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H I G H L I G H T S
c We model the growth of root systems using density functions on deformable domains.
c Growth is modelled using PDE and root trajectories are used to deform the domain.
c We showed root domains can be predicted using developmentally meaningful parameters.
c Deformable domains are computationally efficient and can be used in population models.
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Models of root systems are essential tools to understand how crops access and use soil resources during

their development. However, scaling up such models to field scale remains a great challenge.

In this paper, we detail a new approach to compute the growth of root systems based on density

distribution functions. Growth was modelled as the dynamics of root apical meristems, using Partial

Differential Equations. Trajectories of root apical meristems were used to deform root domains, the bounded

support of root density functions, and update density distributions at each time increment of the simulation.

Our results demonstrate that it is possible to predict the growth of root domains, by including

developmentally meaningful parameters such as root elongation rate, gravitropic rate and branching rate.

Models of this type are computationally more efficient than state-of-the-art finite volume methods. At a

given prediction accuracy, computational time is over 10 times quicker; it allowed deformable models to be

used to simulate ensembles of interacting plants. Application to root competition in crop–weed systems is

demonstrated.

The models presented in this study indicate that similar approaches could be developed to model shoot

or whole plant processes with potential applications in crop and ecological modelling.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Plant architectures are involved in key biological and environ-
mental processes (Fourcaud et al., 2008). Root architectures in
particular are optimised to capture and assimilate large amounts
of water and mineral elements from the soil, thereby contributing to
crop yield and effective food production (Lynch, 2007). Root
architectures also protect soils against erosion and other forms of
land degradation (Stokes et al., 2009). Due to their inherent multi-
functional nature, root architectures are difficult to understand
intuitively. Thus, models are of utmost importance to analyse the
complexity of root architectures and their functions.

Root architectures result from the organised expansion of a
multitude of apical meristems (root tips), which develop in a series
ll rights reserved.
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upuy).
of elongation and initiation events. Current models use computer
simulations to mimic these processes. The geometry of roots and
their arrangement within the root system are assembled iteratively
from a set of virtual apical meristems, whose activities are simulated
independently from each other (Pag�es et al., 2004; Wu et al., 2007;
Lucas et al., 2011). Root architectural models can, in turn, be used to
make predictions on water and nutrient uptake by coupling growth
to physical models (Ge et al., 2000; Doussan et al., 2006; Zhang et al.,
2007; Wiegers et al., 2009).

Unfortunately, for root architectural models it has proved to be
difficult to define their parameters and assign them values
(Tsegaye et al., 1995). They also require sophisticated algorithms,
in order to be coupled to soil models (Draye et al., 2010; Leitner
et al., 2010). Simplified approaches, such as root density models,
could be used to overcome these shortcomings. Density-based
models aggregate root properties into root distribution functions.
Changes with time of density distribution functions can then be
modelled empirically, for example using sliding exponential
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profiles (Gerwitz and Page, 1974; King et al., 2003) or mechan-
istically using partial differential (Acock and Pachepsky, 1996;
Bastian et al., 2008). In the latter case, analytical methods can
provide simple growth functions (de Willigen et al., 2002;
Schnepf et al., 2008). Approximated numerical solutions can also
be obtained to analyse more complex systems (Reddy and
Pachepsky, 2001). However, density-based models were seldom
used to model ensembles of interacting plants. One remaining
challenge is to limit the number of unknowns in numerical
simulations, so that solutions can be obtained by standard desk-
top computers.

This paper presents a density-based approach to model
ensembles of root systems in the field. The root system is defined
as a deformable domain and density distribution functions are
used to model the distribution of roots within this domain. We
expanded the system of differential equations introduced in a
previous work (Dupuy et al., 2010), which proposed an Eulerian
solver, and developed a Lagrangian approach to solve equations
on 3D deformable grids. The performance of our solver was
compared to results obtained in a two-dimensional setting, where
the conservation equation could be solved analytically. Finally, a
simple case of crop–weed competition was studied to illustrate
applications to field-based crop processes.
Fig. 1. Describing root systems with density distribution functions. (A) Root systems are

or total length of root per unit volume, here depicted by brown cylinders). (B) Root coor

of roots M is defined by a radius and azimuth and zenith angles: M¼ ðr,y,jÞ. (C) Root or

can be predicted. The coordinate system is therefore expanded to record the direction o

and azimuth angles ða,bÞ. (D) A spherical coordinate system defines a local basis ður ,uh

Lagrangian setting, material coordinates of a reference state is defined at t ¼ 0, so tha

system, is then expressed as a function of the reference state M¼ ðRðrÞ,y,j,AðaÞ,BðbÞÞ.
referred to the web version of this article.)
2. Materials and methods

2.1. A density-based framework to model root systems dynamics

In this paper, the dynamic structure of the root system is
represented as a combination of density distribution functions,
following the principles proposed in a previous work (Dupuy
et al., 2010). First, root tip density (ra) indicates regions where
growth occurs. Secondly, root length density (rl) is defined as the
total root length per unit soil volume. Root length density is
required, for example, to predict water and nutrient uptake from
the soil (King et al., 2003). Finally, branching density (rb), defined as
the number of connections per unit soil volume, models the
topology of root connections. Root density distribution functions
are defined on domains that include both: (i) spatial coordinates
ðx,y,zÞ of roots in soil (Fig. 1A) and (ii) their direction of growth
(Fig. 1B), which is defined in a local spherical coordinate system,
more specifically gravitropic angle a and plagiotropic angle b (see
Fig. 1). A root and its growth direction are therefore characterised by
a point m in a 5-dimensional space m¼ ðx,y,z,a,bÞAE, E�R5

(Fig. 1C). In this setting, a root density distribution function is a
mapping r : E/R such that

R
O

R
VrdV dO represents the total

quantity of roots contained in volume V and whose growth direction
characterised locally at point M¼ ðx,y,zÞ, by root densities (e.g. number of root tips

dinates can also be expressed in a spherical coordinate system, so that the position

ientation must complement root position, so that the expansion of the root system

f roots. Root direction in the spherical coordinate system is defined by inclination

