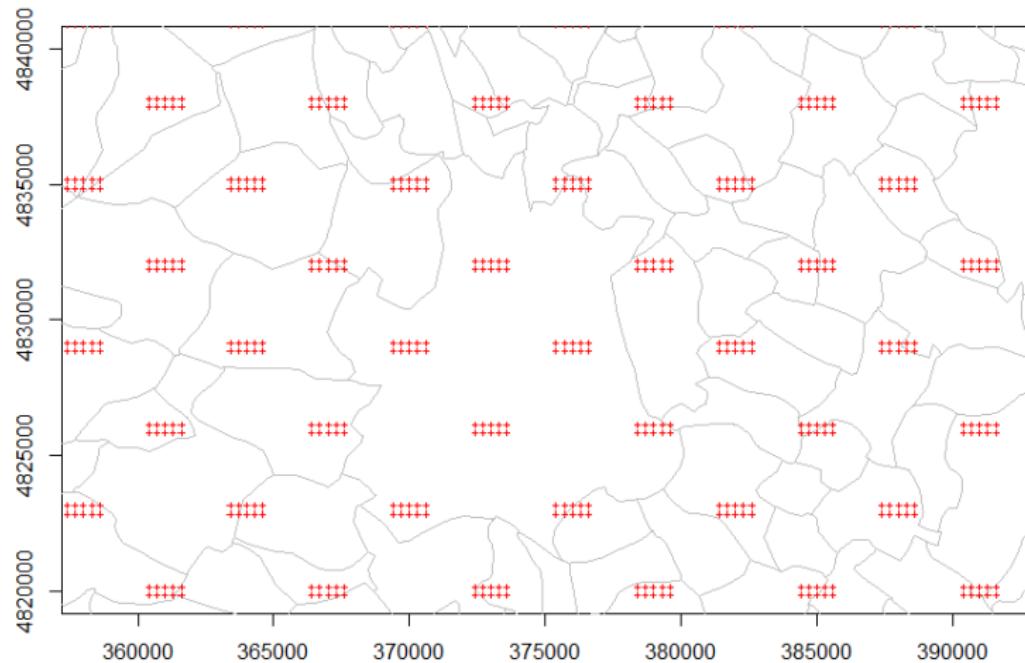
- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

- Aggregating probabilities
- Analysing the prediction error

6 To conclude

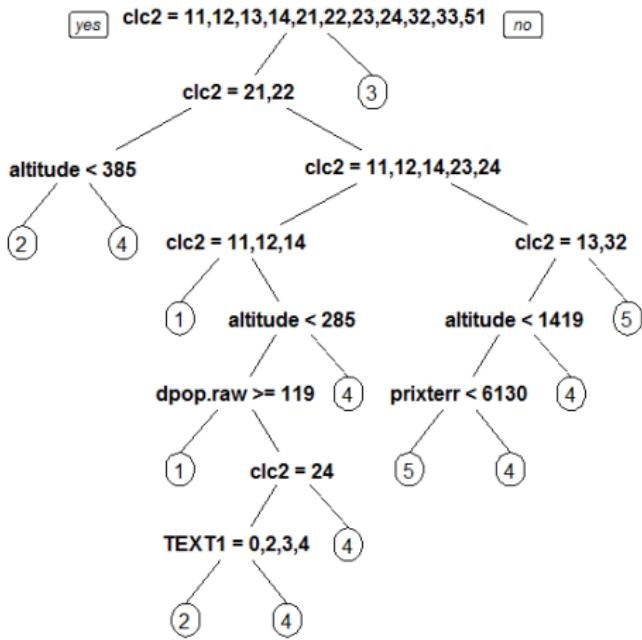
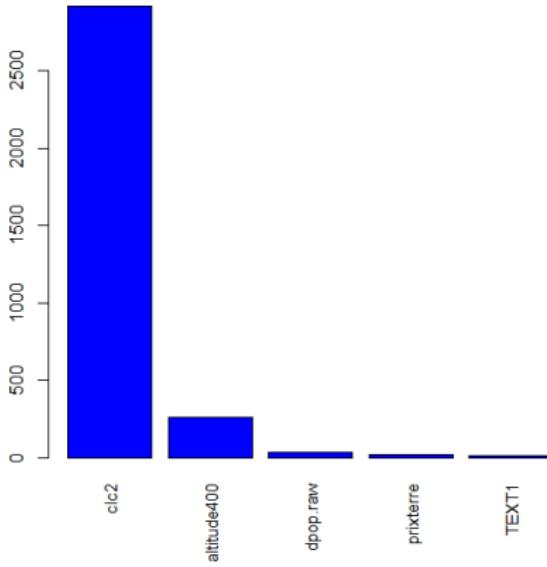
Teruti Lucas points



Prediction of the land use at Teruti-Lucas points

- There exist several methods for predicting a categorical variable with more than two categories.
- Multinomial logit model (MNL), discriminant analysis, classification tree,...
- We compared MNL and trees and get very similar results in terms of percentage of good prediction (number of points correctly predicted divided by the number of points).
- In this presentation, we focus on classification trees only.

