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Abstract

We resurrect regression elements in context of graphical Gaussian model (GGM) search
and define the forward elements of entropy. We give a detailed interpretation of the
third order forward elements (triangular elements) including their use for data analysis
and their relevance to GGM search. We propose a specific search procedure, FE3, and
compare to the well known algorithms PC and Aracne and also to our coding of a penalised
regression algorithm. Our study is work in progress, though our interim findings suggest
FE3 is competitive with the best but more efficient.

1 Introduction

Graphs in which nodes represent random vari-
ables, and edges represent probabilistic depen-
dencies between the variables, underly graphical
models: Koller and Friedman (2009), Lauritzen
(1996), Whittaker (1990). Our interest is the
search for large scale Gaussian graphical models
from experiments that typically generate data
with a large number of variables p but moderate
or small number of repetitions n. The standard
approach to global search for good or best mod-
els is to score the model using the maximised
log-likelihood function; however this is compu-
tationally too difficult when p is large. Local
search for well fitting graphical models identify
conditional independence (CI) statements, such
as X1 ⊥⊥ X2|X3 consistent with the data; these
usually require analysis of low dimensional mar-
gins and so are computationally feasible what-
ever p. Progress has been made in recent years
by researchers in at least three fields: statistics,
machine learning and bioinformatics, though of-
ten working without reference to each other.
Some key references are given in Section 3 be-
low.

Insight: The marginal mutual information
(MI) of two random variables and the condi-
tional MI (CMI) of two variables given a third

are, respectively

I12 = inf (X1 ⊥⊥ X2) = E log
f12
f1f2

,

I12|3 = inf (X1 ⊥⊥ X2|X3) = E log
f12|3

f1|3f2|3
,

Cover and Thomas (2006). Here fA is the den-
sity function corresponding to the random vari-
ables indexed in the subset A. Consider the
difference in MIs, ∆123 say, and using the defi-
nition of a conditional probabilty,

∆123 = inf (X1 ⊥⊥ X2)− inf (X1 ⊥⊥ X2|X3)

= −E log
f123f1f2f3
f12f13f23

. (1)

Surprisingly the right hand side is symmetric
under permutation of the variables, and so

∆123 = I12 − I12|3 = I13 − I13|2 = I23 − I23|1.

The corollary of interest to us is that the condi-
tional MIs {I12|3, I13|2, I23|1} may be computed
from four numbers: {I12, I13, I23} and ∆123;
rather than from six. Our aim is to exploit this
result.

Regression and additive elements: Following
Newton and Spurrell (1967), Whittaker (1984)
suggests that the interpretation of a fitted sta-
tistical model such as the classical linear or
the generalized linear model is substantially
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clarified by partitioning of the maximized log-
likelihood ratio test statistic into additive el-
ements. A consistent notation is developed
in which the primary elements measure the
unique contribution of each explanatory vari-
able whereas the secondary and higher order
elements measure the effective balance in the
observed design. We extend this work to the
analysis of conditional independence models for
high dimensional multivariate data.

Gaussian entropy, likelihood and mutual infor-

mation: Definitions of these terms in the con-
text of conditional indepenendence modelling
may be found in Whittaker (1990), Lauritzen
(1996), Cover and Thomas (2006).

The Shannon entropy of a continuous random
variable or vector X is −E log fX(X) where fX
is the density function of X. For the multivari-
ate Normal distribution N(µ,Σ) the Gaussian
entropy is

−E log fX(X) = const+
1

2
log |Σ|,

where the constant is 1

2
p(1 + log 2π). The MI

and CMI at (1) above are differences in this en-
tropy.

Loglikelihood, entropy and MI: There is a
close connection between the empirical Shannon
entropy and the log-likelihood from a indepen-
dent sample of n identically distributed random
variables ℓ = n× log f(x). Log-likelihood ratio
tests (deviances) are related to linear contrasts
of empirical entropies. In particular it is not
surprising to find that tests of independence or
conditional independence within the Gaussian
family are equivalent to making comparisons
of the empirical MI or CMI with a threshold.
In the Gaussian case computation of CMIs de-
volves to evaluation of determinants of minors
of the empirical variance matrix. Consequently
we describe the search procedures in terms of
MI and cutoffs rather than in terms of hypoth-
esis tests and their significance levels.

Outline: In Section 2 we generalise the compu-
tation of ∆ to an arbitrary (finite) set of random
variables, and define the forward elements from

the Mobius inversion of the entropy function on
a binary lattice. The application of forward el-
ements in the local search for Gaussian graph-
ical models is discussed in Section 3, and an
algorithm FE3 based on third order elements is
suggested. In Section 4 the results of comparing
this with other competitors are given.