,uuÞ, and hence allows the modelling of deformations of the root domain. (E) In a

t M¼ ðr,y,j,a,bÞ. The deformed state, which results from the growth of the root

(For interpretation of the references to color in this figure caption, the reader is
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is enclosed in the solid angle O. The growth of the root system is
then expressed through the activity of its apical meristems, and the
following conservation equation is obtained:

@ra

@t
þr � ðvraÞ ¼ b, ð1Þ

where r¼ ð@=@x,@=@y,@=@z,@=@a,@=@bÞ is the gradient operator
defined on E. v¼ ðe cos b sin a,e sin b sin a,e cos a,g,hÞ is the advec-
tion velocity field, where e is the root elongation rate (cm day�1)
and e cos b sin a, e sin b sin a and e cos a are the projections of the
velocity vector on the x, y and z axes, respectively. g is the
gravitropic rate (day�1) and h is the plagiotropic rate (day�1). b is
a source term which accounts for the initiation of new roots through
branching (cm�3 day�1). Eq. (1) is an advection equation on the
generalised space E. It links the changes in root meristem density to
root growth parameters, e.g. elongation rate e, gravitropic rate g and
branching rate b.

In this study, we used the following initial density distribution
functions:

raðm,0Þ ¼ r
J

aðmÞ, ð2Þ

rlðm,0Þ ¼ 0, ð3Þ

rbðm,0Þ ¼ 0, ð4Þ

It is difficult to define initial conditions accurately because
density distributions are less suitable to model plants at the seed
stage. However, it is possible to limit the difference between
modelled initial conditions and real root distribution at seedling
stage. Here r

J

a is a non-negative bounded function of m for which
we choose a small bounded support, which localises initial
growth activity near the seed. If solutions to Eq. (1) are available,
root length density (rl) and root branching density (rb) follow by
integrating root tip density and volumetric branching rate with
time: rl ¼

R
era dt and rb ¼

R
b dt.

2.2. Deformable domains for modelling the growth of root systems

In most cases, it is not possible to derive exact solutions to Eq.
(1). Numerical techniques are needed to obtain approximate
predictions. Finite volume methods, for example, decompose the
distribution function on a discrete grid of the physical space. On
such grids, unknowns are the average values of the distribution
function in control volumes of the grid, which are termed cells.
Because the set of cells in the grid is finite, it is possible to
compute fluxes of root tips, which enter and leave each cell of the
grid at a given stage of the simulation. This allows an approximate
solution to be constructed incrementally from a set of initial
conditions. As the number of cells in the grid increases, the error
of discretisation diminishes and the accuracy of the solution is
improved. The convergence rate of a method is the speed at which
the numerical approximation approaches the exact solution.

Fixed grids, used to compute fluxes of matter between adja-
cent cells, are generally referred to as Eulerian. Eulerian descrip-
tions are widely used in many areas of physical sciences including
fluid mechanics and were applied to root models by Bastian et al.
(2008). Alternatively, deformable grids can be used to assign
physical quantities to a given material cell of the grid. Such
methods are termed Lagrangian, and are widely used in solid
mechanics (Zienkiewicz and Taylor, 1998). Lagrangian descrip-
tions are well adapted to plant models, because plants have solid
tissues and their growth is slow and tractable. We will term such
models Continuous Deformable Plant Models (CDPMs).

In a Lagrangian setting, coordinates M of a material point are
no longer considered as constant and vary as a function of time
and initial conditions m such that M¼Mðm,tÞ. We use capital
letters to indicate coordinates of material point. In order to be
able to compute deformation of the root domain, we made the
three following hypotheses:
�
 H1 plant coordinate system: positions in the root system are
expressed in a local spherical coordinate system (Fig. 1B)
centred on the seed of each plant. Each point in the three-
dimensional space is defined by the distance from the seed r,
its azimuth angle y and its zenith angle j, and it defines an
associated local basis ður,uh,uuÞ (Fig. 1D). In order to simplify
computations, we further assume that there is no flux along the
tangential direction uh. Therefore, the direction of root elonga-
tion is prescribed by a gravitropic angle a, a root plagiotropic
rate set to zero and the plagiotropic angle is centripetal (ra ¼ 0
if bay). Eq. (1) is therefore transformed into

@ra

@t
þ

1

r2

e cosða�jÞr2ra

@r
þ

1

r sin j
e sinða�jÞ sinðjÞra

@j þ
@gra

@a ¼ b:

ð5Þ

Although there is no flux in the tangential direction, different
growth properties of the root system can be defined as a
function of the azimuth. This equation is therefore defined for
any yA ½0;2p½. Generalisation to a full 3D model can be
obtained by adding fluxes in the tangential plane to comple-
ment Eqs. (9)–(11).

�
 H2 semi-Lagrangian description: in order to facilitate the

computation of overlapping plant domains, we apply an
Eulerian description of root tip movement to azimuth and
zenith angles, so that, although the domain expands radially, y
and j remain constant during simulation. The position M of a
material point in such a system is therefore defined as (Fig. 1E)

M¼ ðRðr,tÞ,y,j,Aða,tÞ,Bðb,tÞÞ: ð6Þ
�
 H3 reduction of dimensionality: the angle a and the radial
distance r are assumed to be independent variables. The root
tip density at a given time can therefore be expressed as the
product of two functions f and g such that

ra ¼ f ðR,y,jÞ � gðy,j,aÞ, ð7Þ

f describes the root tip density at a given position in space and
constitutes the primary description of the root system, while g

defines the probability distribution of root inclination angle.

