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Introduction

Introduction

Objectives :

@ predict land use in the Midi-Pyrénées region of France (in 5
categories) using data easily accessible

@ at different spatial scales (points level and on regular grids).
© Determine the different components of the prediction error.
© Understand better the prediction error.

We focus on two quality criteria :
@ The percentage of good prediction at the point level.

@ The mean squared error of the estimated proportions (MSE), or the
squared root of the MSE, or the Brier score (1/2 MSE), or the
weighted Brier score, at the point and grid levels .
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Introduction

@ Introduction

© Preliminary study
@ Data description
@ From points to a grid
@ Different scales
o Classification tree for prediction at the Teruti-point level

© Simulated data set

@ At the point level
@ Prediction error decomposition
@ Understanding the prediction error

© At aggregated levels
@ Aggregating probabilities
@ Analysing the prediction error

@ To conclude
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Preliminary study Data description

© Preliminary study
@ Data description
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Preliminary study Data description

Data sources

Name Geographical level ~ Source Year
Land use (5 categories) 6km segment Teruti-Lucas 2010
Soil constitution UCS zones BGSF (GISSOL) 1998
main surface
base material
evolution of soil texture
presence of a waterproof layer
Meteorology grid 25x25km Agri4cast 2010
annual minimum of daily temperature
annual maximum of daily temperature
annual mean of daily temperature
annual sum of rain quantity
mean speed of wind
Land and empty meadow price 32 NRA Agreste 2010
Socio-economic data Insee 2010
population density (new) grid 200x200m
percentage of farmers municipalities
percentage of executives municipalities
metropolitan center municipalities
CLC2 (15 categories) zones (> 25 ha) Corine Land Cover 2006
Altitude grid (250m) BDAIti de I'I|GN -
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Preliminary study Data description

Teruti-Lucas : points and segments

1,5 6 km
km |

[ « segments du 6 km »

[J« segments du 6km doublé »
@ observed points

O extra points for further surveys

land-use prediction

Inra - MIAT- 2016

6/ 49



Preliminary study Data description

Teruti-Lucas : points and segments

Teruti Lucas

1:'. 6 km . . ; @ 10 points per

“segment” (or less)

6 km ‘ o Dark blue : learning
D D ‘ sample
- - @ Light blue : test
sample

[ « segments du 6 km »

[J« segments du 6km doublé »
@ observed points

O extra points for further surveys
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Preliminary study From points to a grid

© Preliminary study

@ From points to a grid
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Preliminary study From points to a grid

Municipalities
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Teruti Lucas points
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The grid (level Al
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Preliminary study From points to a grid

From points to a grid

Remark :
@ Land use at the point level.

@ Proportion of land use or main land use at a grid level.
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Preliminary study From points to a grid

Main land use

B urban (7%)

O farming (26%)
W forests (31%)

[ pastures (26%)
O natural land (9%)
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Preliminary study Different scales

© Preliminary study

@ Different scales
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Preliminary study Different scales

Summary of the spatial levels

TABLE: Characteristics of the grids

Grid Number of Approximate  Number of Total number

aggregated area points of squares

“unit squares” per square

A; 1 18 km? 1310 2579 squares
Ao 4 72 km? 1340 689 squares
A3 16 288 km? 43160 192 squares
As 64 1152 km? 10 3 640 59 squares
As 256 4608 km® 184 3 2 559 20 squares
As 1024 18432 km® 184 a6 605 8 squares

Ap is the Teruti-Lucas points level and Ay is the whole Midi-Pyrénées
region.
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Preliminary study Classification tree for prediction at the Teruti-point level

© Preliminary study

o Classification tree for prediction at the Teruti-point level
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Teruti Lucas points
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Preliminary study Classification tree for prediction at the Teruti-point level

Prediction of the land use at Teruti-Lucas points

@ There exist several methods for predicting a categorical variable with
more than two categories.

e Multinomial logit model (MNL), discriminant analysis, classification
tree,. ..

@ We compared MNL and trees and get very similar results in terms of
percentage of good prediction (number of points correctly predicted
divided by the number of points).