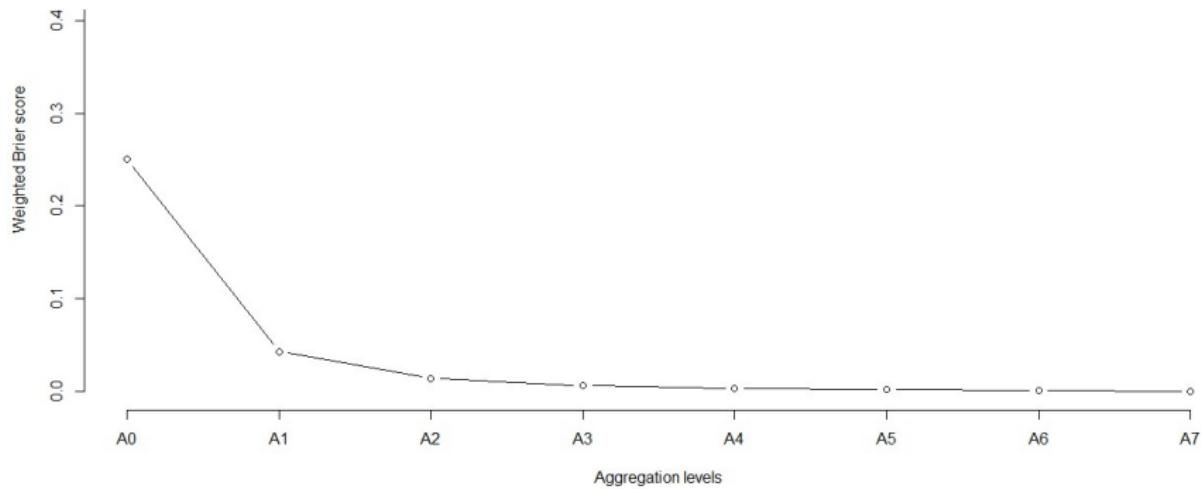
Classification tree and importance of variables



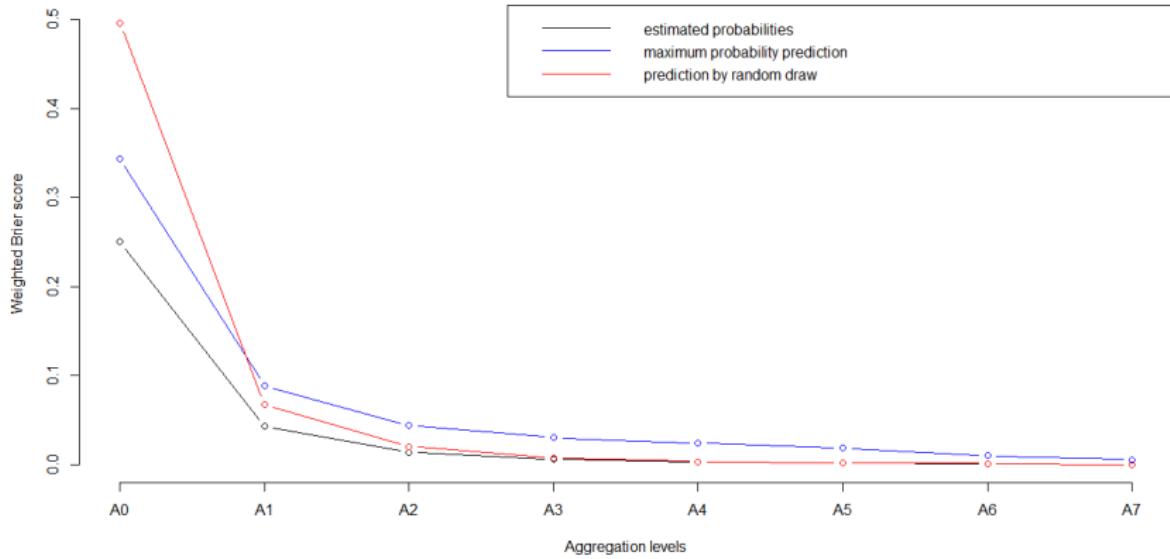
Classification tree

Results :

Percentage of correctly classified points : 65% with the maximum probability and 50% with a multinomial draw.



Comparison depending on the response prediction



Remark

- if $X_i \sim \text{Multinomial}(1, p_{i1}, \dots, p_{iK})$, $Y_i = (Y_{i1}, \dots, Y_{iK})'$ with $Y_{iq(i)} = 1$ if j is such that $p_{iq(i)} = \max(p_{ij}, j = 1, \dots, K)$ and X_i and Y_i independent, then

$$\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K X_{ij} Y_{ij} = \frac{1}{n} \sum_{i=1}^n X_{iq(i)}$$

and

$$E \left(\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K X_{ij} Y_{ij} \right) = \frac{1}{n} \sum_{i=1}^n p_{iq(i)}$$

- if $X_i \sim \text{Multinomial}(1, p_{i1}, \dots, p_{iK})$, $Y_i \sim \text{Multinomial}(1, p_{i1}, \dots, p_{iK})$ and X_i and Y_i independent, then

