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Outline

@ Protein-protein interaction network inference
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Metabolite identif

IOKR for structured output prediction

Protein-protein interaction prediction

Protein-protein interactions

e Most proteins perform their functions by interacting with other proteins.

Nodes <+ proteins

An edge between two nodes means a
physical interaction between the
corresponding proteins

e We omit that interactions take place in
time and space

Yeast PPl network
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Cystic fibrosis and the CFTR protein (1)

e Cystic fibrosis :
o lethal, genetic disease
o related to mutations of the gene CFTR, causing an alteration of the protein
encoded by this gene
o CFTR protein

e main function : regulates the ion transport through the cellular membrane

Chloride ions © o
o

A normal-functioning CFTR channel moves chloride

ions to the outside of the cell while a mutant CFTR

channel does not, causing sticky mucus to build up
on the outside of the cell.
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Protein-protein interaction prediction

Cystic fibrosis and the CFTR protein (2)
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e CFTR interacts with many proteins
= Impact on the stability, the localization and the function of CFTR

e The identification of these interactions is important for understanding the
function and the regulation of CFTR
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Protein-protein interaction prediction

Motivation

e Limitations of existing experimental methods for PPI detection
e Small-scale methods : very precise but time consuming (determine one
pair of proteins at a time)
o Large-scale techniques : allow identifying a large number of interactions in
a single experiment but are known to be more error-prone

o develop in silico prediction methods of protein-protein interactions which
can be applied in human

e suggest new interactions to biologists for experimental validation

e propose a general framework to solve this problem
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Protein-protein interaction prediction

The problem of protein-protein interaction prediction can be seen as a link
prediction problem in a graph.

— interaction
. ho interaction

° ¢

Goal : learning a prediction function

, 1 if there exists an interaction between the nodes u and u’
f(uu)— )
0 otherwise
from
e labeled data, i.e. a set of known interactions and absences of interactions
¢ information on the nodes
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Protein-protein interaction prediction

o few protein-protein interactions are known
e however a lot of properties are known on the proteins

= machine learning approach in the semi-supervised setting in order to benefit
form the information of unlabeled data.

4 N

o Uy ={u1,...,ur} : set of £ labeled nodes (for which the presences and
absences of links are assumed to be known)

e A, : adjacency matrix of the known sub-network
o {Upy1,...,Uppn} : set of n unlabeled nodes
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Protein-protein interaction prediction

Output Kernel Regression framework for link prediction
joint work with F. d'Alché-Buc and M. Szafranski

We consider an output kernel k, : U x U — R that encodes the information of
the proximity between objects as nodes in the unknown graph.

Diffusion kernel [Kondor & Lafferty, 2002]

The labeled Gram matrix Ky is defined as :
Ky = exp(—fL),

where L = Dy — Aq, Dy being the diagonal matrix containing the degrees.

e defines a global and smooth similarity measure

o the kernel value between 2 nodes takes into account all paths in the graph
(even non direct) between them
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Protein-protein interaction prediction

Output Kernel Regression framework for link prediction

The binary classification problem is converted into a kernel learning problem.

Building a classification function from kAy :

Given an approximation kAy of ky,, a classification function f; is defined by
thresholding its output values :

V(u,u) €U x U, fo(u, u') = sgn(ky(u, u) - 6).

An interaction is predicted between 2 proteins u and u’ when the kernel
prediction for this pair is above some threshold.
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Output Kernel Regression framework for link prediction

Evaluation of kernel values as a scalar product : k, (u, u’) = (¢, (u), ¢y (') 7,
where F, is a Hilbert space and ¢, : U/ — F,, a mapping.

e ¢,(u) is close to ¢, (u') in Fy if u and v’ are connected

e Depending on the kernel, ¢, (u) is not always explicitly known
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Output Kernel Regression framework for link prediction

Given an approximation of the output feature map ¢, with a vector-valued
function h, an approximation of k, is built from the following scalar product :

ky(u, u') = (h(u), h(u")) 7,

Using the kernel trick in the output space reduces the problem of learning a
pairwise classifier to the problem of learning a single variable function with
values in a Hilbert space.

Task of learning the function h : Output Kernel Regression (OKR)
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Output Kernel Regression framework for link prediction

Previous works : Output Kernel Regression Trees [Geurts et al., 2006, 2007].

Proposed approach : Input Output Kernel Regression [Brouard et al., 2011,
2016] :
e able to take into account structure in input data
e uses the framework of penalized regression, that allows to use smoothness
penalties for semi-supervised learning

We use kernels both in input and output spaces.
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Learning functions with values in a Hilbert space
Prediction problem : approximation of the function h whose values are vectors
belonging to the output feature space F,.