2 Forward elements from Mobius
inversion of the entropy

We write fA for the density of the random vec-
tor XA indexed by the elements of A. The en-
tropy is monotone function over the set of sub-
sets of random variables in the sense that

−E log fA ≥ − E log fB whenever A ⊆ B,

Differences in entropy have interesting
statistical interpretations, for instance
−E log fB + E log fA = −E log fB|A is the
conditional entropy. The set of subsets is a
binary lattice.

Example: The lattice diagram of the power set
of all subsets of {1, 2, 3} is in Figure 1.
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Figure 1: 3-dimensional binary lattice

Forward elements are constructed from a Mo-
bius inversion of the entropies on this binary lat-
tice. More generally, a lattice is the pair (L,≤)
where L is a (finite) set of points and < is a
partial order. Consider a function h defined on
a lattice and satisfying the additivity relation

h(a) =
∑

b≤a

g(b) for all a ∈ L. (2)

We call the values of g the forward elements of
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h. The sum is taken over all points in the lattice
L that lie at or below a. This is a triangular sys-
tem of equations which can be solved by back
substitution. For example, on the lattice of the
first k integers the forward elements of a func-
tion h are just its first differences. The forward
elements are the solution of (2) for g, and can
be written explicitly as

g(a) =
∑

b≤a

(−1)|a|−|b|h(b) for all a ∈ L.(3)

This is an instance of Mobius inversion (Rota,
1964) and also can be obtained from the princi-
ple of inclusion-exclusion.

Using the notation of our application

∆A =
∑

B⊆A

(−1)|A|−|B|(−E log fB) (4)

for all A ∈ L, with the entropy function taking
the role of h. The first order forward element is
the original entropy and the second order for-
ward element is the negative of the mutual in-
formation for marginal independence:

∆1 = −E log f1 and ∆12 = −E log
f12
f1f2

,

as −E log fφ = 0. The third order forward ele-
ment is the symmetric function given above at
(1).

The entropy function on the 3-dimensional
lattice and the corresponding forward elements
are displayed in Figures 2 and 3.
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Figure 2: 3-dimensional entropies
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Figure 3: 3-dimensional forward elements

Gaussian forward elements: When evaluated
for the Gaussian entropy the third order (trian-
gular) forward element, ∆123, is

1

2
log

| var (X123)|| var (X1)|| var (X2)|| var (X3|)

| var (X12)|| var (X13)|| var (X23)|
,

and is clearly symmetric in the variables. Its
empirical counterpart replaces Σ = var (X) by
the sample variance matrix.

Some interpretation of ∆: There are three
features we wish to draw attention to: the in-
terpretation of large values in their own right;
the efficient computation of inf (Xi ⊥⊥ Xj |Xk)
for all values of i, j, k; and the application of
forward elements to local search procedures for
graphical models.

Firstly note that a large value of ∆123 indi-
cates that variable 3 affects the relationship be-
tween variables 1 and 2, as is evident by (1).
This is compatible with a graph in which 3 is
connected to both 1 and 2, and hence by sym-
metry when 1, 2, 3 are all connected.

However this is not a necessary condition.
Consider the chain CI graph

2❦ 1❦ 3❦

defined by I23|1 = 0. In this graph it appears
that I12|3 and I12 might be equal, as 3 should
not affect the relation between 1 and 2, and thus
∆123 should be 0. However this is not necessar-
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ily true.

I12|3 = E log
f12|3

f1|3f2|3
= E log

f123f3
f13f23

= E log
f12f13f3
f1f13f23

, using (X2 ⊥⊥ X3|X1,

= E log
f12

f1f2|3
.

The last term is not I12 so that ∆123 6= 0.

Efficient computation of first order CMIs: To
obtain inf (Xi ⊥⊥ Xj |Xk) for all triples of vari-
ables, without appeal to symmetry, requires
p
(

p−1

2

)

CMI calculations, To obtain these us-
ing forward elements requires

(

p
2

)

evaluations of
marginal MIs and

(

p
3

)

evaluations of ∆ijk. There
is an improvement of efficiency by a factor of
1/3, supposing that each calculation is roughly
of the same order of magnitude.

3 Local search using forward
elements

Local search algorithms identify conditional in-
dependence statements from data and use these
to eliminate edges in the graph. The first sug-
gested appears to be the PC algorithm Spirtes
et al. (2000) which proved effective and has the-
oretical properties that guarantee the correct
choice of model. The starting point is to com-
pute all pairs of MIs and threshold these to find
the initial set of adjacencies; in effect this is
the relevance network proposed by Butte et al.