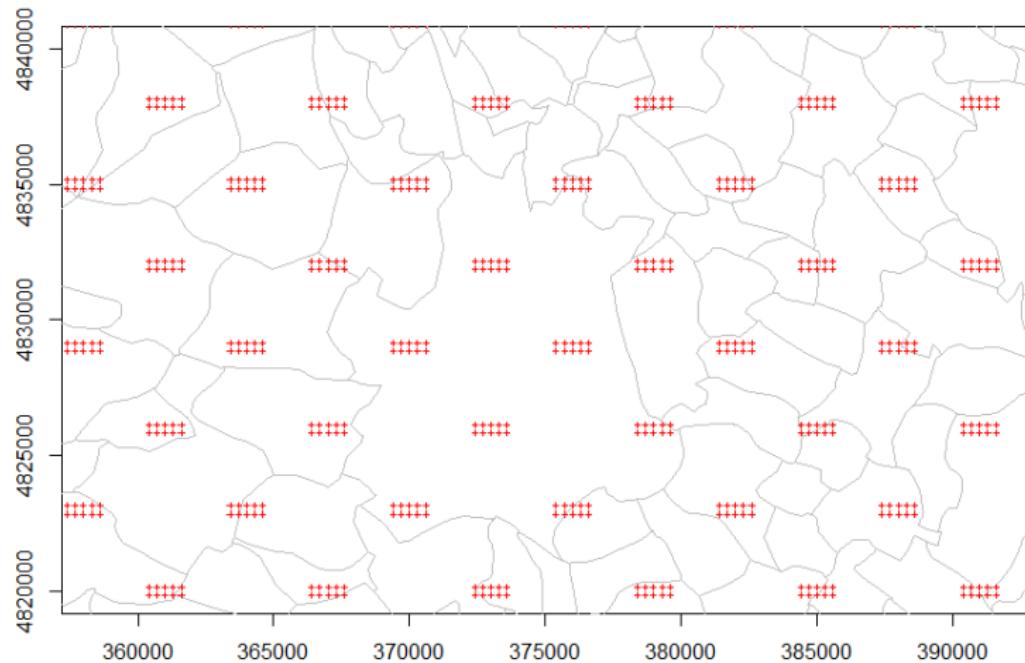
$$E \left(\frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K X_{ij} Y_{ij} \right) = \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^K p_{ij}^2$$

Remark

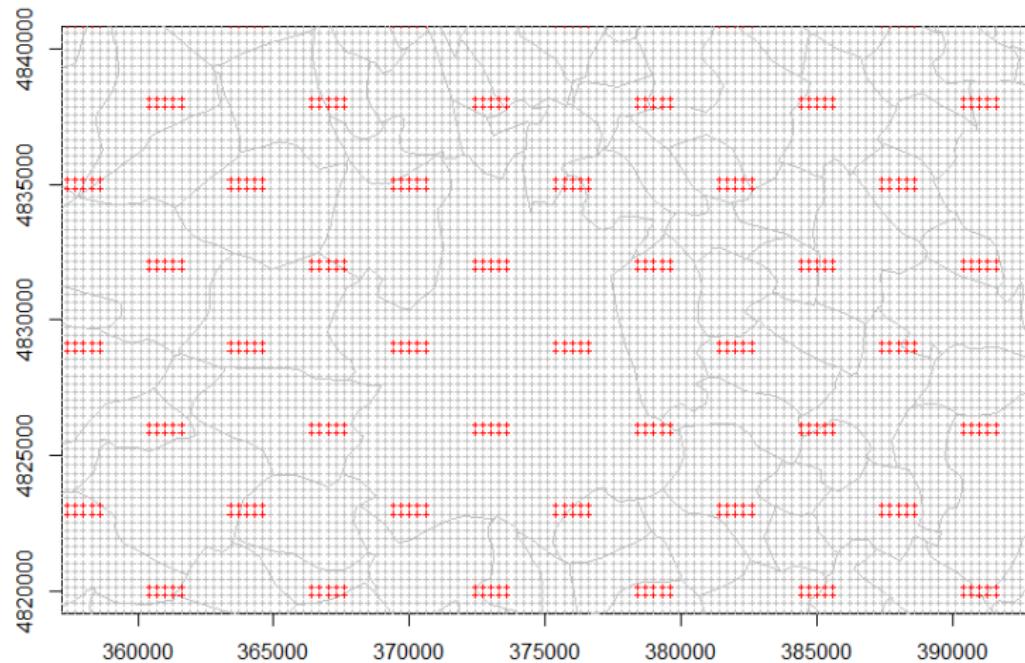
	well-classified rate	“pmax mean”
$K = 5$	65.12%	65.16%
$K = 4$	72.84%	73.19%
	well-classified rate	mean squares prob.
$K = 5$	50.01%	50.45%

- 1 Introduction
- 2 Preliminary study
 - Data description
 - From points to a grid
 - Different scales
 - Classification tree for prediction at the Teruti-point level
- 3 Simulated data set
- 4 At the point level
 - Prediction error decomposition
 - Understanding the prediction error
- 5 At aggregated levels
 - Aggregating probabilities
 - Analysing the prediction error
- 6 To conclude

