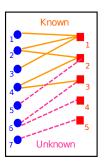
A Bayesian active learning strategy for sequential experimental design in systems biology

Pauwels E., Lajaunie C., and Vert J.P.

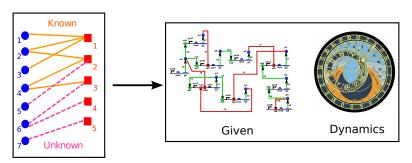
Seminar MIA-T, INRA, February 14 2014

Sequential experimental design for systems biology

Sequential experimental design for systems biology



Sequential experimental design for systems biology



Many biological problems involve dynamical mechanisms (regulation, triggering, transport, ...)

Many biological problems involve dynamical mechanisms (regulation, triggering, transport, ...)

Add one layer of complexity

"mRNA m is translated into protein p"

Many biological problems involve dynamical mechanisms (regulation, triggering, transport, ...)

Add one layer of complexity

- "mRNA m is translated into protein p"
- ightharpoonup m
 ightarrow p

Many biological problems involve dynamical mechanisms (regulation, triggering, transport, . . .)

Add one layer of complexity

- "mRNA m is translated into protein p"
- ightharpoonup m
 ightarrow p

Many biological problems involve dynamical mechanisms (regulation, triggering, transport, ...)

Add one layer of complexity

- "mRNA m is translated into protein p"
- ightharpoonup m
 ightarrow p

A challenging issue

Many biological problems involve dynamical mechanisms (regulation, triggering, transport, . . .)

Add one layer of complexity

- "mRNA m is translated into protein p"
- ightharpoonup m
 ightarrow p

A challenging issue

▶ Data fit: need to estimate kinetic parameters

Many biological problems involve dynamical mechanisms (regulation, triggering, transport, . . .)

Add one layer of complexity

- "mRNA m is translated into protein p"
- ightharpoonup m
 ightarrow p

A challenging issue

- ▶ Data fit: need to estimate kinetic parameters
- ► Hard problem: many interacting species

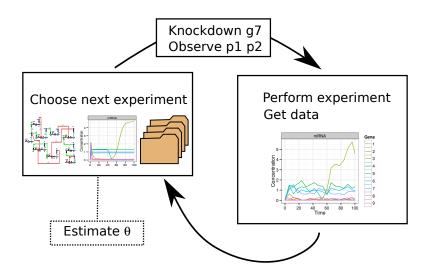
Many biological problems involve dynamical mechanisms (regulation, triggering, transport, ...)

Add one layer of complexity

- "mRNA m is translated into protein p"
- ightharpoonup m
 ightarrow p

A challenging issue

- ▶ Data fit: need to estimate kinetic parameters
- Hard problem: many interacting species
- Dream challenge (IBM, EMBL):
 - simulated data
 - molecular perturbation
 - budget constraint



Outline

1. Context

2. Problem formulation and proposed method

3. Simulation results

Notations

▶ Model kinetic parameters: $\theta \in \Theta \subseteq \mathbb{R}^p$, unknown θ^*

Notations

- ▶ Model kinetic parameters: $\theta \in \Theta \subseteq \mathbb{R}^p$, unknown θ^*
- **Experiment**: $e \in \mathcal{E}$

Molecular perturbation: gene deletion, affinity constant decrease, \dots Observation: protein and mRNA concentration Time resolution

Notations

- ▶ Model kinetic parameters: $\theta \in \Theta \subseteq \mathbb{R}^p$, unknown θ^*
- **Experiment**: $e \in \mathcal{E}$

Molecular perturbation: gene deletion, affinity constant decrease, \dots Observation: protein and mRNA concentration Time resolution

Model that drives concentration dynamics:

$$\dot{Y} = f(Y, e, \theta)$$
, unknown θ^*

Notations

- ▶ Model kinetic parameters: $\theta \in \Theta \subseteq \mathbb{R}^p$, unknown θ^*
- **Experiment**: $e \in \mathcal{E}$

Molecular perturbation: gene deletion, affinity constant decrease, \dots Observation: protein and mRNA concentration Time resolution

Model that drives concentration dynamics:

$$\dot{Y} = f(Y, e, \theta)$$
, unknown θ^*

Experiment: choose $e \in \mathcal{E}$ and get $o \sim P(o|\theta^*; e)$ $P(o|\theta; e)$ known for any θ and e.

