Ajustement de modèles de régression logistique pour les graphes aléatoires

Application à un réseau de gènes

Sarah Ouadah, Pierre Latouche et Stéphane Robin

UMR MIA-Paris, AgroParisTech, INRA

NetBio Inférence de réseaux biologiques 10 novembre 2017

Réseau de gènes d'Arabidopsis thaliana

 $n=5626,~ \rho=0.004$ Covariables sur les gènes :

- ► SMAR : positions du gène par rapport au smar (scaffold matrix attachment region) (7 modalités)
- ► MOTIFS : motifs régulateurs que le gène a dans son promoteur (208 modalités)
- ► TARGET : indique si le gène est cible d'un facteur de transcription (2 modalités)
- ► FT : famille de facteurs de transcription qui cible le gène (73 modalités)

Questions

- Caractérisation d'un réseau binaire à partir de covariables via la régression logistique
- Les covariables disponibles expliquent-elles entièrement la topologie du réseau ? Evaluation de la qualité d'ajustement de la régression
- Quelle information est apportée par les covariables disponibles?
- ► Si l'information des covariables n'est pas suffisante, quelle topologie interprétable peut-on distinguer?

Sommaire

Modèles de graphe aléatoire

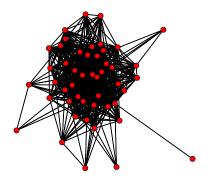
Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité d'un réseau ?

Quelle information est apportée par les covariables disponibles?

Quelles topologies de graphe peut-on distinguer?

Application au réseau de gènes

Réseau des arbres



Interactions entre arbres (Vacher et al., 2008), n=51 individus, d=3 covariables : distances génétiques, géographiques et taxonomiques

Graphe aléatoire

Réseau d'interaction= Graphe aléatoire $\mathcal{G} = (\mathcal{V} = \{1, \dots n\}, \mathcal{E})$

Données : Y la matrice d'adjacence de ${\cal G}$

$$Y_{ij} = \left\{ egin{array}{ll} 1 & ext{ si } (i,j) \in \mathcal{E} \ (ar\hat{e}te) \ 0 & ext{ sinon} \end{array}
ight.$$

Modèle de graphe avec covariables

Modèle de régression logistique

$$Y_{ij} \sim^{ind} \mathcal{B}\left[g(x_{ij}^{\mathsf{T}}\beta + \alpha)\right]$$

où g est la fonction logistique et $x_{ij} \in \mathbb{R}^d$ le vecteur de covariables sur l'arête (i,j).

 x_{ij}^1 : dist. génétique, x_{ij}^2 : dist. géographique, x_{ij}^3 : dist. taxonomique.

Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité du réseau ? (1)

Test

$$\left\{ \begin{array}{l} \textit{H_0 = r\'{e}gression logistique} \\ \textit{H_1 = structure additionnelle \'{a} l'effet des covariables} \end{array} \right.$$

Est-ce que les distances génétique, géographique et taxonomique suffisent à expliquer l'hétérogénéité du réseau des arbres ?

$$\begin{cases} H_0 = Y_{ij} \sim \mathcal{B} \left[g(x_{ij}^\mathsf{T} \beta + \alpha) \right] \\ H_1 = Y_{ij} \sim \mathcal{B} \left[g(x_{ij}^\mathsf{T} \beta + \phi(U_i, U_j)) \right], \text{ où } U_i \sim^{iid} \mathcal{U}(0, 1) \end{cases}$$

Structure résiduelle : le graphon

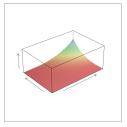
Modèle basé sur un graphon (*W*-graphe) (Lovász et Szegedy, 2006; Diaconis et Janson, 2008)

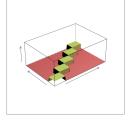
$$Y_{ij}|U_i,U_j\sim^{ind}\mathcal{B}\left(\Phi_{ij}\right),$$

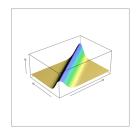
avec $\Phi_{ij} = \Phi(U_i, U_j)$ où $U_i \sim^{iid} \mathcal{U}[0, 1]$ et le graphon $\Phi: [0, 1]^2 \mapsto [0, 1]$.

