Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	000000000000	00	

Segmentation bidimensionnelle rapide pour l'étude des données Hi-C

Vincent Brault, Julien Chiquet et Céline Lévy-Leduc

Mardi 29 Septembre

イロト 不得 トイヨト イヨト ヨ

- To better understand the organisation of a cell (Lieberman-Aiden et al. [2009]).
- To quantify the interaction between two positions of the genome (intra-chromosome and inter-chromosome).
- Each entry (i, j): Number of interactions between the loci *i* and j^{1} .

^{1.} A locus is a particular and invariable location on the chromosome. E > < E > E = < < C

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000		0000	000000000000	00	
Mativ	ationa						

Motivations

Hi-C data of 5 chromosomes of the Arabidopsis Thaliana; collaboration with M. Benhamed of the *institut de biologie des plantes (UMR 8618)*.

≣ા≡ •ી લ.ઉ 3/39

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Goal							

- To form group without permutations.
- To obtain a grid panel.
- To study matrices 10 000×10 000.

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 0000000000000	Perspectives	Références
Plan							

- 2 Least Absolute Shrinkage eStimatOr
- 3 Theoretical results
- 4 Model selection
- 5 Numerical experiments

Introduction 0000	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Plan							

- 2 Least Absolute Shrinkage eStimatOr
- 3 Theoretical results
- 4 Model selection
- 5 Numerical experiments

Introduction 0000	Model •000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Notati	ions						

Introduction 0000	Model ●000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Notati	ons						

	0000	00000		0000	0000000000000	00	
Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références

Matati	a ia a						
	•000			0000	000000000000		
Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références

Introduction	Model OOOO	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives 00	Références
Model							

Let $Y = (Y_{i,j})_{1 \le i,j \le n}$ be the random matrix defined by

$$\mathbf{Y} = \mathbf{U} + \mathbf{E},$$

where $\mathbf{U} = (U_{i,j})$ is a blockwise constant matrix such that

$$U_{i,j} = \mu_{k,\ell}^{\star} \quad \text{if } t_{1,k-1}^{\star} \leq i \leq t_{1,k}^{\star} - 1 \text{ and } t_{2,\ell-1}^{\star} \leq j \leq t_{2,\ell}^{\star} - 1,$$

with the convention $t_{1,0}^* = t_{2,0}^* = 1$ and $t_{1,K_1^*+1}^* = t_{2,K_2^*+1}^* = n+1$. The entries $E_{i,j}$ of the matrix $E = (E_{i,j})_{1 \le i,j \le n}$ are iid zero-mean random variables.

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Trick							

 $\bm{U} = \bm{T}\bm{B}\bm{T}^\top$

with
$$\mu_{k,\ell}^{\star} = \sum_{i=1}^{k} \sum_{j=1}^{\ell} B_{t_{1,i}^{\star}, t_{2,j}^{\star}}$$

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Vecto	risatio	n					

$$\mathbf{Y} = \mathbf{T}\mathbf{B}\mathbf{T}^{ op} + \mathbf{E}$$

is equivalent to

$$\operatorname{Vec}(\mathbf{Y}) = \operatorname{Vec}(\mathbf{TBT}^{\top}) + \operatorname{Vec}(\mathbf{E})$$

with

$$\operatorname{Vec}(\mathsf{T}\mathsf{B}\mathsf{T}^{\top}) = (\mathsf{T}^{\top} \otimes \mathsf{T}) \operatorname{Vec}(\mathsf{B}) = (\mathsf{T} \otimes \mathsf{T}) \operatorname{Vec}(\mathsf{B})$$

and we obtain

Kronecker product

10/39

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	000●	00000	O	0000	000000000000	00	
Vecto	risatio	n					

$$\mathbf{Y} = \mathbf{T}\mathbf{B}\mathbf{T}^\top + \mathbf{E}$$

is equivalent to

$$\operatorname{Vec}(\mathbf{Y}) = \operatorname{Vec}(\mathbf{TBT}^{\top}) + \operatorname{Vec}(\mathbf{E})$$

with

$$\operatorname{Vec}(\mathsf{TBT}^{\top}) = (\mathsf{T}^{\top} \otimes \mathsf{T}) \operatorname{Vec}(\mathsf{B}) = (\mathsf{T} \otimes \mathsf{T}) \operatorname{Vec}(\mathsf{B})$$

and we obtain

Kronecker product

10/39

Introduction	Model 000●	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Vector	risatio	n					

$$\mathbf{Y} = \mathbf{T}\mathbf{B}\mathbf{T}^\top + \mathbf{E}$$

is equivalent to

$$\operatorname{Vec}(\mathbf{Y}) = \operatorname{Vec}(\mathbf{TBT}^{\top}) + \operatorname{Vec}(\mathbf{E})$$

with

$$\operatorname{Vec}(\mathsf{T}\mathsf{B}\mathsf{T}^{\top}) = (\mathsf{T}^{\top} \otimes \mathsf{T})\operatorname{Vec}(\mathsf{B}) = (\mathsf{T} \otimes \mathsf{T})\operatorname{Vec}(\mathsf{B})$$

and we obtain

$$\underbrace{\mathcal{Y}}_{n^2 \times 1} = \underbrace{\mathcal{X}}_{n^2 \times n^2} \underbrace{\mathcal{B}}_{n^2 \times 1} + \underbrace{\mathcal{E}}_{n^2 \times 1}.$$

kropoo	COL	proc	

Introduction	Model 0000	LASSO	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Plan							