RKHS theory devoted to vector-valued functions [Senkene & Tempel'man,
1973 ; Michelli & Pontil, 2005] J

e Operator-valued kernels : extension of scalar kernels for vector-valued
functions
e Existing applications :
e Multi-task learning [Michelli & Pontil, 2005 ; Argyriou & Pontil, 2008]

o Prediction of functional data [Kadri et al., 2010]
e Structured classification [Dinuzzo et al., 2011]
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Operator-valued kernel

Let X' be some input space and Y an Hilbert space.

An operator-valued kernel Ky is a function whose values are operators from y
o) Ke: X x X — B().

K is an operator-valued kernel if :
© Vx,x' € X, Ku(x,x') = Kx(xX', x)*,
QVmGN,V{(X,',y;) 1CX><y7 El! 1<yvi: (X:7X/)y1> 20

Example : decomposable operator-valued kernel
K:X(X7 X,) = kX(X7 X,)A7
where ky : X x X — R is a scalar-valued kernel and A is an operator from )7 to

Y.
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Protein-protein interaction prediction

Representer theorem in the supervised setting

e Given an OVK K, : X x X — B(D), there exists a unique vector-valued
RKHS #H which admits i as the reproducing kernel.

Representer theorem (Micchelli & Pontil 2005)

Given a training set {(x;,§;)}¢_; C X x Y, the minimizer of the following

optimization problem

¢
argminZﬁ(h(Xi),yi) + A%, A>0
herm =

admits an expansion of the form

4
E('):Z’CX(VXI')CJ" Cj ey, j=1,--- 7[_

j=1
v
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Approximation of the output feature map for link prediction

We use the IOKR framework with a least-squares loss function to learn an
approximating of the output feature map ¢, :

¢
arhg";tinz [A(u;) = ¢y (ui)lF, + AllAll3, A>0
€ i=1

e Considered operator-valued kernel : Ky (u, u') = k«(u, u’)l, where ki is a
scalar-valued kernel and | the identity operator.

Solution of the optimization problem :

h(u) = Za;(u)qsy(u,-), with a(u) = (A + Kx) ki

o Kx € R’ : kernel matrix of ky
* kx = [kx(u17 U), SRR kX(“b u)]T
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Protein-protein interaction prediction

Extension of the representer theorem to the semi-supervised setting

Addition of a regularization term, that forces the target function h to be
smooth with respect to the underlying manifold.

o {u;}¥2r . additional set of unlabeled examples

e W : matrix measuring the local similarities between objects in the input
space

Optimization problem

L l+n
arhgr?{in > lIh(ui) = ¢y (u)llF, + MllAllG + A2 > Wyllh(ui) — h(u)l|%,,
€ i=1 ij=1

where A1 and \> > 0.
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Extension of the representer theorem to the semi-supervised setting

Theorem [Brouard et al, 2011; Minh & Sindwhani, 2011]

The function h minimizing this optimization problem admits the following

form :
L+n

h(-) = Kul( uj)ei, ¢ € Fy.

=

Solution of the optimization problem :

L
h(u) = > ai(u)py (u), with o(u) = J(Meyn + Kx(J7J + 2X2L)) " ks

i=1

Kx € REFMXE4n) - karnel matrix of ki
ki = [kx(un, 1), . . ., ke(tiern, )] T

J= [/e, 0] c RIZX(£+n)

L : Graph Laplacian of W
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Input Output Kernel Regression framework for link prediction

In the supervised setting the approximation of the output kernel can be written
as follows :

/gy(u7 ul) = (h(u) h(u'))]—‘
= Z Oé, Oé_/(u <¢}’(u),¢Y(u/)>]:y

ij=1

= " ai(u)a(u)ky (u, u)

ij=1

~

We can notice that we do not need to know the explicit expressions of the
output ¢, (u) to compute this scalar product
(it is the same in the semi-supervised setting).
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Application to yeast PPl network

Build a yeast protein-protein interaction network based on the DIP database
(Database of Interacting Proteins)

e Taking into account the proteins annotated for each input kernel and
involved in at least one interaction

= obtaining a network containing 815 nodes with a link density of 0.0054

Experimental protocol :
o p% of the nodes are subsampled as labeled nodes

e the performances are averaged over ten random choices of the labeled set
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Application to yeast PPl network

