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Motivation

• Management/Control of a system are based on 
the whole map of the system:

Observation of the system is costly

Observations may be noisy

• Problem: Choose the observations which will 
be made to reconstruct the whole map of the 
system, taking sampling cost into account



Motivation: site-specific weed management

• Context: Traditionally herbicides are 
sprayed all over the field, whereas 
spraying can be limited to the 
infected area

=> Map of weeds populations

Problem: Fields are too large
to be fully explored 

=>Need to develop a sampling
method
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Related works

• Krause, Phd thesis 2008:

Adaptive sampling in Markov chain

Quality of policy based on entropy

Approximate solution using greedy algorithm

• Peyrard et al . ECCS 2010:

Adaptive sampling in Hidden Markov random field

Quality of sampling policy based on MAP

Naive heuristics
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O = { 5 , 6 , 7 , 8 }

R = { 1 , 2 , 3 , 4 }
Adaptively choose sampling plans 
A1,…,AH⊆ O in order to reconstruct XR

Choose a sampling policy

•Let X=(X1,…,Xn) be a discrete random vector 
taking values into * 0 , … , K +

Goal : Reconstruct the vector XR

Difficulties : Observations are available only                                                         
on a subset of indices of O.

•* 1 , … , n + = R ⋃ O

•X~ ℙ ( . | Ѳ ) ,  a non-oriented graphical model

•We suppose that Ѳ is known

General Sampling Problem



A1= 𝛿1={ 8 }

A2= 𝛿2 ((8,0))={ 6 , 7 }

xA1=0

xA2=(4,2)

=Reconstruction of XR

Sampling policy of depth 2 A sampling policy 𝛿 of depth H is a set of 
functions  (𝛿1,…,𝛿H) such that:

A1=𝛿1

Ai=𝛿i((A1,xA1),…,(Ai-1,xAi-1))

Sampling policy



A1= 𝛿1={ 8 }

A2= 𝛿2 ((8,0))={ 6 , 7 }

xA1=0

xA2=(4,2)

=Reconstruction of XR

Sampling policy of depth 2

Sampling policy

A sampling policy 𝛿 of depth H is a set of 
functions  (𝛿1,…,𝛿H) such that:

A1=𝛿1

Ai=𝛿i((A1,xA1),…,(Ai-1,xAi-1))

A trajectory is a sequence of samples
{ ( A1, x A1) , … , ( AH, x AH) }  issued from 𝛿

: the set of all possible trajectories  
issued from 𝛿

δτ



• MAP reconstruction of  XR:

• Trajectory  quality:

• Quality of a  sampling policy:

• Optimal sampling policy:

Reconstruction of XR and optimal sampling policy



Finite horizon Markov Decision Process

Definition

A  MDP  is defined as a 5-tuple < S , D , T ,P , R >  :

T={ 1 ,… ,H} . Finite set of decision steps
 St. Finite set of possible states of the system at time t
 Dt.  Finite set of allowed decisions (or actions) at time t
 Pdt( st+1| st) . Transition probabilities
 rt( st, dt) . Immediate reward function  at time t



• Policy : 𝛿=(𝛿t)t=1…H ,  where  𝛿t :    St ⟶ Dt

•Criterion :
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•Criterion :
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State and decision spaces

A1= { 8 }

A2= { 6 , 7 }

xA1=0

xA2=(4,2)
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d2=A2={6,7}
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Transition probabilities and reward function

• At time t∈*1,…,H+ , transition probabilities and 
reward functions:

• At time t=H+1,  no decision is available but a 
global reward is attributed:



• Solve:

is equivalent to fine the optimal policy of our PDM

Conclusion

Use simulation-based algorithm to solve the 
adaptive sampling problem in graphical model 



• Design reinforcement learning algorithm using
simulation method for graphical models

• Application to weeds mapping

Perspectives