2 Least Absolute Shrinkage eStimatOr

3 Theoretical results

4 Model selection

5 Numerical experiments

Introduction Model LASSO Th results Selection Experiments Perspectives Références

For all $\lambda_n \geq 0$, we define

$$\widehat{\mathcal{B}}(\lambda_n) = \operatorname*{Argmin}_{\mathcal{B} \in \mathbb{R}^{n^2}} \left\{ \|\mathcal{Y} - \mathcal{X}\mathcal{B}\|_2^2 + \lambda_n \|\mathcal{B}\|_1 \right\}$$

and the active set

$$\widehat{\mathcal{A}}(\lambda_n) = \left\{ j \in \{1, \ldots, n^2\} : \widehat{\mathcal{B}}_j(\lambda_n) \neq 0 \right\}$$

For all $\lambda_n \geq 0$, we define

$$\widehat{\mathcal{B}}(\mathbf{0}) = \operatorname{Argmin}_{\mathcal{B} \in \mathbb{R}^{n^2}} \left\{ \|\mathcal{Y} - \mathcal{X}\mathcal{B}\|_2^2 + \lambda_n \|\mathcal{B}\|_1 \right\}$$

and the active set

$$\widehat{\mathcal{A}}(\mathbf{0}) = \left\{ j \in \{1, \ldots, n^2\} : \widehat{\mathcal{B}}_j(\lambda_n) \neq \mathbf{0} \right\} \approx \{1, \ldots, n^2\}$$

For all $\lambda_n \geq 0$, we define

$$\widehat{\mathcal{B}}(+\infty) = \operatorname{Argmin}_{\mathcal{B} \in \mathbb{R}^{n^2}} \left\{ \|\mathcal{Y} - \mathcal{X}\mathcal{B}\|_2^2 + \lambda_n \|\mathcal{B}\|_1 \right\}$$

and the active set

$$\widehat{\mathcal{A}}(+\infty) = \left\{ j \in \{1, \ldots, n^2\} : \widehat{\mathcal{B}}_j(\lambda_n) \neq \mathbf{0} \right\} = \emptyset$$

Introduction Model LASSO Th results Selection Experiments Perspectives Références

For all $\lambda_n \geq 0$, we define

$$\widehat{\mathcal{B}}(\lambda_n) = \operatorname*{Argmin}_{\mathcal{B} \in \mathbb{R}^{n^2}} \left\{ \|\mathcal{Y} - \mathcal{X}\mathcal{B}\|_2^2 + \lambda_n \|\mathcal{B}\|_1 \right\}$$

and the active set

$$\widehat{\mathcal{A}}(\lambda_n) = \left\{ j \in \{1, \ldots, n^2\} : \widehat{\mathcal{B}}_j(\lambda_n) \neq 0 \right\}$$

Estimation of break change-point

$$\begin{array}{c} q_{a} + 1 \\ q_{a} + 1 \\ \Leftrightarrow \begin{pmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{pmatrix} r_{a} + 1 \\ \forall a \in \widehat{\mathcal{A}}(\lambda_{n}), \text{ we define } (q_{a}, r_{a}) \text{ as the Euclidean division} \\ \text{of } (a - 1) \text{ by } n, \text{ namely } (a - 1) = nq_{a} + r_{a} \text{ then} \\ \widehat{t}_{1} = (\widehat{t}_{1,k})_{1 \leq k \leq |\widehat{\mathcal{A}}_{1}(\lambda_{n})|} \in \widehat{\mathcal{A}}_{1}(\lambda_{n}) = \{r_{a} + 1 : a \in \widehat{\mathcal{A}}(\lambda_{n})\}, \\ \widehat{t}_{2} = (\widehat{t}_{2,\ell})_{1 \leq \ell \leq |\widehat{\mathcal{A}}_{2}(\lambda_{n})|} \in \widehat{\mathcal{A}}_{2}(\lambda_{n}) = \{q_{a} + 1 : a \in \widehat{\mathcal{A}}(\lambda_{n})\} \\ \text{where } \widehat{t}_{1,1} < \widehat{t}_{1,2} < \dots < \widehat{t}_{1,|\widehat{\mathcal{A}}_{1}(\lambda_{n})|}, \\ \text{and } \widehat{t}_{2,1} < \widehat{t}_{2,2} < \dots < \widehat{t}_{2,|\widehat{\mathcal{A}}_{2}(\lambda_{n})|}. \end{array}$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日)<<13/39

Estimation of break change-point

LASSO

13/39

 $\forall a \in \widehat{\mathcal{A}}(\lambda_n), \text{ we define } (a-1) \text{ by } n, \text{ name}^*$ $\forall \mathbf{a} \in \widehat{\mathcal{A}}(\lambda_n)$, we define $(\mathbf{q}_a, \mathbf{r}_a)$ as the Euclidean division $\widehat{\mathbf{t}}_1 = (\widehat{t}_{1,k})_{1 \le k \le |\widehat{\mathcal{A}}_1(\lambda_n)|} \in \widehat{\mathcal{A}}_1(\lambda_n) = \{\mathbf{r}_{\mathbf{a}} + 1 : \mathbf{a} \in \widehat{\mathcal{A}}(\lambda_n)\},\$ $\widehat{\mathbf{t}}_2 = (\widehat{t}_{2,\ell})_{1 \le \ell \le |\widehat{\mathcal{A}}_2(\lambda_n)|} \in \widehat{\mathcal{A}}_2(\lambda_n) = \{ \mathbf{q}_a + 1 : a \in \widehat{\mathcal{A}}(\lambda_n) \}$ where $\hat{t}_{1,1} < \hat{t}_{1,2} < \cdots < \hat{t}_{1,|\hat{\mathcal{A}}_1(\lambda_n)|},$ and $\hat{t}_{2,1} < \hat{t}_{2,2} < \cdots < \hat{t}_{2,|\hat{\mathcal{A}}_2(\lambda_n)|}.$ 《日》《圖》《日》《日》 문]日