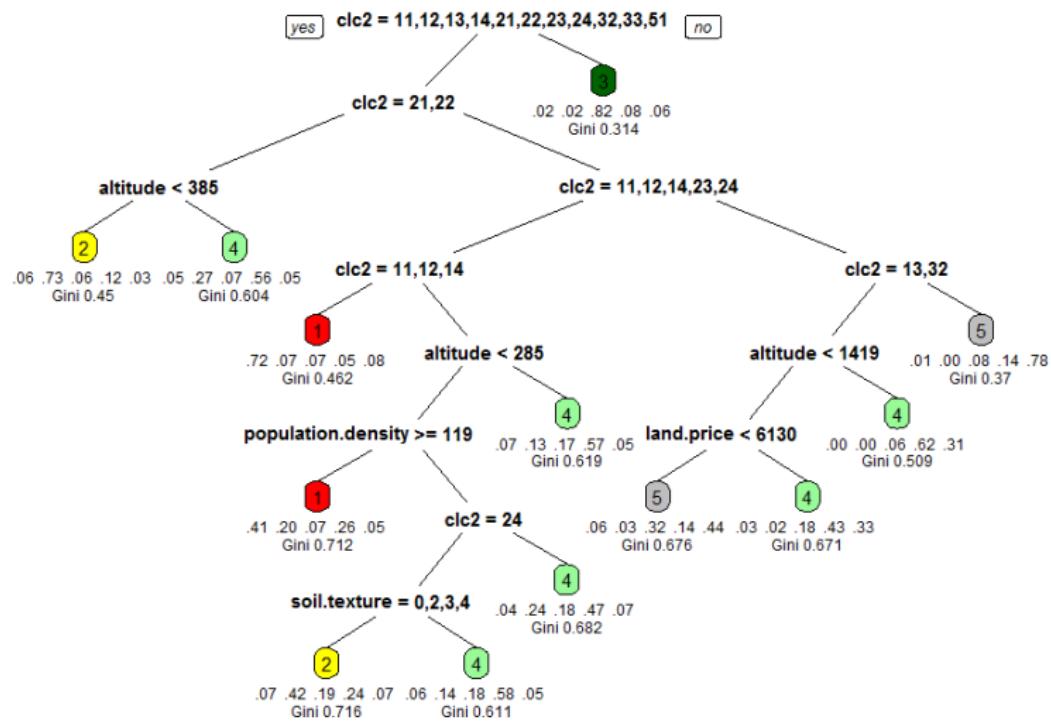
More points than Teruti-Lucas



More points than Teruti-Lucas



Classification tree chosen for the DGP



DGP

- Locations $i = 1, \dots, 502205$,
- land uses $k = 1, \dots, K$, $K = 5$,
- explanatory variables x_i ,
- vector of probabilities $p_i = (p_{i1}, \dots, p_{iK})$ at location i such that :

$$p_i = f(x_i).$$

DGP

- Locations $i = 1, \dots, 502205$,
- land uses $k = 1, \dots, K$, $K = 5$,
- explanatory variables x_i ,
- vector of probabilities $p_i = (p_{i1}, \dots, p_{iK})$ at location i such that :

$$p_i = f(x_i).$$

- The variable to explain dummy variable
 - “random draw” response denoted d_{ik}^r following a multinomial distribution with parameters 1 and p_i ,
 - “maximum probability” response denoted d_{ik}^m ($d_{ik}^m = 1$ if p_{ik} is the maximum probability among the p_{ij} $j = 1, \dots, K$ and 0 otherwise).

Prediction

- Locations $i = 1, \dots, 25317$ (Teruti-Lucas),
- land uses $k = 1, \dots, K$,
- explanatory variables x_i ,
- variable to explain d_{ik}^r ,
- vector of probabilities estimates $\hat{p}_i = (\hat{p}_{i1}, \dots, \hat{p}_{iK})$ at location i such that :

$$\hat{p}_i = \hat{f}(x_i).$$

Prediction

- Locations $i = 1, \dots, 25317$ (Teruti-Lucas),
- land uses $k = 1, \dots, K$,
- explanatory variables x_i ,
- variable to explain d_{ik}^r ,
- vector of probabilities estimates $\hat{p}_i = (\hat{p}_{i1}, \dots, \hat{p}_{iK})$ at location i such that :

$$\hat{p}_i = \hat{f}(x_i).$$

- The prediction \hat{d}_{ik}^m dummy variable at $i = 1, \dots, 502205$ by
 - “random draw” predicted response denoted \hat{d}_{ik}^r following a multinomial distribution with parameters 1 and \hat{p}_i ,
 - “maximum probability” predicted response denoted \hat{d}_{ik}^m ($\hat{d}_{ik}^m = 1$ if \hat{p}_{ik} is the maximum probability among the \hat{p}_{ij} $j = 1, \dots, K$ and 0 otherwise).

1 Introduction**2** Preliminary study

- Data description
- From points to a grid
- Different scales
- Classification tree for prediction at the Teruti-point level

3 Simulated data set**4** At the point level

- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

- Aggregating probabilities
- Analysing the prediction error

6 To conclude

The Sum of Squared Errors (SSE) between \hat{d}_{ik}^m and d_{ik}^r defined by

$SSE = \sum_{i=1}^n (\hat{d}_{ik}^m - d_{ik}^r)^2$ can be decomposed into :

$$\sum_{i=1}^n (\hat{d}_{ik}^m - d_{ik}^r)^2 = \sum_{i=1}^n (\hat{d}_{ik}^m - \hat{p}_{ik})^2 + \sum_{i=1}^n (\hat{p}_{ik} - p_{ik})^2 + \sum_{i=1}^n (p_{ik} - d_{ik}^r)^2 + R$$

where

$$\begin{aligned} R = & -2 \sum_{i=1}^n \left[(\hat{d}_{ik}^m - \hat{p}_{ik})(\hat{p}_{ik} - p_{ik}) \right. \\ & \left. - (\hat{d}_{ik}^m - \hat{p}_{ik})(d_{ik}^r - p_{ik}) - (\hat{p}_{ik} - p_{ik})(d_{ik}^r - p_{ik}) \right]. \end{aligned}$$

Error decomposition

At the point level, “**response error**”

	urban	farming	forests	pastures	natural land
$\sum_i (\hat{d}_{ik}^m - d_{ik}^r)^2$	33363.00	84407.00	71412.00	111038.00	41972.00
$\sum_i (\hat{d}_{ik}^m - \hat{p}_{ik})^2$	5983.91	26540.87	12118.45	37009.47	8168.27
$\sum_i (\hat{p}_{ik} - p_{ik})^2$	13.20	43.07	36.12	107.11	87.25
$\sum_i (d_{ik}^r - p_{ik})^2$	27324.69	57232.18	59282.26	73850.71	32923.67
R	41.20	590.87	-24.83	70.70	792.81

As a consequence, from now on, we forget the predicted probabilities and consider only the true probabilities.