Notations

- ▶ Model kinetic parameters: $\theta \in \Theta \subseteq \mathbb{R}^p$, unknown θ^*
- **Experiment**: $e \in \mathcal{E}$

Molecular perturbation: gene deletion, affinity constant decrease, \dots Observation: protein and mRNA concentration Time resolution

Model that drives concentration dynamics:

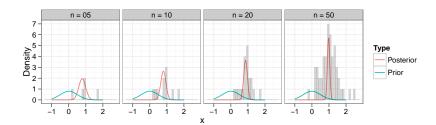
$$\dot{Y} = f(Y, e, \theta)$$
, unknown θ^*

► Experiment: choose $e \in \mathcal{E}$ and get $o \sim P(o|\theta^*; e)$ $P(o|\theta; e)$ known for any θ and e.

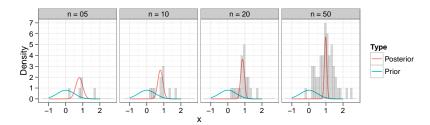
Experimental design: estimate θ^*

- Sequentially choose experiments
- ► Experimental cost, limited budget

Brief recall on Bayesian update



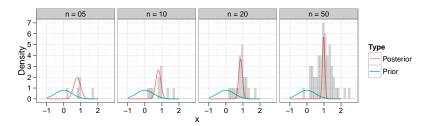
Brief recall on Bayesian update



▶ Bayes rule: prior π , data o from experiments e

$$P(\theta|o;e) = \frac{P(o|\theta;e) \pi(\theta)}{\int_{\theta'} P(o|\theta';e) \pi(\theta') d\theta'}$$

Brief recall on Bayesian update



Bayes rule: prior π , data o from experiments e

$$P(\theta|o;e) = \frac{P(o|\theta;e) \pi(\theta)}{\int_{\theta'} P(o|\theta';e) \pi(\theta') d\theta'}$$

Numerical integration

lacktriangledown π encodes knowledge about θ^* , loss function $\ell(\theta, \theta^*)$

- \blacktriangleright π encodes knowledge about θ^* , loss function $\ell(\theta, \theta^*)$
- quality of this distribtion

$$E_{ heta \sim \pi} \left[\ell(heta, heta^*)
ight]$$

- \blacktriangleright π encodes knowledge about θ^* , loss function $\ell(\theta, \theta^*)$
- quality of this distribtion

$$E_{ heta \sim \pi} \left[\ell(heta, heta^*) \right]$$

suppose we choose experiment e and observe o

$$E_{\theta \sim P(\theta|o;e)}\left[\ell(\theta,\theta^*)\right]$$

- \blacktriangleright π encodes knowledge about θ^* , loss function $\ell(\theta, \theta^*)$
- quality of this distribtion

$$E_{ heta \sim \pi} \left[\ell(heta, heta^*) \right]$$

suppose we choose experiment e and observe o

$$E_{\theta \sim P(\theta|o;e)}\left[\ell(\theta,\theta^*)\right]$$

average over possible observations

$$E_{o \sim P(o|\theta^*;e)} E_{\theta \sim P(\theta|o;e)} [\ell(\theta,\theta^*)]$$

- \blacktriangleright π encodes knowledge about θ^* , loss function $\ell(\theta, \theta^*)$
- quality of this distribtion

$$E_{\theta \sim \pi} \left[\ell(\theta, \theta^*) \right]$$

suppose we choose experiment e and observe o

$$E_{\theta \sim P(\theta|o;e)}\left[\ell(\theta,\theta^*)\right]$$

average over possible observations

$$E_{o \sim P(o|\theta^*;e)} E_{\theta \sim P(\theta|o;e)} [\ell(\theta, \theta^*)]$$

average using current state of knowledge

$$R(e; \pi) = E_{\theta' \sim \pi} E_{o \sim P(o|\theta'; e)} E_{\theta \sim P(\theta|o; e)} \left[\ell(\theta, \theta') \right]$$