Toute paire de noeuds a une probabilité de connexion induite par un caractère spécifique à chacun des noeuds.

Exemples de graphons, i.e probabilités de connexion







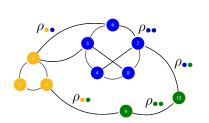
Pour les réseaux scale-free, de communauté et small world

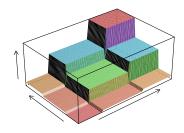
Si le graphon est constant, le modèle est d'Erdös-Rényi.

SBM et W-graphe

Modèle à blocs stochastiques (SBM) (Nowicki et Snijders, 2001)

$$Y_{ij}|Z_{ik},Z_{jl}\sim^{ind}\mathcal{B}(
ho_{kl})$$
 avec $Z_i\sim^{iid}\mathcal{M}(1,(\pi_1,\ldots,\pi_K))$





La fonction graphon d'un SBM à K classes est constante par blocs de taille $\pi_k \times \pi_l$ et de hauteur ρ_{kl}

Sommaire

Modèles de graphe aléatoire

Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité d'un réseau ?

Quelle information est apportée par les covariables disponibles?

Quelles topologies de graphe peut-on distinguer?

Application au réseau de gènes

Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité d'un réseau ? (2)

Test

►
$$H_0$$
: $Y_{ij} \sim \mathcal{B}\left[g(x_{ij}^{\mathsf{T}}\beta + \alpha)\right]$

$$lacksymbol{ iny} H_1: \qquad Y_{ij} \sim \mathcal{B}\left[g(x_{ij}^\intercal eta + \phi(U_i, U_j))
ight]$$
, où $U_i \sim^{iid} \mathcal{U}(0, 1)$

•
$$M_K$$
: $Y_{ij} \sim \mathcal{B}\left[g(x_{ij}^{\mathsf{T}}\beta + Z_i^{\mathsf{T}}\alpha Z_j)\right]$, où $Z_i \sim^{iid} \mathcal{M}(1,\pi)$

$$H_1' = \bigcup_{K > 2} M_K$$

 H_1 sans covariable = modèle de W-graphe et M_K sans covariable = SBM

Approche bayésienne – Estimation de $p(H_0|Y)$

Objectif

Estimer $p(H_0|Y)$:

$$p(M_1|Y) = \frac{p(Y|M_1)p(M_1)}{p(Y)} = \frac{p(Y|M_1)p(M_1)}{\sum_{K \ge 1} p(Y|M_K)p(M_K)}$$

▶ $p(M_1) = p(H_0) = 1/2$ et probabilités a priori égales pour les M_K $(K \ge 2)$ de sorte que $p(H_1') = 1/2$

$$\begin{array}{rcl} \log p(Y|M_K) & = & \log \Big\{ \sum_Z \int p(Y|Z,\alpha,\beta) p(Z|\pi) p(\alpha|\gamma) p(\beta|\eta) \\ \\ & \times p(\pi) p(\gamma) p(\eta) \mathrm{d}\pi \mathrm{d}\alpha \mathrm{d}\beta \mathrm{d}\gamma \mathrm{d}\eta \Big\} \end{array}$$

Non calculable \longrightarrow approximations variationnelles

Estimation de $p(Y|M_K)$

Approximation variationnelle (1)

$$\log p(Y|M_K) = \mathcal{L}_K(q) + \mathrm{KL}\left(q(\cdot)||p(\cdot|Y,M_K)\right)$$

οù

$$\mathcal{L}_{K}(q) = \sum_{Z} \int q(Z, \pi, \alpha, \beta, \gamma, \eta) \log \frac{p(Y, Z, \pi, \alpha, \beta, \gamma, \eta)}{q(Z, \pi, \alpha, \beta, \gamma, \eta)} d\pi d\alpha d\beta d\gamma d\eta$$

et
$$q(Z, \pi, \alpha, \beta, \gamma, \eta) = q(\pi)q(\alpha)q(\beta)q(\gamma)q(\eta)\prod_{i=1}^n q(Z_i)$$
.

