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What are we looking at?

Central dogma of molecular biology

DNA mRNA Proteins
transcription translation

replication

Proteins

I are building blocks of any cellular functionality,

I are encoded by the genes,

I do interact (at the protein and gene level – regulations).

Basic biostatistical issues

1. Selecting some genes of interest (biomarkers)
I Differential analysis

2. Looking for interactions between them (pathway analysis).
I Network inference
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How is this measured? (1)
Microarray technology: parallel measurement of many biological features

signal processing

X =

x
1
1 x21 x31 . . . xp1
...
x1n x2n x21 . . . xpn


Matrix of features n� p

Expression levels of p

probes are simultaneously

monitored for n individuals

pretreatment
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How is this measured? (2)
Next Generation Sequencing: parallel measurement of even many more biological features

assembling

X =

k
1
1 k21 k31 . . . kp1
...
k1n k2n k21 . . . kpn


Matrix of features n≪ p

Expression counts are extracted

from small repeated sequences

and monitored for n individuals

pretreatment
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The problem at hand

Inference

≈ 10s/100s microarray/sequencing experiments

≈ 1000s probes (“genes”)

Inference

Questions

1. Which nodes (subset of relevant genes)?

2. Which edges (significant interactions)?
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Handling the scarcity of data (1)
By reducing the number of parameters

Assumption

Connections will only appear between informative genes

Candidate genes

select p key genes P

p “reasonable” compared to n

typically, n ∈ [p/5; 5p]

the learning dataset

n size–p vectors of expression

(X1, . . . , Xn) with Xi ∈ Rp

inference
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Handling the scarcity of data (2)
By taking as many observations as possible into account

Multitask learning

How should we merge the data?

Condition 1 Condition 2
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Handling the scarcity of data (2)
By taking as many observations as possible into account

Multitask learning

by inferring each network independently

Condition 1 Condition 2

(X
(1)
1 , . . . , X

(1)
n1

), X
(1)
i ∈ Rp1 (X

(2)
1 , . . . , X

(2)
n2

), X
(2)
i ∈ Rp2

inference inference
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Handling the scarcity of data (2)
By taking as many observations as possible into account

Multitask learning

by pooling all the available data

Condition 1 Condition 2

(X1, . . . , Xn), Xi ∈ Rp, with n = n1 + n2.

inference
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Handling the scarcity of data (2)
By taking as many observations as possible into account

Multitask learning

by breaking the separability

Condition 1 Condition 2

(X
(1)
1 , . . . , X

(1)
n1

), X
(1)
i ∈ Rp1 (X

(2)
1 , . . . , X

(2)
n2

), X
(2)
i ∈ Rp2

inference
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Multiple network inference and differential analysis

Differential analysis studies

Conditions 1 and 2 typically stand for

I stress experiments,

I case/control studies,

I placebo/treatment studies, . . .

Current network inference strategy

To handle scarcity of data in that context, we

1. perform a differential analysis to select a set of candidate genes,

2. perform joint network inference on this restricted set of genes.

J. Chiquet, Y. Granvalet and C. Ambroise

Infering multiple graphical structures
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Multiple network inference and differential analysis
Illustration on the Loi dataset

I nR = 68 tamoxifen-resistant
tumors

I nR = 187 tamoxifen-sensible
tumors

I Expression matrix X has 255
rows (patients) and 15,537
columns (genes),

I X has been ordered and cut
with BH multiple-testing
procedure at 5%.

 Multiple network inference is performed on this restricted matrix.
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Issues

Why doing this?
The underlying statistical models (GGM or linear model) are known not
to perform well1 in ultra-high dimension (n≪ p). See e.g.

N. Verzelen.

Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons

 We have to limit the number of genes in the networks.

Perspectives

1. How this 2-step procedure affects the inferred networks?

2. Can we do better by performing simultaneously differential analysis
and network inference?

1meaning completely ’useless’
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Penalized Regression

Network inference

I Network inference = Inverse covariance matrix inference

I Assumption : sparse matrix => Penalized Regression (convex
problem)

N. Meinshausen and P. Buhlmann

High-dimensional graphs and variable selection with the lasso

Differential Analysis

I First objective : can we formulate differential analysis as a penalized
regression ?

I => Our solution : Fused Anova (convex)

I Having these two penalities, can we merge them to have a unified
problem ?
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Penalized Regression

Objectives

I Formulating Differential Analysis as a penalized Regression

I Including the effect of a known network

I Infering the network while performing the differential analysis
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Fused Anova Model

Fused Anova

I Penalised Regression using the fused Lasso penality

min
β∈RK

1

2

∑
k

nk

(
Y

(k)
• − βk

)2
+ λ

∑
k 6=`

(ωk`|βk − β`|)

I K number of groups
I nk number of individuals for group k
I Y

(k)
• the mean of group k

I λ penalty coefficient
I ωk` weights
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Fused Anova Model

Fused Anova

I Penalised Regression using the fused Lasso penality

min
β∈RK

1

2

∑
k

nk

(
Y

(k)
• − βk

)2
+ λ

∑
k 6=`

(ωk`|βk − β`|)

I Similar to the Clusterpath and CAS-ANOVA

T.B. Hocking, A. Joulin, F. Bach and J-P. Vert
Clusterpath: An Algorithm for Clustering using Convex Fusion
Penalties

H. D. Bondell and B. J. Reich
Simultaneous factor selection and collapsing levels in ANOVA
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Fused Anova Model

Properties

I Simple designs => fast and easy to implement path algorithm

H. Hoefling
A path algorithm for the Fused Lasso Signal Approximator

I For two groups : statistic t = λfuse
I Default weights (ωk` = nkn`) => same ROC curve performances

than the t-test
I Other weights can do better but loose part of the algorithm efficiency

I For more than two groups :
I Do not need to run all pairwise tests
I The hierarchy is directly generated for each variable
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Further studies

Including the effect of a known network

L. Jacob, P. Neuvial and S. Dudoit

More Power via Graph-Structured Tests for differential Analysis of Gene
Networks

F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot and J. P. Vert

Classification of microarray data using gene networks

Our problem would thus be :

argmin
B

tr
((
Y −XBT

)
Ω(Y −XB)

)
+ λW ||DB||1
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Further studies

Coupling Network Inference and Differential Analysis

A. J. Rothman, E. Levina and J. Zhu

Sparse Multivariate Regression with Covariance Estimation

K. Sohn and S. Kim

Joint Estimation of Structured Sparsity and Output Structure in
Multiple-Output Regression via Inverse-Covariance Regularization
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Conclusion

Near Future work

I Fused Anova performance testing

I Work on its statistical properties

I Including the effect of a known network

I Implementation in R and C

Thank You for your attention
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