sequence of posteriors

$$\pi_k(\theta) = \frac{P(o_{k-1}|\theta; e_{k-1}) \, \pi_{k-1}(\theta)}{\int_{\theta'} P(o_{k-1}|\theta'; e_{k-1}) \, \pi_{k-1}(\theta') d\theta'}$$

reference risk

$$R(\pi_k) = E_{\theta \sim \pi_k} E_{\theta' \sim \pi_k} \left[\ell(\theta, \theta') \right]$$

next experiment choice

$$e_{k+1} = \arg \max_{e \in \mathcal{E}} \frac{R(\pi_k) - R(e; \pi_k)}{C_e}$$

Numerical evaluation of the $R(e; \pi)$

$$R(e;\pi) = \int_{\theta,\theta'} \ell(\theta,\theta') \int_{\mathcal{O}} \frac{P(o|\theta;e) \pi(\theta) P(o|\theta';e) \pi(\theta')}{\int_{\theta''} P(o|\theta'';e) \pi(\theta'') d\theta''} d\theta d\theta'$$

Numerical evaluation of the $R(e; \pi)$

$$R(e;\pi) = \int_{\theta,\theta'} \ell(\theta,\theta') \int_{o} \frac{P(o|\theta;e) \pi(\theta) P(o|\theta';e) \pi(\theta')}{\int_{\theta''} P(o|\theta'';e) \pi(\theta'') d\theta''} d\theta d\theta'$$

▶ draw a sample $\{\theta_i\}_{i=1...N}$ from π ;

$$R(e;\pi) \simeq R^N(e;\pi) = \frac{1}{N^2} \sum_{i,j=1}^N \ell(\theta_i,\theta_j) w_{ij}(e)$$

where
$$w_{ij}(e) = \int_{o} \frac{P(o|\theta_{i};e) P(o|\theta_{j};e)}{\sum_{k=1}^{N} P(o|\theta_{k};e)} do$$

Numerical evaluation of the $R(e; \pi)$

$$R(e;\pi) = \int_{\theta,\theta'} \ell(\theta,\theta') \int_{o} \frac{P(o|\theta;e) \pi(\theta) P(o|\theta';e) \pi(\theta')}{\int_{\theta''} P(o|\theta'';e) \pi(\theta'') d\theta''} d\theta d\theta'$$

▶ draw a sample $\{\theta_i\}_{i=1...N}$ from π ;

$$R(e;\pi) \simeq R^N(e;\pi) = \frac{1}{N^2} \sum_{i,j=1}^N \ell(\theta_i,\theta_j) w_{ij}(e)$$

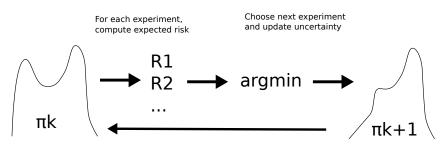
where
$$w_{ij}(e) = \int_{o} \frac{P(o|\theta_{i};e) P(o|\theta_{j};e)}{\sum_{k=1}^{N} P(o|\theta_{k};e)} do$$

▶ draw a sample $\{o_u^i\}_{u=1,\dots,M}$ from each $P(o|\theta_i;e)$

$$w_{ij}(e) \simeq w_{ij}^{M}(e) = \frac{1}{M} \sum_{u=1}^{M} \frac{P(o_{u}^{i}|\theta_{j};e)}{\sum_{k=1}^{N} P(o_{u}^{i}|\theta_{k};e)}$$

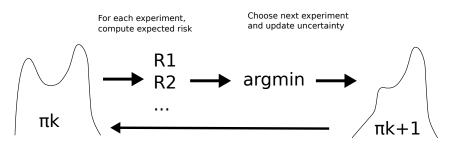
Sequential design

Summary



Sequential design

Summary



Conceptual advantage

Provides a unique criterion for experimental design

Expectation approximation

Computationally intensive, accuracy difficult to monitor

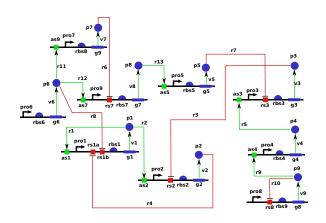
Outline

1. Context

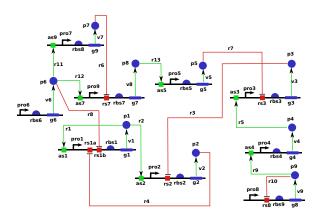
2. Problem formulation and proposed method