Forme complexe de $\mathcal{L}_{\mathcal{K}}(q) \longrightarrow \mathsf{VBEM}$?

Estimation de $p(Y|M_K)$

Approximation variationnelle (2)

Borne pour la fonction logistique (Jaakola et Jordan, 2000) :

$$\log g(x) \geq \log g(\xi) + \frac{x-\xi}{2} - \lambda(\xi)(x^2 - \xi^2), \forall x, \xi \in \mathbb{R}, \lambda(\xi) = \frac{1}{4\xi} \tanh(\xi/2)$$

Borne pour la log-vraisemblance :

$$\log p(Y|M_K) \ge \mathcal{L}_K(q) \ge \mathcal{L}_K(q;\xi)$$

οù

$$\mathcal{L}_{K}(q;\xi) = \sum_{Z} \int q(Z,\pi,\alpha,\beta,\gamma,\eta) \log \frac{\sqrt{h(Z,\alpha,\beta,\xi)}p(Z,\pi,\alpha,\beta,\gamma,\eta)}{q(Z,\pi,\alpha,\beta,\gamma,\eta)} d\pi d\alpha d\beta d\gamma d\eta$$

Schéma d'optimisation

- 1. A ξ fixé, VBEM pour maximiser $\mathcal{L}_K(q;\xi)$ en q
 - ▶ Etape E : optimisation de q(Z)
 - ▶ Etape M : optimisation de $q(\pi)$, $q(\alpha)$, $q(\beta)$ $q(\gamma)$ et $q(\eta)$.
- 2. A q fixé, maximisation de $\mathcal{L}_K(q;\xi)$ en ξ

Test – Qualité d'ajustement – Structure résiduelle

- $ightharpoonup \widehat{p}(H_0|Y)$
- ho $\widehat{p}(M_K|Y) \propto p(M_K) \exp\{\widehat{\mathcal{L}}(q;\xi)\}$ (Volant et. al, 2012)
- $\begin{array}{ll} &\widehat{\mathbb{E}}\big[\phi(u,v)|Y\big] = \sum_{K\geq 1}\widehat{\rho}(M_K|Y)\widehat{\mathbb{E}}\big[\phi(u,v)|Y,M_K\big] \text{ (Latouche et Robin, 2005)} \end{array}$

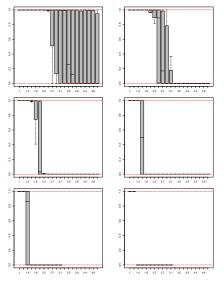
Puissance du test (1)

Réseaux simulés sous le modèle H_1

- $\mathbf{x}_i \in \mathbb{R}^d$ simulé pour chaque noeud, avec une distribution gaussienne standard et d=2
- $ightharpoonup x_{ij} = x_i x_j$
- $\beta = (1,1)^{\mathsf{T}}$
- ightharpoonup chaque noeud est associé à une position latente $U_i \sim \mathcal{U}(0,1)$

ho contrôle la densité et λ détermine la concentration des degrés

Puissance du test selon taille et densité du graphe (2)



 $\hat{\rho}(H_0|Y)$ en fonction de $\lambda \in \{1,\ldots,5\}$ pour $n \in \{100,150\}$ et une densité $\rho \in \{10^{-2},10^{-1.5},10^{-1}\}$. H_0 vrai pour $\lambda = 1$ et faux pour $\lambda > 1$.

Réseau des arbres

Test

 $\left(egin{array}{l} H_0 = ext{régression logistique avec les dist. génétiques, géo. et taxo.} \ H_1 = ext{structure additionnelle à l'effet des covariables} \end{array}
ight.$

On rejette H_0 : $\hat{p}(H_0|Y) = 1.5 \times 10^{-115}$ $(n = 51, \rho = 0.54)$.