1 Introduction

2 Preliminary study

- Data description
- From points to a grid
- Different scales
- Classification tree for prediction at the Teruti-point level

3 Simulated data set

4 At the point level

- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

- Aggregating probabilities
- Analysing the prediction error

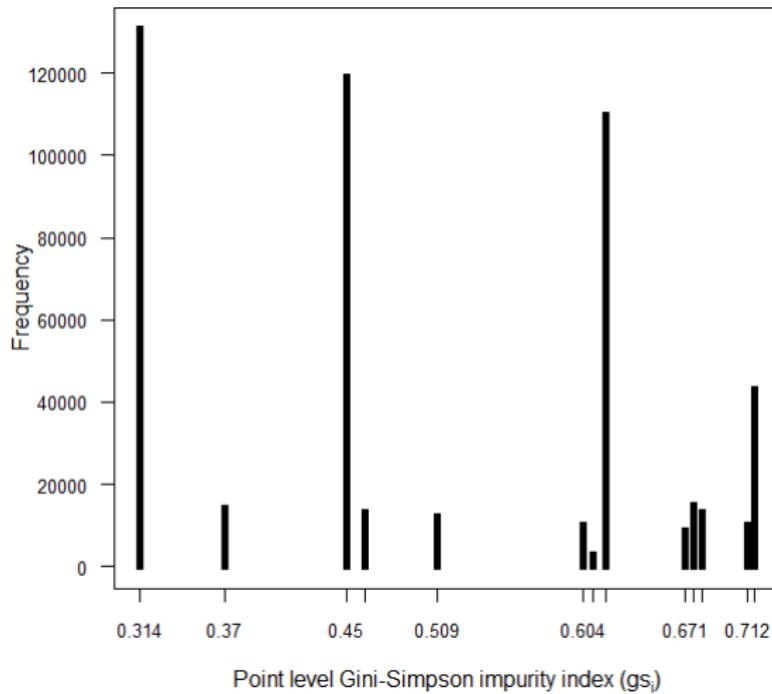
6 To conclude

We are now going to analyze the **impurity** of these probabilities and their spatial autocorrelation as we suspect that there is a relationship between the errors and the impurity. More precisely, we measure how homogeneous or diverse is land use at a given point or in a given region, with the idea that classification is going to be more difficult when there is diversity.

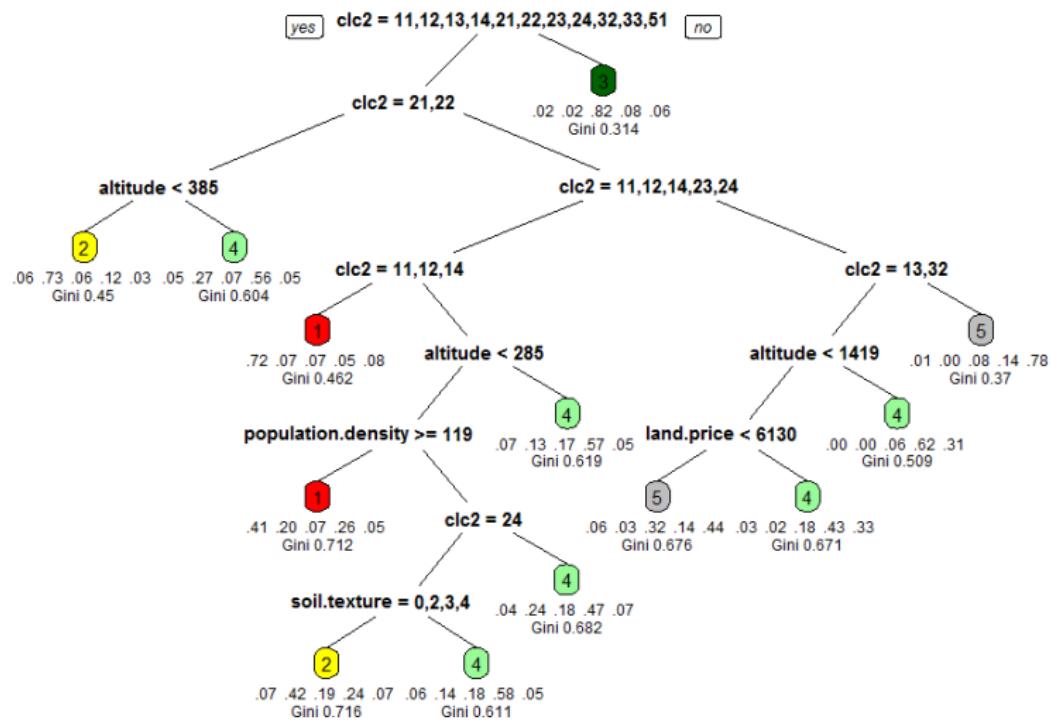
The impurity of probabilities p_{ik} is measured by the Gini-Simpson impurity index $gs_i = 1 - \sum_{k=1}^K p_{ik}^2$.

As values of gs_i correspond to terminal nodes of the tree of the DGP, gs_i is a discrete variable with 13 values.