Perspectives

Estimation of break change-point

LASSO 0●000

13/39

Estimation of break change-point

LASSO

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	000000000000	00	

Standard complexity :²

$$\mathcal{O}\left(\left|\mathcal{A}\right| mp + p \left|\mathcal{A}\right|^{2} + \left|\mathcal{A}\right|^{3}\right).$$

In our case, we have :

 $\mathcal{O}\left(\left|\mathcal{A}\right|n^{4}\right).$

 $\mathcal{X} = T \otimes T$

^{2.} see for example Bach et al. [2011].

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	00000000000	00	

Standard complexity :²

$$\mathcal{O}\left(\left|\mathcal{A}\right| mp + p \left|\mathcal{A}\right|^{2} + \left|\mathcal{A}\right|^{3}\right).$$

In our case, we have :

 $\mathcal{O}(|\mathcal{A}| n^4).$

 $\mathcal{X} = T \otimes T$

^{2.} see for example Bach et al. [2011].

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	00000000000	00	

Standard complexity :²

$$\mathcal{O}\left(\left|\mathcal{A}\right| mp + p \left|\mathcal{A}\right|^{2} + \left|\mathcal{A}\right|^{3}\right).$$

In our case, we have :

 $\mathcal{O}(|\mathcal{A}| n^4).$

 $\mathcal{X} = \textbf{T} \otimes \textbf{T}$

^{2.} see for example Bach et al. [2011].

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	00000000000	00	

Fast LARS for two-dimensional change-point detection :

Input : data matrix Y, maximal number of active variables s.	
Start with no change-point $\mathcal{A} \leftarrow \emptyset, \hat{\mathcal{B}} = 0$	
Compute current correlations $\hat{\mathbf{c}} = \mathcal{X}^\top \mathcal{Y}$	$\mathcal{O}(n^2)$
// Update the set of active variables	
Determine next change-point(s) by setting $x \leftarrow \ \mathbf{c}\ _{\infty}$ and $\mathcal{A} \leftarrow \{j : \mathbf{c}_j = x\}$	0
Update the Cholesky factorization of $\mathcal{X}_{\mathcal{A}}^{+}\mathcal{X}_{\mathcal{A}}^{-}$	$\mathcal{O}(\mathcal{A} ^2)$
// Compute the direction of descent	
Get the unormalized direction $\tilde{w}_{\mathcal{A}} \leftarrow \left(\mathcal{X}_{\mathcal{A}}^{\top}\mathcal{X}_{\mathcal{A}}\right)^{-1} \operatorname{sign}(\hat{c}_{\mathcal{A}})$	$\mathcal{O}(\mathcal{A} ^2)$
Normalize $w_{\mathcal{A}} \leftarrow \alpha \tilde{w}_{\mathcal{A}}$ with $\alpha \leftarrow 1/\sqrt{\tilde{w}_{\mathcal{A}}^{\top}} \operatorname{sign}(\hat{c}_{\mathcal{A}})$	
Compute the equiangular vector $u_{\mathcal{A}} = \mathcal{X}_{\mathcal{A}} w_{\mathcal{A}}$ and $\mathbf{a} = \mathcal{X}^{\top} u_{\mathcal{A}}$	$\mathcal{O}(n^2)$
// Compute the direction step	
Find the maximal step preserving equicorrelation $\gamma_{in} \leftarrow \min_{j \in \mathcal{A}^{C}}^{+} \left\{ \frac{\lambda - \mathbf{c}_{j}}{\alpha - a_{j}}, \frac{\lambda + \mathbf{c}_{j}}{\alpha + a_{j}} \right\}$	
Find the maximal step preserving the signs $\gamma_{out} \leftarrow \min_{i \in \mathcal{A}}^+ \left\{ -\hat{\mathcal{B}}_{\mathcal{A}} / w_{\mathcal{A}} \right\}$	
The direction step that preserves both is $\hat{\gamma} \leftarrow \min(\gamma_{in}, \gamma_{out})$	
Update the correlations $\hat{\mathbf{c}} \leftarrow \hat{\mathbf{c}} - \hat{\gamma} \mathbf{a}$ and $\hat{\mathcal{B}}_{\mathcal{A}} \leftarrow \hat{\mathcal{B}}_{\mathcal{A}} + \hat{\gamma} \mathbf{w}_{\mathcal{A}}$ accordingly	$\mathcal{O}(n)$
// Drop variable crossing the zero line	
If $\underline{\gamma_{out} < \gamma_{in}}$	
Remove existing change-point(s) $\mathcal{A} \leftarrow \mathcal{A} \setminus \left\{ j \in \mathcal{A} : \hat{\mathcal{B}}_j = 0 \right\}$	
Downdate the Cholesky factorization of $\mathcal{X}_{\mathcal{A}}^{\top} \mathcal{X}_{\mathcal{A}}$	$\mathcal{O}(\mathcal{A})$
A **	

Output : Sequence of triplet $(\mathcal{A}, \lambda, \hat{\mathcal{B}})$ recorded at each iteration.