@ In this presentation, we focus on classification trees only.

land-use prediction Inra - MIAT- 2016 18 / 49



Preliminary study Classification tree for prediction at the Teruti-point level

Classification tree and importance of variables

cle2 = 11,12,13,14,21,22,23,24,32,33,51
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Preliminary study Classification tree for prediction at the Teruti-point level

Classification tree

Results :
Percentage of correctly classified points : 65% with the maximum
probability and 50% with a multinomial draw.
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Preliminary study Classification tree for prediction at the Teruti-point level

Comparison depending on the response prediction
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Preliminary study Classification tree for prediction at the Teruti-point level

Remark

o if X; ~ I\/Iultinomial(l, Pil, .- ,p,'K), Y = (Y,']_7 cey Y,'K)/ with
Yig(iy = 1 if j is such that pj,;y = max(p;,j =1,...,K) and X; and
Y; independent, then

*ZZXUYIJ— ZX«:

i=1 j=1
and

1
E EZZXUY’J Zp,q()

e if X; ~ Multinomial(1, pj1, - . ., pik),
Y; ~ Multinomial(1, pi1, . .., pik) and X; and Y; independent, then

n K

1 1
S22 XY | =52 2

i=1 j=1 i=1 j=1
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Preliminary study Classification tree for prediction at the Teruti-point level

Remark

well-classified rate “pmax mean”
K=5 65.12% 65.16%
K=4 72.84% 73.19%

well-classified rate mean squares prob.
K=5 50.01% 50.45%
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Simulated data set

© Simulated data set
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More points than Teruti-Lucas
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More points than Teruti-Lucas
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Simulated data set

Classification tree chosen for the DGP

clc2 =11,12,13,14,21,22,23,24,32,33,61
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DGP

Locations i =1,...,502205,
land uses k=1,...,K, K =5,

explanatory variables x;,

vector of probabilities p; = (pj1, .. ., pik) at location i such that :

pPi = f(X,').
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Simulated data set

DGP
@ Locations i =1,...,502205,
@ landuses k=1,...,K, K=5,
@ explanatory variables x;,
@ vector of probabilities p; = (pi1,- .-, pik) at location i such that :

pi = f(x;).

The variable to explain dummy variable

o “random draw” response denoted d, following a multinomial
distribution with parameters 1 and p;,

o “maximum probability” response denoted df (d}} =1 if pj is the
maximum probability among the p; j =1,..., K and 0 otherwise).
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Simulated data set

Prediction
@ Locations i =1,...,25317 (Teruti-Lucas),
o landuses k=1,..., K,
@ explanatory variables x;,
@ variable to explain dj,
@ vector of probabilities estimates p; = (pi1, . .., Pik) at location i such

that :

pi = 1(x).
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Simulated data set

Prediction

Locations i = 1,...,25317 (Teruti-Lucas),
land uses k=1,..., K,

explanatory variables x;,

variable to explain dj,

vector of probabilities estimates p; = (pi1,- . -, Pik) at location i such
that :

pi = 1(x).

@ The prediction (9,’,? dummy variable at i = 1,...,502205 by

e “random draw" predicted response denoted 35( following a multinomial
distribution with parameters 1 and p;,

o “maximum probability” predicted response denoted df (d = 1 if py is
the maximum probability among the p; j = 1,..., K and 0 otherwise).
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At the point level Prediction error decomposition

@ At the point level
@ Prediction error decomposition
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At the point level Prediction error decomposition

The Sum of Squared Errors (SSE) between d’,:’ and dj, defined by

SSE = Z ( ,k) can be decomposed into :
n - . 5 n o R 5 n R n ,
Z( ik —di) = Z (dik — Pix) +Z (Bix — Pix)> + Z (P — df)* +R
i=1 i=1 i=1 i=1
where

= —22 [ — Pix)(Pik — Pik)

—(d — piw)(di — pix) — (Bix — pirc)(d plk)]
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At the point level Prediction error decomposition