Ces covariables ne suffisent pas à expliquer l'hétérogénéité du réseau.

Sommaire

Modèles de graphe aléatoire

Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité d'un réseau ?

Quelle information est apportée par les covariables disponibles?

Quelles topologies de graphe peut-on distinguer?

Application au réseau de gènes

Réseau des arbres

Estimation de β

	génétique	géographique	taxonomique
μ_{β}	2.54×10^{-5}	4.24×10^{-1}	-8.74×10^{-1}
s_{eta}	1.41×10^{-5}	2.12×10^{-1}	4.28×10^{-2}
ratio	1.71	2.00	-20.4

Sélection de modèle

 M^0 : sans covariables

 M^1 : dist. taxonomique

 M^2 : dist. taxonomique et génétique M^3 : dist. taxonomique et géographique

 M^4 : toutes les covariables

Probabilités a posteriori variationnelles :

Seule la distance taxonomique et dans une moindre mesure couplée à la distance géographique a un effet sur la topologie du réseau. Plus cette distance est grande moins les arbres sont connectés.

Sommaire

Modèles de graphe aléatoire

Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité d'un réseau ?

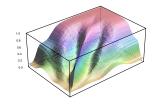
Quelle information est apportée par les covariables disponibles?

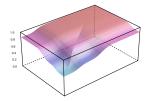
Quelles topologies de graphe peut-on distinguer?

Application au réseau de gènes

Réseau des arbres

Graphons sans et avec covariables

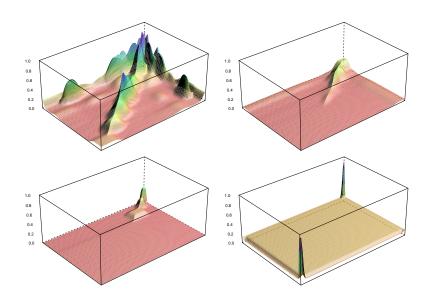




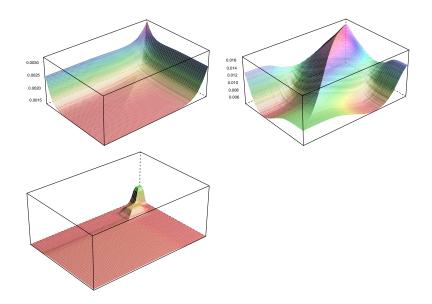
Autres réseaux

Réseau	n	d	ρ	$\hat{p}(H_0 Y)$
Florentine-M	16	3	0.17	0.995
Florentine-B	16	3	0.125	0.984
Blog	196	3	0.075	7.16e-174
CKM	219	39	0.015	1
Faux Dixon High	248	17	0.02	1
AddHealth 67	530	21	0.007	1.27e-25

Blog et AdHealth



Florentins et CKM



Sommaire

Modèles de graphe aléatoire

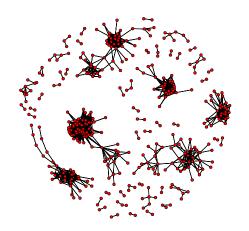
Les covariables disponibles sont-elles suffisantes pour expliquer l'hétérogénéité d'un réseau ?

Quelle information est apportée par les covariables disponibles?

Quelles topologies de graphe peut-on distinguer?

Application au réseau de gènes

Réseau de gènes filtré n=415~ ho=0.02 (1908 intéractions)



Package R gofNetwork

En entrée

- Matrice d'adjacence du réseau (Y_{ij})_{ij}
- ▶ Série de matrices de covariables $(x_{ij}^1)_{ij}, \dots, (x_{ij}^d)_{ij}$

Covariables

- MOTIFS: motifs régulateurs que le gène a dans son promoteur (16 motifs trouvés enrichis sur les arêtes)
- ▶ NB-MOTIFS : nombre de motifs régulateurs que le gène a dans son promoteur
- TARGET : indique si le gène est cible d'un facteur de transcription (2 modalités)
- ► FT : famille de facteurs de transcription qui cible le gène (17 familles)