Introduction 0000	Model 0000	LASSO ○○○○●	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
		Mu matrix			Orignal ma	Irix	

Introduction 0000	Model 0000	LASSO 00000	Th results ☉	Selection 0000	Experiments 0000000000000	Perspectives	Références
Plan							

Least Absolute Shrinkage eStimatOr

3 Theoretical results

4 Model selection

5 Numerical experiments

<ロト < 部 > < 王 > < 王 > 王 = うへで 17/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
			•				

Proposition

Let $(Y_{i,j})_{1\leq i\leq n_1\atop 1\leq j\leq n_2}$ a data matrix and $\hat{t}_{1,k}$, $\hat{t}_{2,k}$ the estimators obtained by the LASSO. Under some assumptions and assume that $|\hat{\mathcal{A}}_1(\lambda_n)| = K_1^*$ and that $|\hat{\mathcal{A}}_2(\lambda_n)| = K_2^*$ then for all $a \in \{1, \dots, n^2\}$, $\mathbb{P}\left(\left\{\max_{1\leq k\leq K_1^*} \left| \hat{t}_{1,k} - t_{1,k}^* \right| \leq n_1 \delta_{n_1,n_2}\right\} \cap \left\{\max_{1\leq k\leq K_2^*} \left| \hat{t}_{2,k} - t_{2,k}^* \right| \leq n_2 \delta_{n_1,n_2}\right\}\right)$ $\xrightarrow[n \to \infty]{}$ 1.

$$\frac{n_1}{\log n_2} \xrightarrow[n_1,n_2 \to +\infty]{} +\infty$$

18/39

イロト 不得 トイヨト イヨト ヨ

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
			•				

Proposition

Let $(Y_{i,j})_{1\leq i\leq n_1\atop 1\leq j\leq n_2}$ a data matrix and $\hat{t}_{1,k}$, $\hat{t}_{2,k}$ the estimators obtained by the LASSO. Under some assumptions and assume that $|\hat{\mathcal{A}}_1(\lambda_n)| = K_1^*$ and that $|\hat{\mathcal{A}}_2(\lambda_n)| = K_2^*$ then for all $a \in \{1, \dots, n^2\}$, $\mathbb{P}\left(\left\{\max_{1\leq k\leq K_1^*} \left| \hat{t}_{1,k} - t_{1,k}^* \right| \leq n_1 \delta_{n_1,n_2}\right\} \cap \left\{\max_{1\leq k\leq K_2^*} \left| \hat{t}_{2,k} - t_{2,k}^* \right| \leq n_2 \delta_{n_1,n_2}\right\}\right)$ $\xrightarrow[n \to \infty]{}$ 1.

$$\frac{n_1}{\log n_2} \underset{n_1, n_2 \to +\infty}{\longrightarrow} +\infty$$

KOW		
1.09		

18/39

イロト 不得 トイヨト イヨト ヨ

Introduction 0000	Model 0000	LASSO 00000	Th results O	Selection	Experiments 000000000000	Perspectives	Références
Plan							

2 Least Absolute Shrinkage eStimatOr

3 Theoretical results

4 Model selection

5 Numerical experiments

Introduction Model LASSO Th results Selection Experiments Perspectives Références

Stability selection :

Input : data vector $\mathcal{Y} \in \mathcal{M}_{n^2 \times 1}$, an integer $M \in \mathbb{N}^*$, a pair of numbers $(K_1^*, K_2^*) \in \{1, \ldots, n\}^2$. **For** *iter* $\in \{1, \ldots, M\}$

Chose randomly $\textit{ind}^{(\textit{iter})} = \left\{ \textit{i}_1, \ldots, \textit{i}_{n^2/2} \right\} \subset \{1, \ldots, n^2\}.$

Use the procedure with (K_1^*, K_2^*) change-points on the data $\mathcal{Y}_{ind^{(iter)}}$ to obtain $(\hat{\mathbf{t}}_1^{(iter)}, \hat{\mathbf{t}}_2^{(iter)})$.

Output : Sequence of couples $(\hat{t}_1^{(iter)}, \hat{t}_2^{(iter)})$ recorded at each iteration or only the couple of change-points appearing a number of times larger than a given threshold.

Introduction	Model	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives 00	Références		
Adaptation									

$$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array} \right) \Leftrightarrow \begin{pmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{pmatrix}$$

21/39
Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives 00	Références
Adapt	ation						

$$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \cdot \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array} \right) \Leftrightarrow \begin{pmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & \cdot & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{pmatrix}$$

21/39

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives 00	Références
Adapt	ation						

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives 00	Références
Adapt	ation						

22/39

Introduction Model LASSO Th results Selection Experiments Perspectives Références Adaptation stability selection

Stability selection :

Input : data matrix $Y \in \mathcal{M}_{n \times n}$, an integer $M \in \mathbb{N}^*$, a pair of numbers $(K_1^*, K_2^*) \in \{1, \dots, n\}^2$. For $\underline{iter \in \{1, \dots, M\}}$

Choose randomly $ind_1^{(iter)} = \left\{ i_1^{(1)}, \dots, i_{n/2}^{(1)} \right\} \subset \{1, \dots, n\}$ and $ind_2^{(iter)} = \left\{ i_1^{(2)}, \dots, i_{n/2}^{(2)} \right\} \subset \{1, \dots, n\}.$

Use the procedure with $(K_1^{\star}, K_2^{\star})$ change-points on the data $Y_{ind_1^{(iter)}, ind_2^{(iter)}}$ to obtain $(N_1^{(iter)}, N_2^{(iter)})$ the number of times that each change-point of $\{1, \ldots, n\}^2$ was selected.