3. Simulation results

Dream sub-challenge 1



Dream sub-challenge 1



45 kinetic parameters, 9 genes, 18 molecular species Limited budget Estimate true kinetic parameter

Estimate concentration time course for an unseen experiment

Exploring the space of parameters

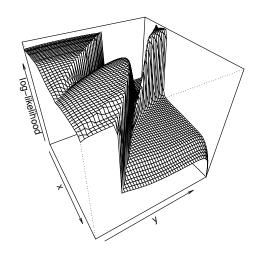
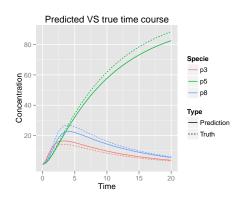
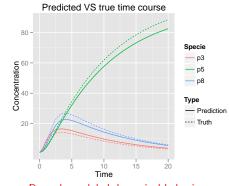


Figure: Posterior surface along a 2D space.

Rank	Dparam	Dprot
1	0.0229	0.0024
2	0.8404	0.0160
3	0.1592	0.0354
4	0.0899	0.0475
5	0.1683	0.0979
6	0.0453	0.1988
7	0.1702	0.3625
8	0.8128	0.3564
9	0.3766	0.8180
10	0.0699	19.3233
11	0.1883	3.2228
12	5.0278	14.7744



Rank	Dparam	Dprot
1	0.0229	0.0024
2	0.8404	0.0160
3	0.1592	0.0354
4	0.0899	0.0475
5	0.1683	0.0979
6	0.0453	0.1988
7	0.1702	0.3625
8	0.8128	0.3564
9	0.3766	0.8180
10	0.0699	19.3233
11	0.1883	3.2228
12	5.0278	14.7744



Reproduce global dynamical behaviour

Rank	Dparam	Dprot
1	0.0229	0.0024
2	0.8404	0.0160
3	0.1592	0.0354
4	0.0899	0.0475
5	0.1683	0.0979
6	0.0453	0.1988
7	0.1702	0.3625
8	0.8128	0.3564
9	0.3766	0.8180
10	0.0699	19.3233
11	0.1883	3.2228
12	5.0278	14.7744

PLoS ONE | www.plosone.org

July 2012 | Volume 7 | Issue 7 | e40052

Experimental Design for Parameter Estimation of Gene Regulatory Networks

Bernhard Steiert^{1,2,3}*, Andreas Raue^{1,2.}, Jens Timmer^{1,2,3,4,5}, Clemens Kreutz^{1,2.}

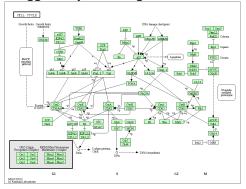
1 Institute for Physics, University of Freiburg, Freiburg, Germany, 2 Freiburg Carter for Systems Bology, University of Freiburg, Freiburg, Germany, 3 Freiburg Germany, 4 BIOSS Centre for Bological Signalling Studies, University of Freiburg, Freiburg, Germany, 5 Department of Clinical and Experimental Medicine, Univiority, Univiority, Sweden

Table 1. Overview of the criteria that were considered for the final decisions.

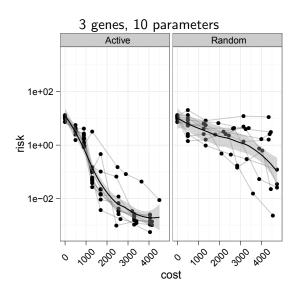
Abbreviaton	Detailed explanation
(WT)	Wild-type measurements provide the largest data-points to credits ratio.
(P. mRNA)	Protein data has a better data-points to credits ratio than mRNA data. However, the species to be measured have to be specified and choosing the wrong time-courses can yield only little information gain.
(MA)	For microarray data, there is no decision required about which compounds should be measured. This makes the design more robust. If there are fast processes, high-density time resolution is favorable in comparison to low-density measurements.
(OptPerPL)	Perturbation experiments D are selected as maximally informative based on the PL, if the score R(D) in (13) is optimal.
(GelShift)	Because a single time course data set is not informative enough to resolve the practical non-identifiability, this parameter was measured directly by a get-shift experiment.
(Module)	The parameters to be bought are in a sub-module of bad estimates and therefore there is hope to improve identifiability of the whole module.
(LocMin)	If several local minima have been detected with similar agreement to the data, designs are chosen which optimally discriminate between the local minima.
(SwitchDyn)	The model shows qualitatively different dynamics and a perturbation is able to switch the model's behavior.
(Extra)	The experiment or the parameter values are important for improving the accuracy of the demanded model extrapolation.
(Budget)	Sometimes, experiments are advantageous because the remaining credits allow a more flexible planning or the budget can be spent more comprehensively.