Construction des covariables (1)

Variable quantitative

- NB-MOTIFS
- → valeur absolue de la différence

Variables qualitatives

- ► MOTIFS et SMAR
- \hookrightarrow version quantitative
- \hookrightarrow version binaire pour chaque niveau ℓ du facteur

$$x_{ij}^{(\ell)} = \left\{ \begin{array}{ll} 1 & \text{ si } i \text{ et } j \text{ de même niveau } \ell \\ 0 & \text{ sinon} \end{array} \right.$$

Données:

Gènes	MOTIFS
AT1G01010	AAAATATCT, AAACAAA
AT1G01030	AAACAAA

MOTIFS

Données :

Gènes	AAAATATCT	AAACAAA
AT1G01010	1	1
AT1G01030	0	1

Array de covariables

Covariable 1:

AAAATATCT	AT1G01010	AT1G01030
AT1G01010	1	0
AT1G01030	0	0

Covariable 2:

AAACAAA	AT1G01010	AT1G01030
AT1G01010	1	1
AT1G01030	1	1

Construction des covariables (2)

▶ TARGET et FT

 \hookrightarrow version ternaire: pour chaque niveau / du facteur

$$x_{ij1}^{(\ell)} = \left\{ egin{array}{ll} 1 & ext{ si } i ext{ et } j ext{ de même niveau } \ell \\ 0 & ext{ sinon} \end{array}
ight.$$

et

$$x_{ij2}^{(\ell)} = \left\{ egin{array}{ll} 1 & ext{ si } i ext{ ou } j ext{ est de niveau } \ell \\ 0 & ext{ sinon} \end{array}
ight.$$

Données :

Gènes	TARGET
AT1G01010	NoTarget
AT1G01030	Target
AT1G01030	Target

Array de covariables

Covariable	1	:

Target	AT1C01010	AT1C01020	AT1C01020
AT1G01030	0	0	1
AT1G01030	0	1	0
AT1G01010	1	0	0
ivo i arget	ATIGUIUIU	A11G01030	A11G01030

AT1C01020

Covariable 2:

0
1
1

Covariable 3:

NoTarget	ATIGUIUIU	ATTG01030	ATTG01030
AT1G01010	1	1	1
AT1G01030	1	0	0
AT1G01030	1	0	0

Covariable 4:

Target	AT1G01010	AT1G01030	AT1G01030
AT1G01010	0	1	1
AT1G01030	1	1	1
AT1G01030	1	1	1

AT1C01020

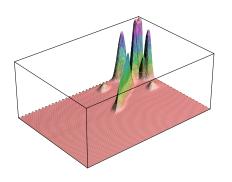
Tests

$$\begin{cases} H_0 = \text{régression logistique avec nos covariables} \\ H_1 = \text{structure résiduelle} \end{cases}$$

On rejette
$$H_0$$
: $\hat{p}(H_0|Y) = 0$ ($n = 415$, $\rho = 0.02$).

Ces covariables ne suffisent pas à expliquer l'hétérogénéité du réseau.

Topologie du réseau



Références

P. Diaconis and S. Janson, Graph limits and exchangeable random graphs. Rend. Mat. Appl., 2008.

T.S. Jaakkola and M.I. Jordan, Bayesian parameter estimation via variational methods. Statistics and Computing, 2000.

P. Latouche and S. Robin, Variational Bayes model averaging for graphon functions and motif frequencies inference in *W*-graph model, 2015.

P. Latouche, S. Robin, and S. Ouadah. Goodness of fit of logistic regression models for random graphs. Journal of Computational and Graphical Statistics, 2017.

K. Nowicki and T.A.B. Snijders, Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 2001.

C. Vacher, D. Piou, and M.L. Desprez-Loustau. Architecture of an Antagonistic Tree/Fungus Network: The Asymmetric Influence of Past Evolutionary History. PLoS ONE, 2008.