Output : Sequence of couple of numbers $(N_1^{(iter)}, N_2^{(iter)})$ recorded at each iteration.

Introduction 0000	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments	Perspectives 00	Références
Plan							

- 2 Least Absolute Shrinkage eStimatOr
- 3 Theoretical results

5 Numerical experiments

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments ••••••	Perspectives	Références	
Experimental design								

•
$$K_1^{\star} = K_2^{\star} = 4.$$

• $\left(\mu_{k,\ell}^{\star}\right)_{k \in \{1, \dots, K_1^{\star}+1\}, \ell \in \{1, \dots, K_2^{\star}+1\}} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$

•
$$(t_{1,k}^{\star})_{1 \le k \le K_1^{\star}} = ([nk/(K_1^{\star}+1)]+1)_{1 \le k \le K_1^{\star}}$$
 and $(t_{2,k}^{\star})_{1 \le k \le K_2^{\star}} = ([nk/(K_2^{\star}+1)]+1)_{1 \le k \le K_2^{\star}}.$

•
$$E_{i,j} \sim \mathcal{N}(0, \sigma^2)$$
.

• 1000 matrices simulated for each case.

•

Statist	rical p	erform	nances				
Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments	Perspectives	Références

Parameters :

- *n* = 500.
- *σ* ∈ {1,2,5}.

Evaluation :

- Mean square error $n^{-2} \|\mathcal{B} \hat{\mathcal{B}}\|_2^2$ as a function of the number of nonzero elements in $\hat{\mathcal{B}}$ for each scenario.
- ROC curves for the estimated change-points in rows.

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					000000000000000000000000000000000000000		

- Green : Our method.
- Blue : One-dimensional LASSO³ with at least in one row.
- Purple : One-dimensional LASSO³ with at least in ([n/2] + 1) rows.
- Red : Extension of CART.
- n = 250 with 100 matricies

0000	0000	00000	0	0000	000000000000000000000000000000000000000	00	
Statist	ical p	enorm	iances				

Parameters :

- $n \in \{100, 250, 500, 1000, 2500, 5000\}.$
- $|\mathcal{A}| \in \{50, 100, 250, 500, 750\}.$
- *σ* = 10.
- Linux workstation with Intel Xeon 2.4 GHz processor and 8 GB of memory

Evaluation :

The median runtimes.

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	00000000000	00	

Introduction 0000	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments	Perspectives	Références
Model	selec	ction					

Parameters :

- *n* = 500.
- *σ* ∈ {1,2,5}.
- *M* = 100.

Evaluation :

- Boxplots of the estimation of K_1^{\star} .
- Histograms of the estimated change-points in rows.

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	000000000000	00	

<ロト < 昂 > < 言 > < 言 > 王 = のへで 32/39

ショック 単面 スポット 御 マート

33/39

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments	Perspectives	Références
Real d	ata						

- Chromosome 19 of the mouse cortex at a resolution 40 kb.
- Comparison with Dixon et al. [2012].

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000					000000000000000000000000000000000000000		

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	000000000000000000000000000000000000000	00	

87 estimated change-points with 2.5 percent

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					00000000000		

1 column breaks

Summarized data

▶ ∢ Ē ▶ ≞ ⊨ ∽ ۹ ៚ 36/39

	IIIICoulto	Ocicotion	Experiments	reispectives	neierences
			000000000000		

2 column breaks

Summarized data

▶ ∢ Ē ▶ ≞ ⊨ ∽ ۹ ៚ 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					000000000000		

3 column breaks

Summarized data

· 《토》 토는 외역은 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					0000000000000		

4 column breaks

Summarized data

< ≣ ▶ ≣|= ∽へ⊘ 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					0000000000000		

c

4 column breaks

Summarized data

< ≣ ► ≣|= ∽ < 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					000000000000		

5 column breaks

Summarized data

< ■ ト ■ = うへで 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					00000000000		

7 column breaks

Summarized data

< ■ ト ■ = うへで 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					000000000000		

Original data

8 line breaks

8 column breaks

Summarized data

(■) ■|= ∽へ⊘ 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					0000000000000		

9 line breaks

10 column breaks

Summarized data

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					000000000000		

11 line breaks

10 column breaks

Summarized data

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
0000	0000	00000	0	0000	0000000000000	00	

Original data

26 column breaks

≣ ► ≣।= ୬९୯ 36/39

Introduction	Model	LASSO	Th results	Selection	Experiments	Perspectives	Références
					00000000000		

66 line breaks

68 column breaks

Summarized data

≞ ▶ ≞ = ∽ < ⊘ 36/39

Introduction	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives ●O	Références
Perspe	ectives	5					

- Theoretical result for model selection.
- Improvement of our package : *Blockseg*.
- Improvement 3D representation.
- Adaptation to symmetric matrices.
- More real datas.