The spatial domain of a root system is decomposed into a grid
of cells with a fixed number of subdivisions in each of the
dimensions of the coordinate system. We therefore define nR, ny
and nj as the number of cells along the coordinate lines of the
mesh, respectively, radial, azimuth, and zenith angle coordinates.
The size of a cell is defined by fixed angular increments Dy,Dj
and a variable length in the radial direction DR. The spatial
coordinates of a cell in the grid can therefore be based on three
indices ði,j,kÞ such that the coordinates ðRijk,yijk,jijkÞ define the
spatial position of the cell Cijk in the grid. For example, the zenith
angle of the cell Cijk is jijk. Since the grid has cells of constant
zenith angle increments jijk is calculated as kDj. We also define
the quantity Qijk ¼

R
Vijk

f dV , which is a close approximation of the
number of roots in the cell Cijk. In this cell, roots have a
distribution of root inclination angle Aijl with associated fraction
in the cell Gijl ¼

R
Vijl

g dV . In order to simplify notations, we present
inferences for a single root inclination angle, i.e. g ¼ 1, and
generalisation is achieved by repeating the calculus for other
angles. A single index will also be used to denote the coordinates
of each cell: coordinates of the ith cell Ci will be denoted
Mi ¼ ðRi,yi,ji,AiÞ. Cell positions and root quantities are defined
at time t¼ tDt, so that Qt

i indicates the average number of root



Fig. 2. Geometrical representation of the algorithm for the computation of the growth of root systems. A grid at time step t consists of a finite set of cells, here three

adjacent cells which coordinates at time step t are Mt
i ,Mt

j ,Mt
k . Calculation of the deformed mesh and corresponding root density follows in three main steps: (1) deform:

trajectories of root tips are used to determine the displacement of the nodes of the grid (dashed grey lines) and result in a deformed state denoted Mn

i . (2) Cut: root

quantities in the deformed grid are decomposed into three components; Q in
i the distribution of root tips staying in the current angular domain ji and expanding in the

radial direction; Qup
i the distribution of root tips entering the angular domain ji from the top; and Qdown

i the distribution of root tips entering the angular domain. In the

example depicted on the figure, Qup
i (in red) results from the deformation of upward cell Qt

j , while Qdown
i is equal to 0. (3) Merge: components with matching angular

coordinates are assembled into the root apical meristem density distribution at time step tþ1. (3.1) A collection of non-matching density distributions are obtained from

the cutting step. (3.2) Expanded, upward and downward flows are decomposed into smaller matching radial bins. (3.3) The distribution of root tips at the next time step is

then determined by merging the bins into a new radial distribution with the required number of bins. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this article.)
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tips at time step t in cell i. At each time step, the root domain is
deformed in the radial direction, and root density values are
updated according to fluxes through tangential planes of the cell
(see Fig. 2). Both deformation of the grid in the radial direction
and the fluxes between the control volumes are based on the
characteristics of Eq. (1), which encodes trajectories of root tips
through time (Mattheij et al., 2005). Each time step of the
simulation is therefore decomposed into three steps
1.
 The characteristic equation is used to compute the deforma-
tion of the grid. Quantities defined on the deformed grid will
be denoted with a star. For example, Mn

i defines the coordi-
nates of the cells of the grid (Fig. 2.1). A deformed grid, with
apical meristem distribution Qn

i , is obtained using a finite
difference time integration of the characteristic equation, here
a forward Euler scheme

Mn

i ¼Mt
i þVt

i Dt, ð8Þ

where Vt
i is the root apical meristem velocity expressed in

the spherical coordinate system at position Mt
i : Vt

i ¼ e0 cos
ðAi�jiÞurþe0 sinðAi�jiÞuuþgua.
2.
 At this stage, the angular coordinates of the deformed grid Mn

i

are not uniformly distributed anymore. The displacement of
the nodes in the angular coordinates j must be transformed
into fluxes entering and leaving cells in the tangential direc-
tions (Fig. 2.2). This is achieved by decomposing Qn

i into three
new distinct distributions Qnd

i , dAfin,up,downg with matching
angular coordinates. More precisely, if cells Cj and Ck are
adjacent and, respectively, above and underneath Ci (see
Fig. 2.1), Qnin

i represents the number of roots that expand
but stay in the interval ½ji�Dj=2,jiþDj=2�, Qndown

j repre-
sents the number of roots that are displaced upwards in the
interval ½ji�3Dj=2,ji�Dj=2� and Qnup

k represents the num-
ber of roots that are displaced downwards in the interval
½jiþDj=2,jiþ3Dj=2�. These quantities are calculated using
the projection of the velocity of root tips on the unit vector
perpendicular to a plane of constant zenith angle (Fig. 2.2).
if Vt

i � uu40:

Qnin
i ¼ Qt

i 1�Dt
Vt

i � uu

Rt
i Dj

� �
þDtb and Qnup

k ¼Qt
i Dt

Vt
i � uu

Rt
i Dj

,

ð9Þ

if Vt
i � uuo0:

Qnin
i ¼Qt

i 1þDt
Vt

i � uu

Rt
i Dj

� �
þDtb and Qndown

j ¼�Qt
i Dt

Vt
i � uu

Rti Dj
:

ð10Þ
3.
 The distribution of root quantities on the mesh, at time step
tþ1, is determined as the sum of the number of roots that
stay in cell Ci and the number of roots that enter cell Ci

(Fig. 2.3)

Qtþ1
i ¼

X
dA fin,up,downg

Qnd
i : ð11Þ

Since the quantity of root tips entering and leaving a cell Qnd
i

originate from cells in distinct deformed state, they will not have
matching radial distribution (Fig. 2.3.1). Cells are therefore
subdivided in the radial direction, in order to obtain matching
radial distribution. Root quantities are then summed (Fig. 2.3.2)
and merged into a new distribution with an appropriate number
of cells in the radial direction (see Fig. 2.3.3).

Steps 1–3 are repeated until tDt reaches the required duration
of growth. The root length density is, in turn, determined on a
distinct regular grid in the spherical coordinate with matching
angular increments using a trapezoidal quadrature.