Error decomposition

At the point level, “response error”

urban farming forests pastures natural land
>o(dF —di)* 33363.00 84407.00 71412.00 111038.00 41972.00
E,( — /S;k)Z 5983.91 26540.87 12118.45  37009.47 8168.27
Z,(p,k pix)? 13.20 43.07 36.12 107.11 87.25
Si(dh — pi)?  27324.69 57232.18 59282.26  73850.71 32923.67
R 41.20 590.87 -24.83 70.70 792.81

As a consequence, from now on, we forget the predicted probabilities and consider
only the true probabilities.
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At the point level Understanding the prediction error

@ At the point level

@ Understanding the prediction error
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At the point level Understanding the prediction error

We are now going to analyze the impurity of these probabilities and their
spatial autocorrelation as we suspect that there is a relationship between
the errors and the impurity. More preciselu, we measure how homogeneous
or diverse is land use at a given point or in a given region, with the idea
that classification is going to be more difficult when there is diversity.

The impurity of probabilities pjx is measured by the Gini-Simpson impurity
index gs; =1 — Z;le Pz

As values of gs; correspond to terminal nodes of the tree of the DGP, gs;
is a discrete variable with 13 values.
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At the point level Understanding the prediction error

Bar chart of point level Gini-Simpson impurity index
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At the point level Understanding the prediction

Classification tree chosen for the DGP

clc2 =11,12,13,14,21,22,23,24,32,33,61
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At the point level Understanding the prediction error

Characteristics of groups according to the gs; value

gs;i frequency principal land uses

0.314 130532  82.3% of forests

0.370 14376  77.4% of natural lands

0.450 119010  72.9% of farming

0.462 13158  71.1% of urban

0.509 12200  63.0% of pastures and 31.0% of natural land

0.604 10167 56.1% of pastures and 27.1% of farming
0.611 to 0.619 112647  57.1% of pastures, 17.4% of forests and 13.1% of farming
0.671 to 0.716 90115  mix of all uses
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At the point level Understanding the prediction error

Absolute response error vs the Gini-Simpson impurity index

error on urban
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At the point level Understanding the prediction error

Absolute response error vs the Gini-Simpson impurity index
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At aggregated levels Aggregating probabilities

© At aggregated levels
@ Aggregating probabilities
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At aggregated levels Aggregating probabilities

For each cell Gz, we define three aggregated probabilities :

@ pgi denotes the average of the probabilities p; derived from our
initial model p; = f(x;) for the points i that belong to the same cell

Gg : Pgk = 57~ Z pik Where # G, denotes the number of points in
#Gg
i€Gg
the cell Gg.
1 . -
° 155; = — Z dj,, where we recall that d, is the prediction by
#Cg icG,
g
multinomial random draw
_dm 1 m m .
° Pgi = %c Z i » where we recall that djf} is the maximum
g

i€Gg
probability prediction
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At aggregated levels Analysing the prediction error

© At aggregated levels

@ Analysing the prediction error
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At aggregated levels Analysing the prediction error

@ We can make a part of the response error disappear by aggregating
the probability estimates.

@ We can measure another type of error called the sampling error. This
error is due to the fact that we estimate the probabilities only at the
Teruti-Lucas points while the explanatory variables are available at
any point.
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At aggregated levels Analysing the prediction error

RMSE
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el i e T
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Altitude and density
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To conclude

O To conclude
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To conclude

@ Predict at aggregated levels by aggregating estimated probabilities.

@ Use more points than Teruti-Lucas to estimate the probabilities at the
point level.

@ Work in progress : allocation methods.

This work was supported by the French Agence Nationale de la Recherche
through the ModULand project (ANR-11-BSH1-005).
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@ Use more points than Teruti-Lucas to estimate the probabilities at the
point level.
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To conclude

@ Predict at aggregated levels by aggregating estimated probabilities.

@ Use more points than Teruti-Lucas to estimate the probabilities at the
point level.

@ Work in progress : allocation methods.
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through the ModULand project (ANR-11-BSH1-005).
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@ the Service de la Statistique et de la Prospective from the Ministére
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for the meteorological data.

Thank you for your attention !
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