Thank you for your attention

7%

Original data

20 line breaks

Summarized data

Introduction 0000	Model 0000	LASSO 00000	Th results O	Selection 0000	Experiments 000000000000	Perspectives	Références
Bibliog	Iraphi	е					

- F. Bach, R. Jenatton, J. Mairal, G. Obozinski, et al. Convex optimization with sparsity-inducing norms. *Optimization for Machine Learning*, pages 19–53, 2011.
- J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren. Topological domains in mammalian genomes identified by analysis of chromatin interactions. *Nature*, 485(7398) :376–380, 2012.
- Z. Harchaoui and C. Lévy-Leduc. Multiple change-point estimation with a total variation penalty. *Journal of the American Statistical Association*, 105(492), 2010.
- H. Hoefling. A path algorithm for the fused lasso signal approximator. *Journal of Computational and Graphical Statistics*, 19(4) :984–1006, 2010.
- C. Lévy-Leduc, M. Delattre, T. Mary-Huard, and S. Robin. Two-dimensional segmentation for analyzing hic data. *Bioinformatics*, 30(17) :386–392, 2014.
- E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. *science*, 326(5950) :289–293, 2009.
- R. J. Tibshirani. The solution path of the generalized lasso. Stanford University, 2011.

Plan

< 마 > < 큔 > < 흔 > < 흔 > 르 = < 오
 40/39

●00	lotations		O			0000	ation of th	e algonann		000	bc
	Let $\mathbf{A} \in \mathbf{product}$	$\mathcal{M}_{n \times m}(\mathbb{I})$ of A and	R) and d B is	d $\mathbf{B} \in \mathcal{M}$ a matrix	$_{p imes q}(\mathbb{R})$ tr $(np) imes ($	wo m <i>mq</i>)	atrice satisf	es, the kr ying :	onecl	ker	
A	$\otimes \mathbf{B} = \begin{pmatrix} a_{i} \\ a_{j} \\ a_{i} \end{pmatrix}$	11 B a ₁₂ 21 B a ₂₂ ⋮ ⋮ n1 B a _{n2}	2 B · · 2 2 B · · · · · · · · · · · · · · · · · · ·	··· a _{1n} E ··· a _{2m} E ·. : ·· a _{nm} E							
	(a ₁₁ b ₁₁) a ₁₁ b ₂₁	a ₁₁ b ₁₂ a ₁₁ b ₂₂	· · · ·	a ₁₁ b _{1q} a ₁₁ b _{2q}	a ₁₂ b ₁₁ a ₁₂ b ₂₁	 	 	a _{1m} b ₁₁ a _{1m} b ₂₁	 	$a_{1m}b_{1q}$ $a_{1m}b_{2q}$	
	:	:	۰.	:	:			:	·	:	
	$a_{11}b_{p1}$	$a_{11}b_{p2}$		$a_{11}b_{pq}$	$a_{12}b_{p1}$	•••		$a_{1m}b_{p1}$	•••	a _{1m} b _{pq}	
=	:	÷		÷	÷	·		÷		:	
	:	÷		÷	÷		·	÷		:	
	$a_{n1}b_{11}$	$a_{n1}b_{12}$		$a_{n1}b_{1q}$	$a_{n2}b_{11}$	•••		$a_{nm}b_{11}$	•••	a _{nm} b _{1q}	
	1	÷	·	÷	÷			÷	·	:]	
	$\langle a_{n1}b_{p1}$	a _{n1} b _{p2}		a _{n1} b _{pq}	an2bp1	•••		a _{nm} b _{p1}		a _{nm} b _{pq})	

Licual notations

Usual notations	Gray film	Optimization of the algorithm	Proof
000			

Return vectorisation
Usual notations	Gray film	Optimization of the algorithm	Proof
000			

 $||u||_2^2$ is defined for a vector u in \mathbb{R}^N by

$$||u||_2^2 = \sum_{i=1}^N u_i^2$$

and $||u||_1$ is defined for a vector u in \mathbb{R}^N by

$$||u||_1 = \sum_{i=1}^N |u_i|.$$

Return LASSO

< 마 > < 쿱 > < 쿱 > < 쿱 > < 쿱 > 로 > < 쿱 > 코 < 크 < 의 < 은
44/39

notations

Mu matrix

< 마 > < 큔 > < 흔 > < 흔 > 흔 는 · 흔 는 흔 드 · 이 Q (~)
46/39

Usual notations	Gray film	Optimization of the algorithm	Proof
		0000	

By the form of \mathcal{X} , we have for all $\mathcal{V} \in \mathbb{R}^{n^2}$ with **v** the associated matrix

$$\mathcal{XV} = \operatorname{Vec} \left[\left(\sum_{i'=1}^{i} \sum_{j'=1}^{j} v_{i',j'} \right)_{1 \le i,j \le n} \right]$$

= $\operatorname{Vec} \left[\left(\begin{array}{cccc} v_{1,1} & v_{1,1} + v_{1,2} & \cdots & \sum_{j=1}^{n} v_{1,j} \\ v_{1,1} + v_{2,1} & v_{1,1} + v_{2,1} + v_{1,2} & \sum_{j=1}^{n} v_{1,j} + \sum_{j=1}^{n} v_{2,j} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} v_{i,1} & \sum_{i=1}^{n} v_{i,1} + \sum_{i=1}^{n} v_{i,2} & \cdots & \sum_{i=1}^{n} \sum_{j=1}^{n} v_{i,j} \end{array} \right) \right]$

Lemma :

For any vector $\mathcal{V} \in \mathbb{R}^{n^2}$, computing $\mathcal{X}\mathcal{V}$ and $\mathcal{X}^{\top}\mathcal{V}$ requires at worse $2n^2$ operations.