1 0.0229 0.0024 2 0.8404 0.0160 3 0.1592 0.0354 4 0.0899 0.0475 5 0.1683 0.0979 6 0.0453 0.1988 7 0.1702 0.3625 8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228 12 5.0278 14.7744	Rank	Dparam	Dprot
3 0.1592 0.0354 4 0.0899 0.0475 5 0.1683 0.0979 6 0.0453 0.1988 7 0.1702 0.3625 8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	1	0.0229	0.0024
4 0.0899 0.0475 5 0.1683 0.0979 6 0.0453 0.1988 7 0.1702 0.3625 8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	2	0.8404	0.0160
5 0.1683 0.0979 6 0.0453 0.1988 7 0.1702 0.3625 8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	3	0.1592	0.0354
6 0.0453 0.1988 7 0.1702 0.3625 8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	4	0.0899	0.0475
7 0.1702 0.3625 8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	5	0.1683	0.0979
8 0.8128 0.3564 9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	6	0.0453	0.1988
9 0.3766 0.8180 10 0.0699 19.3233 11 0.1883 3.2228	7	0.1702	0.3625
10 0.0699 19.3233 11 0.1883 3.2228	8	0.8128	0.3564
11 0.1883 3.2228	9	0.3766	0.8180
0	10	0.0699	19.3233
12 5 0278 14 7744	11	0.1883	3.2228
12 3.32.0 11.1111	12	5.0278	14.7744

Kegg cell cycle, 124 genes



Simulations on a subnetwork

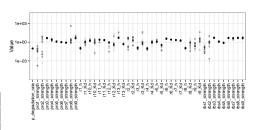


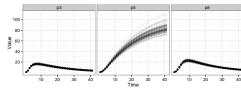
Estimate a single parameter?

Rank	Dparam	Dprot
2	0.8404	0.0160
10	0.0699	19.3233

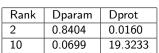
Estimate a single parameter?

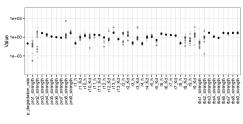
Rank	Dparam	Dprot
2	0.8404	0.0160
10	0.0699	19.3233

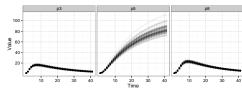




Estimate a single parameter?







- Already pointed out in the literature
- ▶ Mispecified model, stochastic dynamics, real data . . .

► An example of hard small scale problem

- ► An example of hard small scale problem
- ► Reproducibility is a prerequisite for experimental design
 - Subjectivity, robustness
 - Scale
 - Accessibility to non specialists

- An example of hard small scale problem
- ► Reproducibility is a prerequisite for experimental design
 - Subjectivity, robustness
 - Scale
 - Accessibility to non specialists
- Questions the focus on single parameter estimates

- An example of hard small scale problem
- ► Reproducibility is a prerequisite for experimental design
 - Subjectivity, robustness
 - Scale
 - Accessibility to non specialists
- Questions the focus on single parameter estimates
- Computational challenges
 - ▶ Numerical integration in high dimensions
 - Uncertainty propagation in dynamical systems

Submition to BMC systems biology R packaged code for the subnetwork simulations Many thanks to Christian Lajaunie and Jean-Philippe Vert.

Submition to BMC systems biology R packaged code for the subnetwork simulations Many thanks to Christian Lajaunie and Jean-Philippe Vert.

Thank you