(2000) in the bioinformatics literature. Then,
for each edge (i, j) in the graph, PC searches
for a subset A from the neighbours of that edge
for which Xi ⊥⊥ Xj |XA; if such a subset is found
the edge is dropped from the graph. The first
pass considers conditional independence of or-
der |A| = 1, The procedure increases the size of
A sequentially until either the edge is dropped
or a limit on the size of A is breached.
Bioinformatic papers that suggest networks

based on low order conditional independence
are Magwene and Kim (2004) and Wille and
Bühlmann (2006). The Aracne algorithm Mar-
golin et al. (2006) also starts with the rele-
vance network and then considers triples of vari-
ables with mutually adjacent edges in the graph,

i.e. triangles. It applies the information in-
equality (Cover and Thomas, 2006) to elimi-
nate the weakest of the three edges, and the
one most likely to correspond to a first order
conditional independence. This makes Aracne
computationally efficient. In both the PC and
the Aracne algorithms the graph is sequentially
updated as each edge test is considered.

We propose an algorithm based on computing
some 3rd order forward elements of the entropy.
In common with the others, the relevance net-
work provides the initial adjacency matrix. In
this graph we find a triple of 3 nodes, (i, j, k)
say, whose adjacencies form a triangle or form
a chain [O—O—O]; and then evaluate the cor-
responding forward element ∆ijk. The triple
determines three possible edges which are now
tested for first order conditional independence
using the 3 marginal MIs and ∆ijk. Note that
if ∆ijk < 0 an edge may be added, unlike other
local search procedures. If ∆ijk > 0 and the
initial adjacencies form a triangle, then if one
edge is eliminated it is the weakest. This leads
to a graph in which some edges are eliminated
by thresholding inf (Xi ⊥⊥ Xj) and others by
thresholding inf (Xi ⊥⊥ Xj |Xk).

There is one difficulty. When two triples over-
lap, for instance (1, 2, 3) and (1, 2, 4), the or-
der in which the procedure is applied may lead
to different outcomes, as I12|3 and I12|4 may
have different implications for edge (1, 2). This
makes a sequential procedure difficult to imple-
ment; it is resolved below within a batch proce-
dure that considers all triangular elements to-
gether.

FE3: a forward elements batch procedure:

The steps of the FE3 are

1. Compute Iij for all pairs of nodes. Elimi-
nate the edge (i, j) from the complete graph
whenever

Iij < m,

to build A1.

2. Find all triples of nodes with one that has
two neigbours in A1.
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3. Find ∆ijk for all such triples and store.

4. Order the triples in ascending ∆.

5. Use this order of triples to threshold the
three conditional MIs (Iij|k, Iik|j , Ijk|i) =
(Iij −∆ijk, Iik −∆ijk, Ijk −∆ijk) against
m, or equivalently

(Iij , Iik, Ijk) < m+∆ijk, (5)

and update A1 to get A2.

Remarks: Several points are worth making:
This procedure visits nodes rather than edges,
unlike some other algorithms. Edges may be
added, unlike other algorithms where they are
only subtracted. The effect of ordering is to
remove the arbitrariness in updating the edges
sequentially. As the procedure evaluates all
relevant third order elements before updating
the adjacencies it is a batch-like procedure.
Updating the adjacency matrix in ascending or-
der of ∆ implies edges that might be added
are considered before edges that might be sub-
tracted. Consequently a putative CI in the up-
date is not overwritten by another in the same
update. The update at (5) might be interpreted
as the application of a local threshold to a rel-
evance network. The procedure could be re-
peated on A2 until convergence.

A Markov chain example: An autoregres-
sion is generated on p = 12 variables from
Xj+1 = 0.2Xj + ǫj , where the errors are iid, and
100 repetitions of the process are observed. The
theoretical independence graph is just the chain

1❦ 2❦ · · · 11❦ 12❦

After the first pass the adjacency matrix of the
relevance network, A1, is

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0 1 1 1 0 0 0 0 0 0 0 0

[2,] 1 0 1 1 0 0 0 0 0 0 0 0

[3,] 1 1 0 1 1 0 0 0 0 0 0 0

[4,] 1 1 1 0 1 1 1 1 0 0 0 0

[5,] 0 0 1 1 0 1 1 1 1 0 0 0

[6,] 0 0 0 1 1 0 1 1 1 0 0 0

[7,] 0 0 0 1 1 1 0 1 1 1 0 0

[8,] 0 0 0 1 1 1 1 0 1 1 1 0

[9,] 0 0 0 0 1 1 1 1 0 1 1 0

[10,] 0 0 0 0 0 0 1 1 1 0 1 1

[11,] 0 0 0 0 0 0 0 1 1 1 0 1

[12,] 0 0 0 0 0 0 0 0 0 1 1 0

The matrix is roughly banded, but there are
clearly two bands, and maybe three bands be-
neath the diagonal, rather than the one band of
the generating process. There are over 80 dis-
tinct triples in this graph. Applying the second
pass of FE3 leads to an adjacency matrix A2