Bar chart of point level Gini-Simpson impurity index



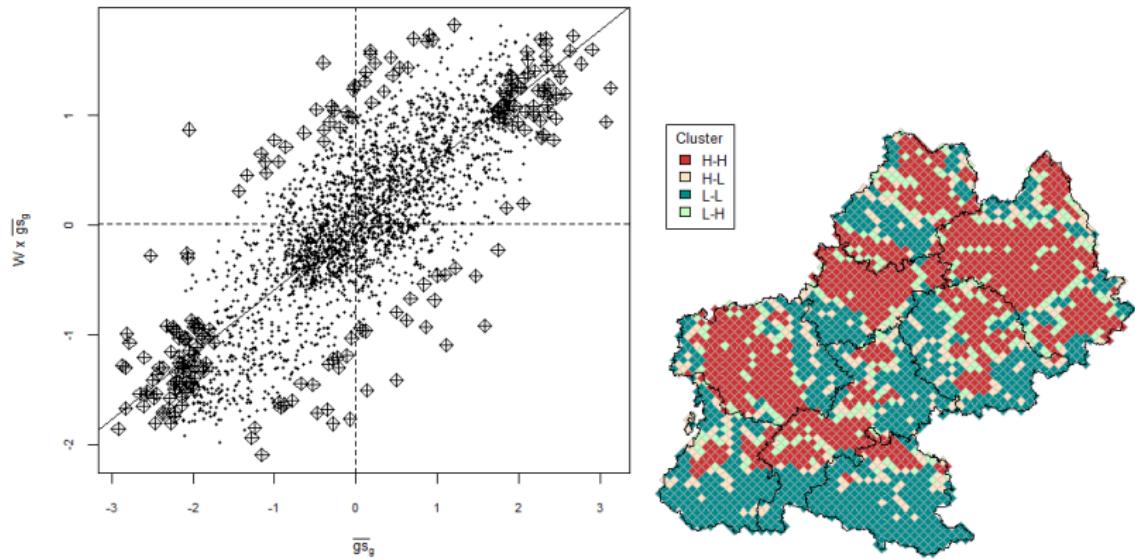
Classification tree chosen for the DGP



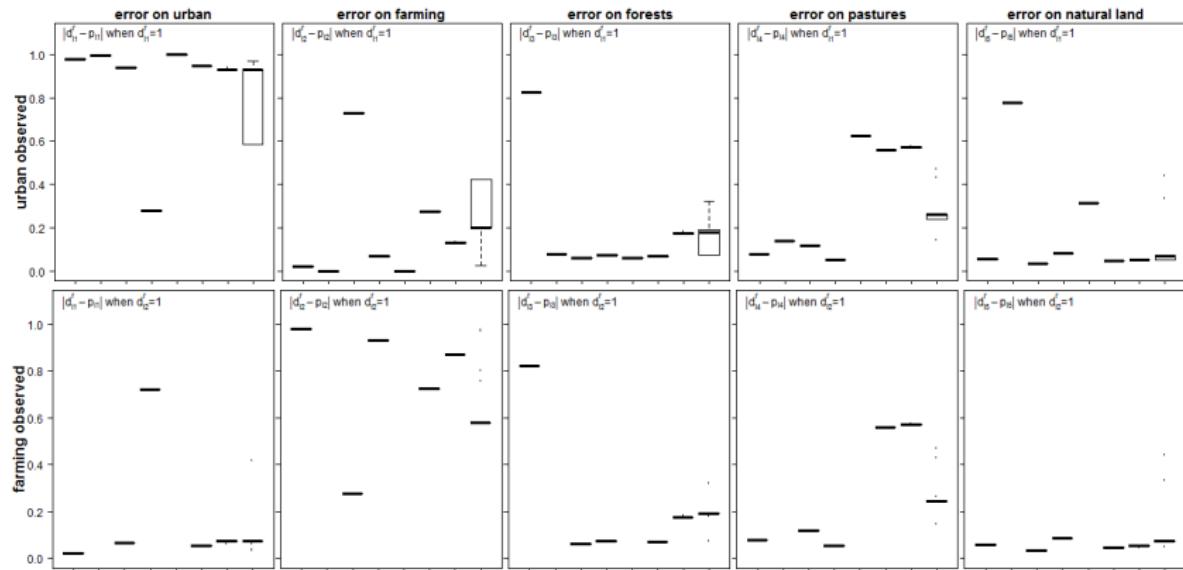
Characteristics of groups according to the gs_i value

gs_i	frequency	principal land uses
0.314	130532	82.3% of forests
0.370	14376	77.4% of natural lands
0.450	119010	72.9% of farming
0.462	13158	71.1% of urban
0.509	12200	63.0% of pastures and 31.0% of natural land
0.604	10167	56.1% of pastures and 27.1% of farming
0.611 to 0.619	112647	57.1% of pastures, 17.4% of forests and 13.1% of farming
0.671 to 0.716	90115	mix of all uses