Return algo

47/39

正明 スポットボット 大型マスロッ

Usual notations	Gray film	Optimization of the algorithm	Proof
		0000	

By the form of \mathcal{X} , we have for all $\mathcal{V} \in \mathbb{R}^{n^2}$ with **v** the associated matrix

$$\mathcal{XV} = \operatorname{Vec} \left[\left(\sum_{i'=1}^{i} \sum_{j'=1}^{j} v_{i',j'} \right)_{1 \le i,j \le n} \right]$$

= $\operatorname{Vec} \left[\left(\begin{array}{cccc} v_{1,1} & v_{1,1} + v_{1,2} & \cdots & \sum_{j=1}^{n} v_{1,j} \\ v_{1,1} + v_{2,1} & v_{1,1} + v_{2,1} + v_{1,2} & \sum_{j=1}^{n} v_{1,j} + \sum_{j=1}^{n} v_{2,j} \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} v_{i,1} & \sum_{i=1}^{n} v_{i,1} + \sum_{i=1}^{n} v_{i,2} & \cdots & \sum_{i=1}^{n} \sum_{j=1}^{n} v_{i,j} \end{array} \right) \right]$

Lemma :

For any vector $\mathcal{V} \in \mathbb{R}^{n^2}$, computing $\mathcal{X}\mathcal{V}$ and $\mathcal{X}^{\top}\mathcal{V}$ requires at worse $2n^2$ operations.

Return algo

47/39

Usual notations	Gray film	Optimization of the algorithm	Proof
000	0	0000	00000

Lemma :

Let $A = \{a_1, \dots, a_K\}$ and for each *a* in A let us consider the Euclidean division of a - 1 by *n* given by $a - 1 = nq_a + r_a$, then

$$\left(\left(\mathcal{X}^{\top}\mathcal{X}\right)_{\mathcal{A},\mathcal{A}}\right)_{1\leq k,\ell\leq K}=\left(\left(n-\left(q_{a_{k}}\vee q_{a_{\ell}}\right)\right)\times\left(n-\left(r_{a_{k}}\vee r_{a_{\ell}}\right)\right)\right)_{1\leq k,\ell\leq K}.$$

Moreover, for any non empty subset \mathcal{A} of distinct indices in $\{1, \ldots, n^2\}$, the matrix $\mathcal{X}_{\mathcal{A}}^\top \mathcal{X}_{\mathcal{A}}$ is invertible.

In some cases, we have the explicit form of $(\mathcal{X}_{\mathcal{A}}^{\top}\mathcal{X}_{\mathcal{A}})^{-1}$.

Return algo

Usual notations	Gray film	Optimization of the algorithm	Proof
000	0	0000	00000

Lemma :

Let $A = \{a_1, \dots, a_K\}$ and for each *a* in A let us consider the Euclidean division of a - 1 by *n* given by $a - 1 = nq_a + r_a$, then

$$\left(\left(\mathcal{X}^{\top}\mathcal{X}\right)_{\mathcal{A},\mathcal{A}}\right)_{1\leq k,\ell\leq K}=\left(\left(n-\left(q_{a_{k}}\vee q_{a_{\ell}}\right)\right)\times\left(n-\left(r_{a_{k}}\vee r_{a_{\ell}}\right)\right)\right)_{1\leq k,\ell\leq K}.$$

Moreover, for any non empty subset \mathcal{A} of distinct indices in $\{1, \ldots, n^2\}$, the matrix $\mathcal{X}_{\mathcal{A}}^\top \mathcal{X}_{\mathcal{A}}$ is invertible.

In some cases, we have the explicit form of $(\mathcal{X}_{\mathcal{A}}^{\top}\mathcal{X}_{\mathcal{A}})^{-1}$.

Return algo

Usual notations	Gray film	Optimization of the algorithm	Proof
	O	OO●O	00000

Lemma :

Assume that we have at our disposal the Cholesky factorization of $\mathcal{X}_{A}^{\top}\mathcal{X}_{A}$.

The updated factorization on the extended set $\mathcal{A} \cup \{j\}$ only requires solving a $|\mathcal{A}|$ -size triangular system, with complexity $\mathcal{O}(|\mathcal{A}|^2)$. Moreover, the downdated factorization on the restricted set $\mathcal{A} \setminus \{j\}$ requires a rotation with negligible cost to preserve the triangular form of the Cholesky factorization after a column deletion.

Usual notations

Gray fi

Optimization of the algorithm

Proof 00000

Cholesky factorization

Every positive-definite matrix $\bm{A}\in\mathcal{M}_{n\times n}(\mathbb{R})$ can be decompose in the product

$$\mathsf{A} = \mathsf{L}\mathsf{L}^ op$$

with L is a lower triangular matrix.

Return lemma

Plan

000	0000	•0000
Notations		

$$\begin{split} I_{\min}^{\star} &= \min_{0 \le k \le K_{1}^{\star}} |t_{1,k+1}^{\star} - t_{1,k}^{\star}| \wedge \min_{0 \le k \le K_{2}^{\star}} |t_{2,k+1}^{\star} - t_{2,k}^{\star}|, \\ J_{\min}^{\star} &= \min_{1 \le k \le K_{1}^{\star}, 1 \le \ell \le K_{2}^{\star}+1} |\mu_{k+1,\ell}^{\star} - \mu_{k,\ell}^{\star}| \wedge \min_{1 \le k \le K_{1}^{\star}+1, 1 \le \ell \le K_{2}^{\star}} |\mu_{k,\ell+1}^{\star} - \mu_{k,\ell}^{\star}|, \end{split}$$

which corresponds to the smallest length between two consecutive change-points and to the smallest jump size between two consecutive blocks, respectively.

