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Many biological problems involve dynamical mechanisms
(regulation, triggering, transport, ...)

Add one layer of complexity

> “mRNA m is translated into protein p"”
> m—p

d
> G = Clm)

A challenging issue

» Data fit: need to estimate kinetic parameters

» Hard problem: many interacting species
» Dream challenge (IBM, EMBL):

> simulated data
> molecular perturbation
> budget constraint
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1. Context
2. Problem formulation and proposed method

3. Simulation results
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> Model kinetic parameters: 6§ € © C RP, unknown 6*

» Experiment: e € £
Molecular perturbation: gene deletion, affinity constant decrease, ...
Observation: protein and mRNA concentration
Time resolution

> Model that drives concentration dynamics:
Y = f(Y,e,0), unknown 6*

» Experiment: choose e € £ and get o ~ P(0|0*; e)

P(0]6; e) known for any 6 and e.

Experimental design: estimate 6*

» Sequentially choose experiments

» Experimental cost, limited budget
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> Bayes rule: prior 7, data o from experiments e

v P(o]t;e)m(0)
P(blo: e) = Ty (o]0 &) (6))de

» Numerical integration
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» 7 encodes knowledge about 6*, loss function ¢(6, 6*)
» quality of this distribtion

Eo~r [£(6,07)]

» suppose we choose experiment e and observe o

E0~P(o9|o;e) [‘6(97 9*)]

> average over possible observations

Eo~P(o|0*;e) EHNP(0|o;e) [5(9, 9*)]

> average using current state of knowledge

R(e; ) = Egx Eonp(olor;e) Eomp(o]ose) [£(0,6)]
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> sequence of posteriors

_ P(0k-110; ex—1) mk—1(0)
fgl P(Ok_l‘gl; ek_l) 7rk_1(9l)d19/

Tk (6)

» reference risk
R(7k) = Egrrny Egrury [€(6,6')]

> next experiment choice

R — R(e;
ciin = argmax (k) - (e;7k)
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R(e,w)_/e’elf(e,e)/o [y P(ol0: ¢) n(67)d0" do do

» draw a sample {0;};=1. n from m;

R(e;m) ~ RN(e;7) = % > U(6:,6) wi(e)

P(ol6i;e) P(o|0);e)
i1 Ploltkie)
» draw a sample {0} }y=1....m from each P(ol|0;; e)

where wji(e) = [,

1L P(o}l;:e)
M u=1 Zivzl P(O[I|9k; e)

wij(e) ~ W,-j-V’(e) =
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Sequential design

Summary
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Sequential design

Summary

For each experiment, Choose next experiment
compute expected risk and update uncertainty

M—b R2 =P argmin —p
nk+1

Conceptual advantage

Provides a unique criterion for experimental design

Expectation approximation

Computationally intensive, accuracy difficult to monitor
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1. Context
2. Problem formulation and proposed method

3. Simulation results
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Dream sub-challenge 1
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45 kinetic parameters, 9 genes, 18 molecular species
Limited budget

Estimate true kinetic parameter

Estimate concentration time course for an unseen experiment

13/21



Exploring the space of parameters
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Figure : Posterior surface along a 2D space.

14/21



Challenge results

Rank | Dparam | Dprot

1 0.0229 0.0024
2 0.8404 0.0160
3 0.1592 0.0354
4 0.0899 0.0475
5 0.1683 0.0979
6 0.0453 0.1988
7 0.1702 0.3625
8 0.8128 | 0.3564
9 0.3766 0.8180
10 0.0699 19.3233
11 0.1883 3.2228
12 5.0278 14.7744
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Reproduce global dynamical behaviour

15/21



Challenge results

Rank | Dparam | Dprot
0.0229 | 0.0024
0.8404 0.0160
0.1592 0.0354
0.0899 0.0475
0.1683 0.0979
0.0453 0.1988
0.1702 0.3625
0.8128 | 0.3564
9 0.3766 0.8180
10 0.0699 19.3233
11 0.1883 3.2228
12 5.0278 14.7744

N[O W N ==

15/21



Winner of dream network parameter inference challenge

PLoS ONE | www.plosone.org July 2012 | Volume 7 | Issue 7 | e40052

Experimental Design for Parameter Estimation of Gene
Regulatory Networks

Bernhard Steiert?3* , Andreas Raue? , ] ens Timmer>343, Clemens Kreutz'?*

1lnstitute for Physics, University of Freiburg, Freiburg, Germany, 2 Freiburg Center for Systems Biology, University of Freiburg, Freiburg, Germany, 3 Freiburg Institute for
Advanced Studies, University of Freiburg, Freiburg, Germany, 4 BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany, 5 Department of
Clinical and Experimental Medicine, Linkdping University, Linkdping, Sweden

Table 1. Overview of the criteria that were considered for the final decisions.

Abbreviaton Detailed explanation

(wn Wild-type measurements provide the largest data-points to credits ratio.

(P. mMRNA) Protein data has a better data-points to credits ratio than mRNA data. However, the species to be measured have to be specified and
choosing the wrong time-courses can yield only little information gain.

(MA) For microarray data, there is no decision required about which compounds should be measured. This makes the design more robust. If
there are fast processes, high-density time resolution is favorable in comparison to low-density measurements.

(OptPerPL) Perturbation experiments D are selected as maximally informative based on the PL, if the score P(D) in (13) is optimal.

(GelShift) Because a single time course data set is not informative enough to resolve the practical non-identifiability, this p ired
directly by a gel-shift experiment.

(Module) The parameters to be bought are in a sub-module of bad estimates and therefore there is hope to improve identifiability of the whole
module.

(LocMin) If several local minima have been detected with similar agreement to the data, designs are chosen which optimally discriminate
between the local minima.

(SwitchDyn) The model shows qualitatively different dynamics and a perturbation is able to switch the model’s behavior.

(Extra) The experiment or the parameter values are important for improving the accuracy of the demanded model extrapolation.

(Budget) Sometimes, experiments are advantageous because the remaining credits allow a more flexible planning or the budget can be spent
more comprehensively.
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Challenge results

Rank | Dparam | Dprot Kegg cell cycle, 124 genes

0.0453 0.1988
0.1702 0.3625
0.8128 | 0.3564
9 0.3766 0.8180
10 0.0699 19.3233
11 0.1883 3.2228
12 5.0278 14.7744
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Simulations on a subnetwork

3 genes, 10 parameters
Active | Random
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Estimate a single parameter?

Rank | Dparam | Dprot
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Estimate a single parameter?
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Estimate a single parameter?

Rank | Dparam | Dprot
2 0.8404 0.0160
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> Already pointed out in the literature
» Mispecified model, stochastic dynamics, real data ...
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Discussion

v

An example of hard small scale problem

v

Reproducibility is a prerequisite for experimental design
» Subjectivity, robustness
» Scale
> Accessibility to non specialists

v

Questions the focus on single parameter estimates

v

Computational challenges

» Numerical integration in high dimensions
» Uncertainty propagation in dynamical systems
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Submition to BMC systems biology
R packaged code for the subnetwork simulations
Many thanks to Christian Lajaunie and Jean-Philippe Vert.
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Submition to BMC systems biology
R packaged code for the subnetwork simulations
Many thanks to Christian Lajaunie and Jean-Philippe Vert.

Thank you
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