2.3. Modelling interactions with the neighbouring environment

In this section, we describe the case where s plants are
growing in a 3D soil volume. The grid of the pth plant is centred
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on the location of its seed at position ðxp,yp,0Þ. Each plant defines
a root length density distribution function lp such that
lpðmÞ ¼

R
rl da is the root length density of plant p at position

m¼ ðr,j,yÞ in the plant local coordinate system. In order to model
interactions between plants, overlapping cells must be identified
efficiently. This is achieved by expressing global positions in soil
ðx,y,zÞ in each plant local coordinate system

r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xpÞ

2
þðy�ypÞ

2
þz2

q
, ð12Þ

j¼ arccosðz=rÞ, ð13Þ

y¼ arctanððy�ypÞ=ðx�xpÞÞ: ð14Þ

Functions lp are then obtained by trilinear interpolation using root
length density of neighbouring cells noted lpijk obtained using the
following formula:

lpijk ¼ lp
r

Dr

j k
þ i

� �
Dr,

y
Dy

� �
þ j

� �
Dy,

j
Dj

� �
þk

� �
Dj

� �
, ð15Þ

with ði,j,kÞAf0;1g3 (eight combinations are possible) and bxc is
the floor function (its value is the largest integer inferior or equal
to x).

For each point in the soil domain, it is therefore possible to
define a vector of size s, the pth component of which contains the
root length density of the corresponding plant. This vector is
called the mixture vector l, and is defined at all points of the soil
volume. l is calculated using the formula:

lðx,y,zÞ ¼
X

ði,j,kÞA f0;1g3
lpijkdiðzrÞdjðzyÞdkðzjÞ

0
@

1
A

1rpr s

, ð16Þ

where diðxÞ ¼ x if i¼ 1 and diðxÞ ¼ 1�x if i¼ 0; ðzr ,zy,zjÞ are the
relative position in the tetrahedron, e.g. zr ¼ r=Dr�br=Drc. Com-
puting Eq. (16) has complexity OðsÞ. The root length density
mixture vector is a key to define interaction processes, and an
example of its application is provided in the last part of the
method section.

2.4. Comparing CDPM predictions with analytical solutions

It is important to ensure that the solutions obtained with the
CDPM approach are satisfactory approximations of the true
solutions of Eq. (1). In this section, we derive an analytical
solution to Eq. (1) in a simplified two-dimensional case, so that
we will be able to evaluate the accuracy of the approximate
solutions that are produced by traditional algorithms and the new
approach we propose. Coefficients describing root elongation rate,
gravitropic rate and branching rate are defined as

e¼ e0,

g ¼�g0a,

b¼ b0r0
a , ð17Þ

where e0 ¼ 2 cm day�1, g0 ¼ 0 or 0:3 day�1 and b0 ¼ 0:3 cm�3

day�1.
In this setting, Eq. (1) writes

@r0
a

@t
þe0 sinðaÞ @r

0
a

@x
þe0 cosðaÞ @r

0
a

@z
�
@g0ar0

a

@a
¼ 0,

@r1
a

@t
þe0 sinðaÞ @r

1
a

@x
þe0 cosðaÞ @r

1
a

@z
�
@g0ar1

a

@a
¼ b0r0

a : ð18Þ

Solutions of Eq. (18) were obtained using the method of
characteristics (Mattheij et al., 2005) in a two stage process. First,
trajectories of material points on the domain (here root tips) were
derived by solving the characteristic equation, defined as a set of
ordinary differential equations (ODE)

M0ðtÞ ¼

x
� 0

ðtÞ

z
� 0

ðtÞ

a
� 0

ðtÞ

0
BBB@

1
CCCA¼

e0 sin ~a
e0 cos ~a
�g0 ~a

0
B@

1
CA: ð19Þ

The third ODE of the system of Eqs. (19) describes the
evolution of root angle with time. It is independent from the
two former equations and was solved independently. Next,
the first two ODEs in (19) were solved by replacing ~a in the first
two ODEs by the solution that was just obtained from the third
ODE of (19). Then sine and cosine functions were decomposed
using a Taylor series expansion. Along the trajectories defined by
the characteristic equation, the solution of the conservation law is
expressed as an integrated ODE

dr0
aðMðtÞ,tÞ

dt
¼ g0r0

aðMðtÞ,tÞ: ð20Þ

Combining these two equations the final solution was expressed
as

r0
aðx,z,a,tÞ ¼ r

J

aðxþx0ðtÞ,zþz0ðtÞ,ae�g0tÞeg0t , ð21Þ

where x0ðtÞ and z0ðtÞ define the deformation of the initial
distribution r

J

a with time

x0ðtÞ ¼
X
kZ0

ð�1Þka2kþ1e0

g0ð2kþ1Þð2kþ1Þ!
ð1�eð2kþ1Þg0tÞ,

z0ðtÞ ¼�e0tþ
X
kZ1

ð�1Þka2ke0

2g0kð2kÞ!
ð1�e2kg0tÞ: ð22Þ

The same principle can be applied to first order lateral roots.
Since the elongation and branching rates are the same, root tips
have the same characteristic equation, and along characteristic
curves, the solution of the conservation law is expressed as an
integrated ODE

dr1
a ðMðtÞ,tÞ

dt
¼ g0r1

a ðMðtÞ,tÞþb0r0
a : ð23Þ

The final solution for lateral roots is then obtained as

r1
aðx,z,a,tÞ ¼ b0tr

J

aðxþx0ðtÞ,zþz0ðtÞ,ae�g0tÞeg0t : ð24Þ

The error introduced by numerical approximations was charac-
terised by the Root Mean Square Error (RMSE) computed for this
grid, as a distance measure between the two distributions

RMSE¼
Xn

i ¼ 1

ðraðxi,zi,ai,tDtÞ�Qt
i Þ

2

 !1=2

: ð25Þ

2.5. Accuracy and convergence of CDPMs

Simulations of CPMs were performed in order to analyse the
accuracy of CDPMs. For these simulations, the grid defining the
root domain consisted of a fixed number of subdivisions along
the R, f and A coordinate lines of the mesh and only one cell along
the y azimuth coordinate line. Simulations were carried out with the
following number of subdivisions 8, 16, 32, 64 and 128 cells. We
then assessed convergence towards the exact solution. The choice of
the time increment is set according to the Courant number (relation
between time increment and cell size to maintain convergence of
numerical scheme) in order to allow displacement of root meristems
of velocity e0 to be resolved in the direction uu: Dt¼ 0:5 min
ðRiDjiÞ=e0. During the course of the simulation, cells deform and the
time increment varied accordingly.