Return theorem

Accumention	0000	
Assumption		

- (A1) The random variables $(E_{i,j})_{\substack{1 \le i \le n_1 \\ 1 \le j \le n_2}}$ are iid zero mean random variables such that there exists a positive constant β such that for all ν in \mathbb{R} , $\mathbb{E}[\exp(\nu E_{1,1})] \le \exp(\beta \nu^2)$.
- (A2) The sequence (δ_{n_1,n_2}) is a non increasing and positive sequence tending to zero such that $n_1 \delta_{n_1,n_2} J_{\min}^{\star 2} / \log(n_2) \to \infty$ and $n_2 \delta_{n_1,n_2} J_{\min}^{\star 2} / \log(n_1) \to \infty$, as n_1 and n_2 tends to infinity.
- (A3) The sequence (λ_{n_1,n_2}) is such that $(n_1 \delta_{n_1,n_2} J_{\min}^*)^{-1} \lambda_{n_1,n_2} \to 0$ and $(n_2 \delta_{n_1,n_2} J_{\min}^*)^{-1} \lambda_{n_1,n_2} \to 0$, as n_1 and n_2 tends to infinity.
- (A4) $I_{\min}^{\star} \ge n_1 \delta_{n_1, n_2}$ and $I_{\min}^{\star} \ge n_2 \delta_{n_1, n_2}$.

Return theorem

53/39

Usual notations	Gray film	Optimization of the algorithm	Proof
			00000

Lemma

Let $(Y_{i,j})_{\substack{1 \le i \le n_1 \\ 1 \le j \le n_2}}$ the data matrix. Then, $\widehat{\mathcal{U}} = \mathcal{X}\widehat{\mathcal{B}}$ is such that

$$\begin{aligned} \sum_{k=r_{a}+1}^{n_{1}} \sum_{\ell=q_{a}+1}^{n_{2}} Y_{k,\ell} - \sum_{k=r_{a}+1}^{n_{1}} \sum_{\ell=q_{a}+1}^{n_{2}} \widehat{\mathcal{U}}_{k,\ell} &= \frac{\lambda_{n_{1},n_{2}}}{2} \operatorname{sign}(\widehat{\mathcal{B}}_{a}), \text{ if } \widehat{\mathcal{B}}_{a} \neq 0, \\ \left| \sum_{k=r_{a}+1}^{n_{1}} \sum_{\ell=q_{a}+1}^{n_{2}} Y_{k,\ell} - \sum_{k=r_{a}+1}^{n_{1}} \sum_{\ell=q_{a}+1}^{n_{2}} \widehat{\mathcal{U}}_{k,\ell} \right| &\leq \frac{\lambda_{n_{1},n_{2}}}{2}, \text{ if } \widehat{\mathcal{B}}_{a} = 0, \end{aligned}$$

where $(a-1) = nq_a + r_a$.

Return theorem

54/39

・ロト・4回ト・4回ト・4回ト

Usual 1 000	notations	Gray film O	Optimization of the algorithm	Proof 000●0
	Lemma			
	Let $(E_{i,i})_{1 \le i \le n_1}$	be random varia	bles satisfying (A1). Let also (v	(n_1, n_2)

and (x_{n_1,n_2}) be two positive sequences such that $v_{n_1,n_2} x_{n_1,n_2}^2 / \log(n_2) \to \infty$, then

$$\mathbb{P}\left(\max_{\substack{1 \le r_{n_1,n_2} < s_{n_1,n_2} \le n_2 \\ |r_{n_1,n_2} - s_{n_1,n_2}| \ge v_{n_1,n_2}}} \left| (s_{n_1,n_2} - r_{n_1,n_2})^{-1} \sum_{j=r_n}^{s_n-1} E_{n,j} \right| \ge x_{n_1,n_2} \right) \xrightarrow{n_1,n_2 \to \infty} 0,$$

the result remaining valid if $E_{n,j}$ is replaced by $E_{j,n}$.

Return theorem

55/39

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

1 column breaks

Summarized data

▶ ৰাছ হাছ প্ৰ 56/39

2 column breaks

Summarized data

১ ৰ ≣ ৮ ≣ া≊ ৩ ৭ ৫ 56/39

Usual notations	Gray film O	Optimization of the algorithm	Proof ○○○○●

Usual notations	Gray film O	Optimization of the algorithm	Proof ○○○○●

Original data 3 line breaks 20.23 10 23 1e-23 — 0 100 200 300 400 500 ~ 0e+00 -00400 Summarized data 4 column breaks -10-231 8 8 · 107 23 -20-23 8 8 -0.4 8 8 -20-23 0.4

0 2000 4000 8000 8000 10000 12000

26%

-0.4

Usual notations	Gray film O	Optimization of the algorithm	Proof ○○○○●

4 line breaks

-0.6

Usual notations	Gray film O	Optimization of the algorithm	Proof ○○○○●

5 line breaks

Usual notations	Gray film O	Optimization of the algorithm	Proof ○○○○●

7 line breaks

0.5

Usual notations	Gray film O	Optimization of the algorithm	Proof ○○○○●

1 3%

<ロト < 昂 > < 言 > < 言 > 三 = つへの 56/39

11 line breaks

8

Usual notations	Gray film	Optimization of the algorithm	Proof

594

<ロト < 昂 > < 言 > < 言 > 三 = つへの 56/39

Usual notations	Gray film	Optimization of the algorithm	Proof
			00000

n

8