Moran scatterplot of the Gini-Simpson index

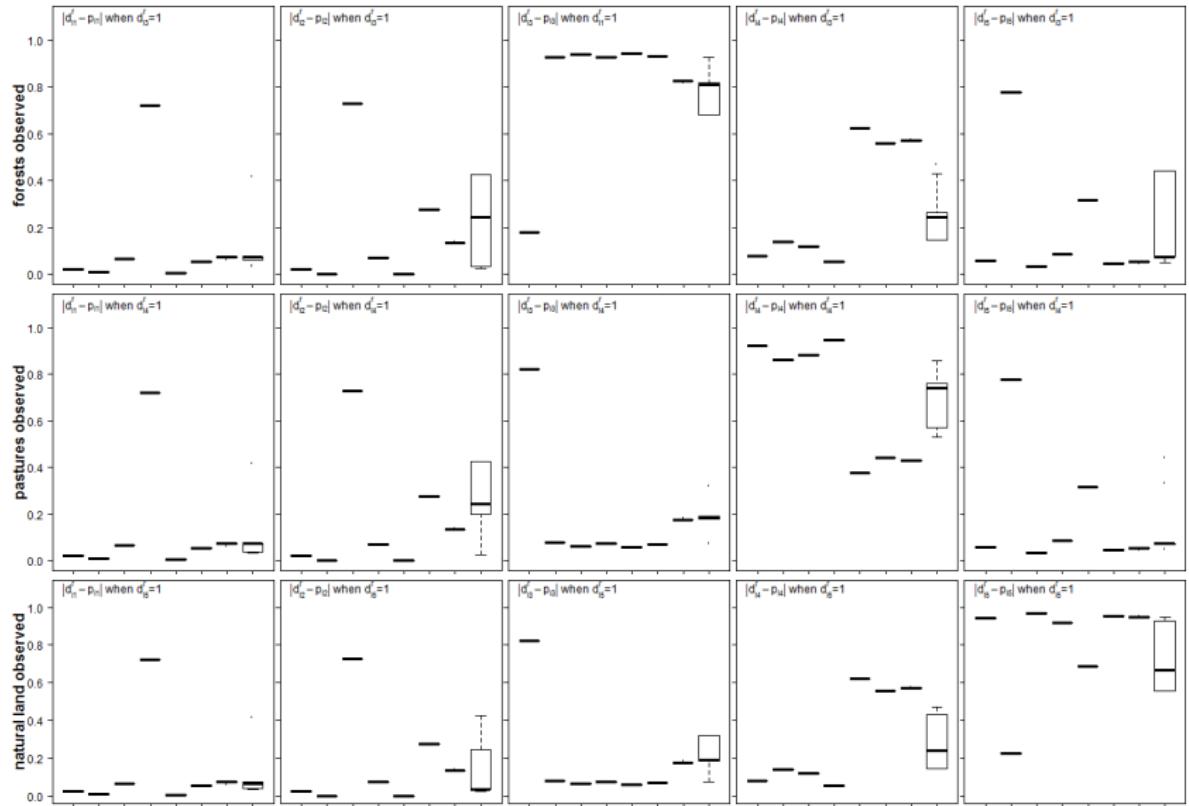


Absolute response error vs the Gini-Simpson impurity index



by observed land use (rows) and by response error component (columns)

Absolute response error vs the Gini-Simpson impurity index



1 Introduction

2 Preliminary study

- Data description
- From points to a grid
- Different scales
- Classification tree for prediction at the Teruti-point level

3 Simulated data set

4 At the point level

- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

- **Aggregating probabilities**
- Analysing the prediction error

6 To conclude

For each cell G_g , we define three **aggregated probabilities** :

- \bar{p}_{gk} denotes the average of the probabilities p_{ik} derived from our initial model $p_i = f(x_i)$ for the points i that belong to the same cell G_g :
$$\bar{p}_{gk} = \frac{1}{\#G_g} \sum_{i \in G_g} p_{ik}$$
 where $\#G_g$ denotes the number of points in the cell G_g .
- $\bar{p}_{gk}^{dr} = \frac{1}{\#G_g} \sum_{i \in G_g} d_{ik}^r$, where we recall that d_{ik}^r is the prediction by multinomial random draw
- $\bar{p}_{gk}^{dm} = \frac{1}{\#G_g} \sum_{i \in G_g} d_{ik}^m$, where we recall that d_{ik}^m is the maximum probability prediction

1 Introduction**2** Preliminary study

- Data description
- From points to a grid
- Different scales
- Classification tree for prediction at the Teruti-point level

3 Simulated data set**4** At the point level

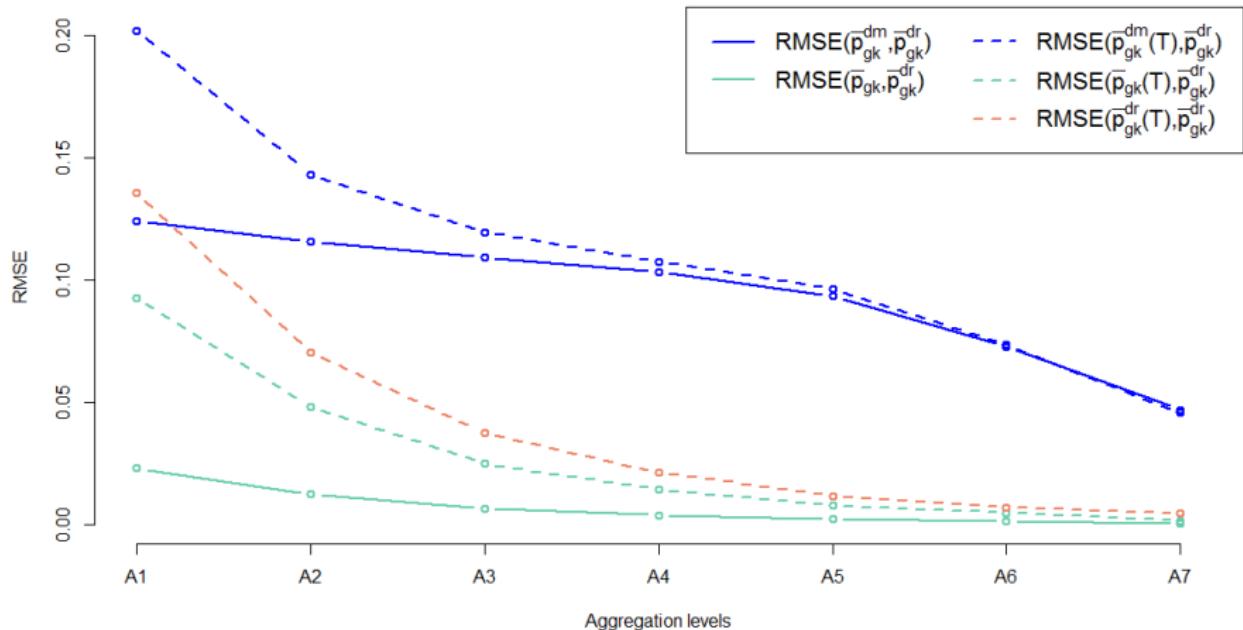
- Prediction error decomposition
- Understanding the prediction error