We applied two standard finite volume methods, upwind
and upwind with minmod flux limiter schemes (Leveque, 2002),
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to obtain solutions to Eq. (18) and compare the results with those
obtained using the deformable domain approach. The ‘‘upwind
scheme’’ is a first order method which uses the direction of the
propagation of the wave to compute the net flow in each cell of
the grid. The ‘‘minmod scheme’’ is a second order method that
increases the accuracy of the solution for discontinuous problems
(e.g. uniform distributions) by introducing gradient limiters. We
considered a range of grids to analyse the convergence of the two
finite volume methods. The initial grid had eight cells in the x

direction and 12 cells in the z direction. The time increment for a
given grid was set to Dt¼ 0:5Dx=e0, based on the Courant
number. The number of cells in the angle dimension is deter-
mined Da¼ g0Dt=0:5. Thinner grids were obtained by dividing
cell dimensions by two, until the number of cells reached 64 cells
in the x dimension and 96 cells in the z dimension.

Analytical models, finite volume methods and CDPM simula-
tions were initiated using root apical meristem distributions
consisting of a circular envelope with a median radius of 2 cm
and a thickness of 3 cm. The radial distribution was either
uniformly distributed or normally distributed with mean 2 cm
and standard deviation 0.5 cm. The distribution of root angles on
this domain varied in the interval ½�p=5;0� for root tips at the
surface and in the interval ½�p=2,�p=2þp=5� on the vertical
plane. The interval for root angle for the remaining positions
was linearly interpolated as a function of the zenith angle
defining their position on the hemisphere. Models using no
gravitropic rate (g0 ¼ 0) or high gravitropic rate (g0 ¼ 0:3) were
simulated. Simulation time used for validation corresponds to
3 days of growth. Total soil volume was assumed to be 10 cm by
15 cm by p=2.

Simulation results were used to build spatial maps of the root
apical meristem density distribution and maps of the root length
density distribution. Next, root densities from CDPMs and analy-
tical models were mapped onto the same regular grid as that used
by finite volume methods and compared using Eq. (25). Mapping
of CDPMs used Eq. (12). Errors between numerical methods
(CDPM and both finite volume methods) and analytical solutions
were recorded for each combination of grid size, gravitropic rate
and initial conditions. Error and computation time were plotted
as a function of grid size. Variations, induced by changes in initial
conditions and gravitropic rate, were plotted as intervals around
mean error curves for a given grid size (see Fig. 5).
Fig. 3. (A) A simple case of crop–weed underground competition. Crop and weed pla

deviation in the x-axis. (B) The competition intensity is quantified using the principle

accessed by roots (y-axis), increases as a function of root length density (x-axis) toward

crop root enters a fraction of soil free of roots is reduced. In the case of a mixture, the fra

density ratio (respectively, green and red bars on the x-axis). However, the same fractio

bar labelled ‘effective’). The remaining fraction of produced crop root remains unused (

ratio of redundant root length density over total root length density, and is termed the

this figure caption, the reader is referred to the web version of this article.)
2.6. A simple case of crop–weed competition

CDPMs can be applied to predict the behaviour of ensembles of
plants in a patch of soil. In order to illustrate the use of CDPMs for
such applications, we used the model presented in Section 2.2 to
analyse spatio-temporal patterns of root competition intensity in
a simple crop–weed system (Fig. 3A). In a system where two plant
types coexist, we can define a partition ðIc ,IwÞ of the set of plants,
so that Ic [ Iw ¼ f1, . . . ,sg. Using the root length density mixture
vector of Eq. (16), we derived the root length density of crop
plants lc ¼

P
pA Ic

lp. The root length density of weed plants
followed: lw ¼

P
pA Iw

lp. The fraction of soil f accessed by roots
in a unit volume of soil is a non-decreasing function of root length
density and tends towards a maximum value of 1. The increase slows
down gradually as roots occupy a larger volume of soil. In order to
understand the definition of proportional resource capture, it is
useful to consider the region of soil accessed by a portion of root
as a cylinder of radius rc of length dl. If the fraction of soil accessible
to roots is f, then the probability of the new portion of root to enter
a new region of soil is ð1�fÞpr2

c . The increase of the fraction of
soil accessible per unit added root length density can therefore be
expressed using the following equation:

df
dl
¼ ð1�fÞpr2

c : ð26Þ

The solution to this equation is f¼ 1�e�pr2
c l. This modelling

concept is termed the principle of proportional resource capture.
In real conditions, the domain of soil available is unknown, but
similar relations between root length density and soil fraction
accessible are observed (King et al., 2003). Application of the principle
of proportional resource capture to crop–weed mixtures is therefore
expressed as

f¼ 1�e�kðlc þ lwÞ, ð27Þ

where k (cm2) is the resource capture coefficient and f is the fraction
of soil accessible to plant roots. The fraction of soil fc accessed by
crop plants only is then proportional to the fraction of crop roots in
soil

fc ¼ lcf=ðlcþ lwÞ: ð28Þ

The intensity of competition is then quantified as the fraction of crop
roots that becomes redundant due to competition and is termed Root
nts were placed in two parallel rows. Position of the weeds included a random

of proportional resource capture (King et al., 2003): f, the fraction of soil volume

s a maximum value 1. This increase slows down gradually as the probability that a

ction of soil available to a crop (fc) is proportional to the crop vs. weed root length

n of soil, in the absence of competition, could be obtained with fewer roots (green

red bar labelled ’redundant’). The intensity of competition can be quantified as the

Root Redundancy Index (Eq. (29)). (For interpretation of the references to color in
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Redundancy Index (RRI) (see Fig. 3B)

RRI¼ 1�
logð1�fcÞ

klc
: ð29Þ

The growth model used to represent the crop plants was derived
from a previous work on Barley (Hordeum vulgare L. cv. Optic) with
growth rate numerical values equal to those fixed after Eqs. (17).
The model was calibrated from minirhizotron data at establishment
stage, and showed good correlation with measurement data (Dupuy
et al., 2010). Crop plants were virtually sown along a row in the
y-direction every 4 cm. The model for weed plants was based on
data collected on common lambsquarters (Chenopodium album) and
velvetleaf (Abutilon theophrasti Medicus) weeds by Seibert and
Pearce (1993). Elongation rate and branching rate were obtained
by fitting a simple analytical model linking elongation rate and
branching rate to total root length:

R
lðtÞ dV ¼ b0e0 expðb0tÞ (e0 ¼

1:5 cm day�1 and b0 ¼ 0:3 day�1) (g0 ¼ 0). We neglected the grav-
itropic rate of weeds because data was not available. Also common
lambsquarters and velvetleaf, like most dicotyledon plants, have
their root system constituted mostly of weakly gravitropic second-
ary lateral roots. Weeds were placed randomly around an average
line parallel to the row of crops. Simulations ran for 12 days of
growth after emergence. 3D plant domains used grids subdivided
Fig. 4. Comparison of CDPMs with analytical solutions and two standard finite volume

the analytical solution in Eq. (21). The second column shows results of the upwind

mechanisms. The third column shows the results from the upwind scheme with minmo

results. Solutions are presented for root tips and root length density distributions for tw

highest resolution grids tested in our simulations. Colours scale from blue for low den

distribution. (B) Gravitropic rate of 0 s�1 and Gaussian initial distribution. (For interpre

web version of this article.)
into 10 sub-domains along the f coordinate lines (zenith angle) and
5 in the R (radial) and a (root angle) coordinate lines.
3. Results and discussion

3.1. Accuracy and convergence of CDPMs

Solutions to Eq. (1) form propagating waves of apical meristem
density where velocity is given by x0 and z0 in Eqs. (22). The plot
of solutions obtained with Taylor series illustrates this result
(Fig. 4A and B, leftmost column). A plant root system, defined as
the footprint of this wave (time integration of the apical meristem
density), forms a growing domain of non-zero root length density.
Results obtained by the different numerical methods (upwind,
minmod and CDPMs in Fig. 4, respectively, second, third and
fourth columns) reproduced the same mechanisms. The upwind
scheme was the least accurate numerical scheme; solutions were
significantly smoothed in comparison to the analytical solution.
Minmod approach improved considerably this problem and the
solution obtained was qualitatively similar to CDPMs.

In Fig. 5, we compared the accuracy of numerical methods
using plots of error and computation time as a function of the
number of elements per mesh. Results showed that both upwind
methods (upwind and upwind with minmod flux limiter). The first column shows

scheme, which is a first order method suitable to simulate wave propagation

d scheme, which is a second order method. The fourth column presents the CDPM

o different initial conditions and gravitropic rate values. Results shown are for the

sities to red for high densities. (A) Gravitropic rate of 0.3 s�1 and uniform initial

tation of the references to color in this figure caption, the reader is referred to the



Fig. 5. Root length density prediction error (plain solid line) and computational

time (dotted line) of CDPM (circle), upwind (triangle) and minmod (square) finite

volume methods as a function of the number of cells in the grid. Plain lines

represent the mean error and the corresponding shades represent lower and

higher bounds of the error. Although the CDPM is converging linearly (log–log

scale) towards the exact solution, the number of cells required for a good

approximation to be obtained is lower than classical finite volume methods.

Computational time per cell in the grid is higher for the CDPM but overall, in the

range of computational time allowed by a desktop PC (with a 2.2 GHz processor

and 2 GB memory), accuracy levels obtained by the CDPM were better than those

obtained by finite volume methods.
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and CDPM methods, described in Section 2 converged linearly (in
log-log scale) towards the correct solution whereas the minmod
method had a quadratic convergence, which is consistent with
second order method behaviour. Amongst the methods presented
to numerically solve Eq. (1), CDPMs outperformed finite volume
methods of first (upwind) and second (minmod) order in terms of
absolute prediction error and computation time: best mean
prediction error with CDPMs was 0.0002 compared to 0.0007
for the minmod method and 0.0015 for the upwind method. At an
error of 0.002, computation time is 0.15 s with CDPMs and required,
respectively, 5 s and 15 s for minmod and upwind methods. Trends
in the log–log scale indicate that the minmod method could perform
better than CDPMs for grids of higher resolution than those tested.
However, simulations for grids of this type would require computa-
tion times several orders of magnitude longer and not attainable in
most realistic scenarios.

Several factors made CDPMs more accurate than finite volume
methods. First, CDPMs use grids that correspond to the volume
occupied by plants only. Finite volume methods, on the opposite, are
forced to use fixed grids that either cover large regions of the
generalised space E and can involve intractable computations.
Because generalised spaces have increased dimensions, the gain
obtained by CDPMs is significant. Secondly, fixed grids are sensitive
to initial conditions (Meister and Struckmeier, 2002). In general
plant models are initiated at seeds which occupy a vanishing
fraction of the soil domain. As a consequence, initial conditions are
usually ill-defined using such meshes. Although fixed grid methods
can be suitable to model root systems at later stage of development,
their accuracy is hindered by highly inconsistent definition of initial
conditions. In contrast, CDPM grids adapt to the actual size of the
root domain. CDPMs can therefore be initiated with fine mesh
concentrated on the seed, and an expansion can occur during the
growth of the root system. This property allows CDPMs to perform
simulations over longer growth periods. Finally, the computation of
fluxes to update root densities in fixed grids is prone to numerical
diffusion (Chock, 1991). In CDPMs, apical trajectories were used to
deform the grid, and diffusion was only introduced in the tangential
direction due to fluxes through side faces (see Fig. 2). However,
results showed that the root density computation time per cell in
CDPMs was higher than that of finite volume methods. It indicates
that algorithms for the computation of fluxes between deformed
side faces (Fig. 2B) could be enhanced. Future work must now
address this issue.