that is correct apart from 1 wrong entry. The
differences A1 −A2 are

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

[1,] 0 0 1 1 0 0 0 0 0 0 0 0

[2,] 0 0 0 1 0 0 0 0 0 0 0 0

[3,] 1 0 0 0 1 0 0 0 0 0 0 0

[4,] 1 1 0 0 0 1 1 1 0 -1 0 0

[5,] 0 0 1 0 0 0 1 1 1 0 0 0

[6,] 0 0 0 1 0 0 0 1 1 0 0 0

[7,] 0 0 0 1 1 0 0 0 1 1 0 0

[8,] 0 0 0 1 1 1 0 0 0 1 1 0

[9,] 0 0 0 0 1 1 1 0 0 0 1 0

[10,] 0 0 0 -1 0 0 1 1 0 0 0 1

[11,] 0 0 0 0 0 0 0 1 1 0 0 0

[12,] 0 0 0 0 0 0 0 0 0 1 0 0

One entry is negative corresponding to adding
an edge.

4 Results

Important aspects of the fitted model include
the quality of its predictions, and the accuracy
of the revealed structure. Having the right edges
is crucial to scientific understanding and hav-
ing the right variance matrix determines pre-
dictive power. A global criterion such as the
likelihood function or a penalised version is the
natural candidate that combines these two as-
pects. However in our context of large p this is
infeasible, and we restrict attention to compar-
ing the found graph with the true graph that
generated the data in terms of the number of
wrong edges.
We report here some of the interim results of a

small scale simulation study, to test the efficacy
of the FE3 algorithm.

Evaluation: We use a standard setup for sim-
ulation where a data set is sampled from the
graphical Gaussian model analysed, and the re-
sult is compared to ground truth. First, the
experimental parameters: sample size n, num-
ber of variables p, and the expected number
of edges, are set. A random choice of Gtrue is
made by selecting edges with equal probability,
A random choice of the precision (inverse vari-
ance) matrix Dtrue respecting the edges of Gtrue

is generated by choosing a Unif(−1, 1) value of
the precision for the edges selected at the first
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step. The matrix is made diagonally dominant,
checked to be positive definite and its inverse is
returned as the variance Σ. A sample of X is
drawn from the corresponding multivariate Nor-
mal distribution. The data sample is searched
using each algorithm in the study, and the pro-
cess is repeated for enough replications of the
given settings. Note that just one realisation of
data is analysed for one choice of Gtrue.

A comparison of some chosen local methods:

We evaluate several local methods for compar-
ison with the forward element method of order
3 (FE3). The methods under consideration are

- RN the relevance network with a chi-sq
threshold; this is included as a very simple
benchmark, and also because it is the first step
in several other algorithms including FE3.

- PC the path consistency algorithm, as this
is well known for its good performance; the code
is taken from the R-package pcalg.

- CN is our version of a sparse regression al-
gorithm that examines each node with the R-
package lars to find the neighbours.

- AR the Aracne algorithm, well thought of
among bioinformaticians, that extends the rele-
vance network to inspect triples of nodes. The
code is contained in the Bioconductor package
minet, Meyer et al. (2008).

Threshold and tuning parameter: The cutoff
for the mutual information MIcut is determined
by the 95% chi-squared quantile. This threshold
is perturbed by a tuning parameter γ ∈ (0, 1) to
a cutoff of λ = MIcut exp (3(γ − 0.5)). In our
experiments 10 equi-spaced values of the tun-
ing parameter are considered. The simulation
parameter settings are held fixed for nreps = 8
repetitions and the evaluation reports the me-
dian wrong edge count within the repetitions.

Wrong edge evaluation: The number of
wrong edges, not distinguishing between false
positives and false negatives, are plotted against
the tuning parameter in Figure 4. The value
γ = 0.5 corresponds to the default threshold
cutoff.

Our findings are that:

− The plots are fairly reproducible with

t.para
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50
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0

15
0

20
0

0.2 0.4 0.6 0.8 1

RN1 FE3 PC AR CN

Figure 4: Wrong edges for several local search

methods.

p = 32, n = 50× 32, few errors and 8 repeti-
tions. There are approximately 150 edges in
any one graph and 350 missing edges.

− FE3 is competitive with PC and both are
superior to AR.

− The number of wrong edges for FE3, PC,
AR are flat when plotted against the tuning pa-
rameter.

− The fluctuations in CN are real but, rel-
ative to the other algorithms, it is repeatedly
unstable.

− RN is improved by increasing γ and sur-
prisingly gets down to levels of PC and FE3
when it approaches 1.

Next steps: These preliminary findings are
encouraging though some issues have to be re-
solved before finalisation of this interim study.

Acknowledgement: This work is in part sup-
ported by Philip Morris International.
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