5 At aggregated levels

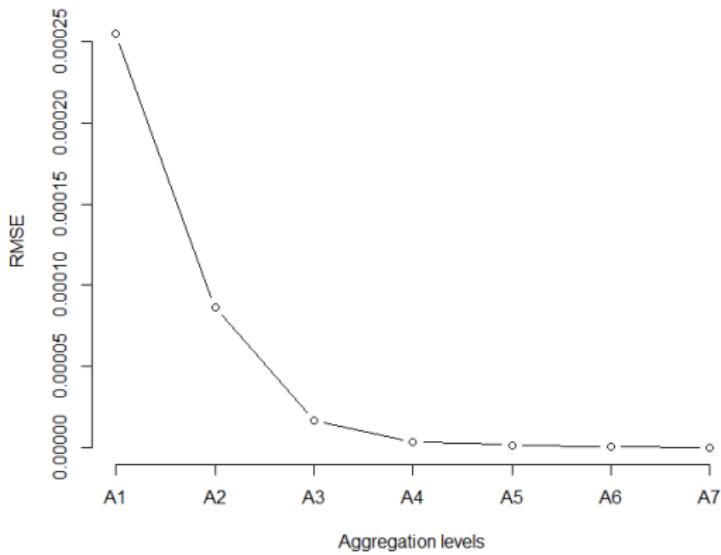
- Aggregating probabilities
- **Analysing the prediction error**

6 To conclude

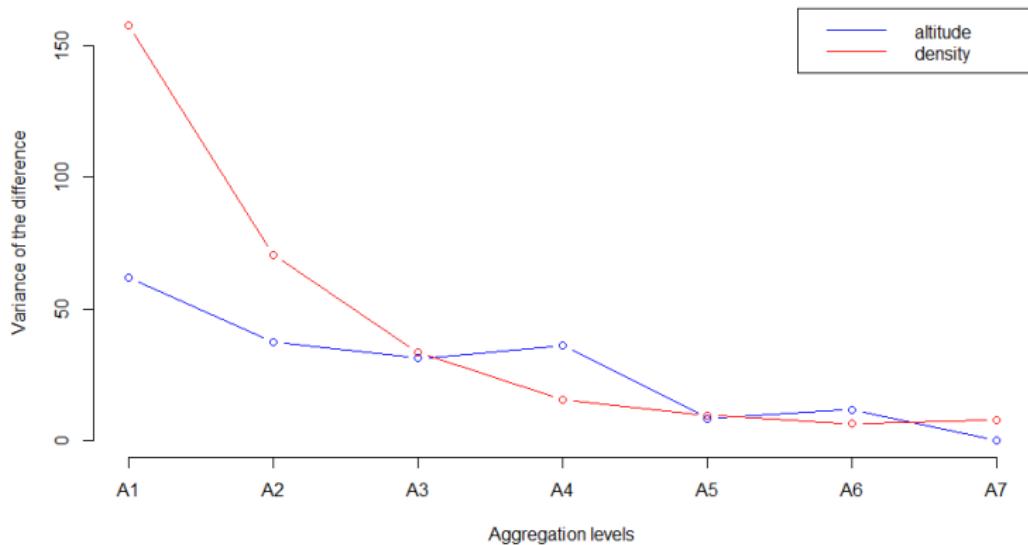
- We can make a part of the response error disappear by aggregating the probability estimates.
- We can measure another type of error called the **sampling error**. This error is due to the fact that we estimate the probabilities only at the Teruti-Lucas points while the explanatory variables are available at any point.



RMSE for CLC - sampling error



Altitude and density



Variance of the difference of the means (Teruti-Lucas points vs. all points)

- 1 Introduction
- 2 Preliminary study
 - Data description
 - From points to a grid
 - Different scales
 - Classification tree for prediction at the Teruti-point level
- 3 Simulated data set
- 4 At the point level
 - Prediction error decomposition
 - Understanding the prediction error
- 5 At aggregated levels
 - Aggregating probabilities
 - Analysing the prediction error
- 6 To conclude

- Predict at aggregated levels by aggregating estimated probabilities.
- Use more points than Teruti-Lucas to estimate the probabilities at the point level.
- Work in progress : allocation methods.

This work was supported by the French Agence Nationale de la Recherche through the ModULand project (ANR-11-BSH1-005).

- Predict at aggregated levels by aggregating estimated probabilities.
- Use more points than Teruti-Lucas to estimate the probabilities at the point level.
- Work in progress : allocation methods.

This work was supported by the French Agence Nationale de la Recherche through the ModULand project (ANR-11-BSH1-005).

We thank

- the Service de la Statistique et de la Prospective from the Ministère de l'Agriculture in France for giving us access to the data Teruti-Lucas,
- the Unité INFOSOL from INRA for the data base BDGSF
- and the Joint Research Center-MARS from the European Commission for the meteorological data.

- Predict at aggregated levels by aggregating estimated probabilities.
- Use more points than Teruti-Lucas to estimate the probabilities at the point level.
- Work in progress : allocation methods.

This work was supported by the French Agence Nationale de la Recherche through the ModULand project (ANR-11-BSH1-005).

We thank

- the Service de la Statistique et de la Prospective from the Ministère de l'Agriculture in France for giving us access to the data Teruti-Lucas,
- the Unité INFOSOL from INRA for the data base BDGSF
- and the Joint Research Center-MARS from the European Commission for the meteorological data.

Thank you for your attention !