Accuracy and convergence of numerical simulations are impor-
tant properties to examine, when constructing predictive models.
However, there are numerous other factors that contribute to the
making of a useful modelling tools. In biological applications in
particular, numerical errors are rarely the main source of loss of
accuracy. Other sources of error include inadequacy of the mathe-
matical model to represent the nature of the biological system. In
many cases, this is due to the lack of mechanistic understanding of
the processes under scrutiny or the difficulty to collect suitable data.
Many root architectural parameters are difficult to estimate in situ

(De Smet et al., 2012). For these reasons, models with minimal
parameter sets, that can be applied to field data e.g. obtained by soil
coring or minirhizotron, are now receiving greater attention from
the community. In our model, there is a direct relation between root
growth parameters, e.g. branching angle, gravitropic rate and
branching rate, and spatial mappings of root length density. This
property will be essential in the future to parametrise model on field
data. The improved calculation time provided by CDPMs will allow
setting parameter through non-linear optimisation algorithm, with
the advantage over classic exponential models (Page and Gerwitz,
1974; King et al., 2003), that parameters can be obtained on two or
three dimensional mappings of root length density.

3.2. Modelling plant populations and competition using density

based models

Because CDPMs drastically improved global computation effi-
ciency, it was possible to use them in a simple case of crop–weed
competition. Using the principle of proportional resource capture,
we derived a measure of the competition intensity between crops
and weeds: the Root Redundancy Index (RRI see Eq. (29) and
Fig. 3B). The RRI is the fraction of roots that is produced but does
not have access to resources due to competition. When no weed is
present, the RRI is constant for any value of the crop root length,
and is equal to 0. When weed root length density increases,
competition gets more intense for higher values of crop root
length density; the RRI increases with crop root length density as
a sigmoid-shaped function (Fig. 6A). At a constant weed root
length density, the resource capture coefficient has limited
impact on the RRI vs. crop root length relationship. The relation-
ship is approximately linear, and the increase in resource capture
coefficient induces a shift in the RRI (Fig. 6B). This phenomenon
expresses the expected increase in the probability that a crop root
is in the zone of influence of weed roots when crop root zone of
influence is increased.

The RRI was used to visualise the spatial distribution of the
competition intensity in the field. We observed that two contrasting
root systems induced localised and intensive zones of competition
(Fig. 7). In our simulations, significant competition occurred at levels
close to the surface and between the two rows, where, respectively,
a root type and its competitor were sown. Fig. 7 illustrates this
pattern of competition: at 5 cm depth, there was a large overlap
between the two root types (Fig. 7A), which involved a nearly
twofold increase in root length density and subsequent changes in
RRI. However, this overlap rapidly decreased with depth (Fig. 7B).
This effect, albeit diminishing with depth, was still observed in the
entire region where weed roots had developed, not only at the
imaginary boundary between the two plants.

This study case showed that more effective density-based
models can be constructed and used when the number of plants
in a system (s) is large (Fig. 8). Finite volume simulations of such



Fig. 7. (A) Variation of the total root length density along an axis perpendicular to

the row of crops at 5 cm depth. The bold line represents the total root length

density of the mixture. The dashed line represents the crop root length density

and the dotted line represents the root length density of weeds. (B) Root

Redundancy Index (RRI) along an axis perpendicular to the row of crops and

taken at 2 cm depth intervals from 5 cm (green) to 19 cm (brown) depth. (For

interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)

Fig. 6. Changes of the Root Redundancy Index (RRI) as a function of crop root length for (A) different values of weed root length Lw (resource capture coefficient k set to

2 cm2) and (B) different values of resource capture coefficient k (Lw set to 1 cm�2). (A) At a given level of weed root length density, the RRI is an increasing function of the

crop root length density (Lc). At low competition levels the RRI is significant only at high crop root length density. At high competition levels the RRI is nearly constant at

any crop root length density level. (B) An increase in k induces a uniform increase in the RRI with limited non-linearity.
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scenarios would require the number of variables defined at each
cell to increase linearly as a function of s. When the number of
plants increases, the grid size is also required to grow propor-
tionally to s. The complexity of computations would therefore
expand proportionally to s square i.e. Oðs2Þ. In the case of CDPMs
however, the number of cells in the grid increases as a linear
function of the number of plants in the simulation but each cell of
a model defines the root density of a unique plant. Therefore,
computations with CDPMs have complexity OðsÞ.

The implementation of root–root interactions is also greatly
facilitated with the CDPM approach. Single plants are identified as
independent physical entities, and only plants in contact with
each other are allowed to interact during the simulation. For
example, it is possible to determine interacting domains using
Delaunay triangulation or K-nearest neighbours methods (Moeur,
1993). This reduces the number of candidate neighbours to test
for spatial interactions, and complexity is reduced to OðsÞ. A fully
connected network of interaction would have complexity Oðs2Þ.
3.3. New opportunities for modelling plant–environment

interactions

Plants grow complex architectures in order to explore space
and acquire resources efficiently. Models provide essential infor-
mation to understand the complex functions of plant architec-
tures. Early models in the 1970s introduced density-based
approaches to study root and shoot growth (Charles-Edwards
and Thornley, 1973; Gerwitz and Page, 1974; Lang and Shell,
1975). However, density models lacked suitable descriptions of
plant geometry, and showed limitations in the study of spatial
processes. With the advent of more powerful computers, archi-
tectural models have come to dominate the field (Prusinkiewicz,
2004; Barczi et al., 2008). For example, architectural models have
been essential to understand the role of canopy structure on light
interception (Pearcy and Yang, 1996; Rey et al., 2008), or to
identify regions of soil with high root uptake (Lynch and Brown,
2002; Dunbabin et al., 2004; Doussan et al., 2006).

Nevertheless, architectural models are not adapted to cases where
ensembles of plants are interacting and competing for resources in a
field. To study processes at this scale, a new generation of simplified,
but still accurate plant models must be developed. In some cases, a
representation of space is simply not required at all. For example, in
the case of phosphate uptake by root system, it was shown that
mobility through convection and diffusion can be neglected and total
root length alone is sufficient to predict phosphate acquisition
(Leitner et al., 2010). In many other cases however, the architectural
properties must be incorporated into models. Experience from other
fields of research have demonstrated that, in this case, Partial
Differential Equations provide a powerful framework to derive
simplified models. Models for tip growth in a fungal network were
successfully used in the past (Edelstein-Keshet and Ermentrout,
1989; Nopharatana et al., 1998). More recent approaches now
integrate growth and resource uptake from soil (Schnepf and
Roose, 2006; Schnepf et al., 2008). In biomedical sciences, similar
approaches have been developed to understand and predict the
growth of angiogenesis and tumors (Anderson and Chaplain, 1998).
The use of oriented distribution function in PDE is also common in
models of blood flow (Vankan et al., 1996) and theoretical chemistry
(Solc and Stockmayer, 1970).

Simplifications can also be achieved through a better under-
standing of how space is explored by the plant architecture. It could
be generically described as the plant’s zone of influence (ZOI). The
concept of ZOI is not a new concept in ecology (Cescatti, 1997) and
agronomy (Hammer et al., 2009) and has been used to formalise
plant–environment interfaces. However, plants’ ZOIs are generally
dynamic and complex traits. They expand throughout a plant life
cycle but such expansion is constrained by biological and physical



Fig. 8. 3D representation of the spatial distribution of (A) Root Redundancy Index (RRI) and (B) total root length density of the mixture. Graphs on the left represent the

row of crops viewed from the top and those on the right represent the same row viewed from the side. Yellow circles outline the domain occupied by each crop in the row.

(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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factors e.g. mechanical (Niklas and Spatz, 2004) and hydraulic
(Sperry et al., 2008). Previous studies lacked theoretical foundations
to mechanistically model ZOIs (Weiner and Damgaard, 2006;
Pachepsky et al., 2001).

Our results showed that plants ZOIs can be predicted based on
plants elementary developmental processes. We also showed that
the ZOI is more than a geometrical trait. It must include a descrip-
tion of how plant organs are distributed across the plant domain.
This can be obtained as the solution of growth equations in terms of
density functions. Although we focused on root system modelling,
the method we presented could be modified to describe shoot
development. Necessary modifications include replacement of
length density by leaf area density with elongation rate being
expressed in area per second. The gravitropic coefficient would also
need be replaced by more complex functions to account for bending
of branches due to weight and phototropism.
4. Conclusion

This study developed a first generation algorithm for the
simulation of the growth of root systems. It was possible to
describe root density distributions within domains that grow as a
result of root elongation and branching processes. We were also
able to provide more accurate and faster predictions, than
classical numerical methods. Numerous applications are antici-
pated, particularly when ensembles of plants are competing in a
field. Challenges remain to optimise simulation algorithms, both
for the discretisation and approximation of solutions on such
domains. Fortunately, the abundant literature on numerical
methods for solving differential equations indicates potential
clues for improvements.
List of symbols
Coordinate systems
m¼ ðx,y,zÞ
 spatial coordinates

t (day)
 time

r (cm)
 radial coordinate in the spherical coordinate

system
y,j
 azimuth and zenith angles in spherical
coordinate system
a
 angle of root inclination (gravitropic angle)
b
 angle of root azimuth (plagiotropic angle)
M¼ ðR,y,j,AÞ
 semi-Lagrangian root coordinates in
generalised space
ux,uy ,uz
 basis in Cartesian coordinate system
ur,uh,uu
 basis in spherical coordinate system
Root quantities
ra (cm�3)
 distribution of apical meristem density
rl (cm�2)
 distribution of root length density
rb (cm�3)
 distribution of branching density
b (cm�3 day�1)
 volumetric root branching rate
e (cm day�1)
 root expansion rate
g (day�1)
 root tropic rate
h (day�1)
 root plagiotropic rate
f
 proportional resource capture
k
 resource capture coefficient
Discretisation
n
 number of cells in the grid of a plant
s
 number of plants
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i,j,k
 subscript indices indicate cell position in the
grid
p,t,n
 superscript indices indicate whole plant
attribute
Ci
 ith cell of a grid

Qi
 number of root apical meristem in the ith cell
Mi ¼ ðRi,yi,ji,AiÞ
 position of the ith cell of the grid
t,Dt,t
 time, time increment and time step
DY,Dj,DR,DA
 size a grid cells
Crop–weed interactions
Ic ,Iw
 indices for crop/weed in an ensemble of
plants
l
 root length density mixture vector
lc ,lw
 total crop/weed root length in a cell
Acknowledgements

We are grateful to Glyn Bengough, Tim Daniell, Mark Young
and Philip White for valuable comments on the manuscript. The
James Hutton Institute receives support from the Scottish Gov-
ernment Rural and Environment Science and Analytical Services
(RESAS, Workpackage 3.3) Division.

References

Acock, B., Pachepsky, Y., 1996. Convective-diffusive model of two-dimensional
root growth and proliferation. Plant Soil 180, 231–240.

Anderson, A., Chaplain, M., 1998. Continuous and discrete mathematical models of
tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899.

Barczi, J.-F., Rey, H., Caraglio, Y., de Reffye, P., Barthelemy, D., Dong, Q.X., Fourcaud,
T., 2008. Amapsim: a structural whole-plant simulator based on botanical
knowledge and designed to host external functional models. Ann. Bot. 101,
1125–1138.

Bastian, P., Chavarria-Krauser, A., Engwer, C., Jaeger, W., Marnach, S., Ptashnyk, M.,
2008. Modelling in vitro growth of dense root networks. J. Theor. Biol. 254, 99–109.

Cescatti, A., 1997. Modelling the radiative transfer in discontinuous canopies of
asymmetric crowns. I. Model structure and algorithms. Ecol. Model. 101, 263–274.

Charles-Edwards, D.A., Thornley, J.H.M., 1973. Light interception by an isolated
plant: a simple model. Ann. Bot. 37, 919–928.

Chock, D.P., 1991. A comparison of numerical methods for solving the advection
equation. Atmos. Environ. 25, 853–871.

De Smet, I., White, P.J., Bengough, A.G., Dupuy, L., Parizot, B., Casimiro, I., Heidstra,
R., Laskowski, M., Lepetit, M., Hochholdinger, F., Draye, X., Zhang, H., Broadley,
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