Input features kernel
Gene expressions [Eisen et al., 1998] gaussian
Gene expressions [Spellman et al., 1998] gaussian
Subcellular localizations [MIPS] gaussian
Genetic interactions [BioGRID] gaussian
Sequence [NCBI Protein] k-spectrum
Domain-domain interactions [Pfam, DOMINE] diffusion
Transcription factors [YEASTRACT] gaussian
Biological processes [Gene Ontology] gaussian
Molecular functions [Gene Ontology] gaussian
Cellular components [Gene Ontology] gaussian
Interologs [Inparanoid, DIP, MINT, BioGRID] diffusion
Phylogenetic profiles [Phylopro] gaussian
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Contribution of semi-supervised learning
For 5% of labeled nodes

p=5% p=5%
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Extern combination : Vu,u’ € U, Ky (u,u’) = % =

where f-€y(j) corresponds to the approximation of the output kernel obtained when the
j-th input kernel is used, and p to the number of considered kernels.
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Comparison in the supervised setting

5-cv experiment

a) AUC-ROC :

Method GO-BP GO-CC GO-MF int
Naive 60.8+0.8 644+25 642+08 67.7+15
kCCA 824+36 77017 750+£06 857+1.6
kML 832+24 778+11 766+£19 845+15
Local 795+16 731+13 668+£12 83.0+£05

OK3+ET | 843+24 815+16 793+£18 869+1.6
IOKR 888+19 871+13 840+06 912112

b) AUC-PR :

Method GO-BP GO-CC GO-MF int
Naive 48+1.0 21+£0.6 24+04 8.0+17
kCCA 71+15 77+14 42+05 99+04
kML 71+£13 3.1£0.6 35£04 7.8+£1.6
Local 6.0+1.1 1.1£03 0.7+00 22.6+6.6

OK3+ET | 190+£18 218+25 105+20 26.8+24
IOKR 153+£12 209+21 86+£03 222416
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Comparison with transductive approaches

e EM [Kato et al., 2005]
e PKMR (Penalized Kernel Matrix Regression) [Yamanishi & Vert, 2007]

Results corresponding to the combination of predictions obtained for each input
kernel :

T T T T T T T T T o. T T T T T T T T T T

084

5 10 20 30 40 50 60 70 80 % . 5 10 20 30 40 50 60 70 80 90
Percentage of labeled data Percentage of labeled data
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Protein-protein interaction prediction

Inference of the PPl network around CFTR (1)

joint work with A. Edelman
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Inference of the PPl network around CFTR (2)

Input features Kernel type
Gene expressions [Su et al., 2004] gaussian
Protein expressions [The Human Protein Atlas] gaussian
Subcellular localizations [The Human Protein Atlas] gaussian
Sequence [NCBI Protein] k-spectrum
Domain-domain interactions [Pfam, DOMINE] diffusion
Biological processes [Gene Ontology] gaussian
Molecular functions [Gene Ontology] gaussian
Cellular components [Gene Ontology] gaussian
Interologs [Inparanoid, DIP, MINT, BioGRID, Intact] diffusion
Phylogenetic profiles [BLASTP] gaussian
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Protocol

Missing annotations are taken into account

Labeled Unlabeled
e S : CFTR + proteins interacting directly proteins Erote/is

with CFTR (34)

T : set of proteins interacting directly with
the proteins in the set S (163)

Prediction of interactions between proteins
in S and proteins in T T,
Several iterations :

o jth iteration : T is randomly splited into
two subsets Ty ; and T ;
e At the end, the predictions are combined
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Prediction of known interactions

e The interactions predicted between two proteins u and v’ are sorted
according to the value taken by &) (u, u’)
e True positive rate obtained for the n first predictions :

100

80 B

70+ : . B

60 B

True positive rate

30 B

20 B

i i i i i i i i
5 10 20 30 40 50 75 100 150 200 500 1000
Number of first predicted interactions
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Protein-protein interaction prediction

Prediction of new interactions

e List of interactions obtained from a study of the literature for the first 100
predictions obtained :

[ Prot1 [ Prot2 ] Method [ Reference |
XIAP PTEN enzymatic study Van Themsche C (2009)
NEDD4 PTEN pull down Wang X (2008)
NEDD4 PTEN enzymatic study Wang X (2008)
SNAP23 VAMP2 pull down Kawanishi M (2000)
SNAP23 VAMP1 two hybrid Ravichandran V (1996)
SNAP23 STX6 pull down Martin-Martin B (2000)
SNAP23 STXBP2 in vivo Schraw TD (2003)
DNAJC5 STUBL affinity capture western Schmidt BZ (2009)
ANXA5 ANXA1 co-localization Arur S (2003)
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IOKR for structured output prediction

Outline

@ Input Output Kernel Regression for structured output prediction
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Structured output learning

e Many real world applications involve objects with an explicit or implicit
structure

e Examples of structured data that we may want to use as inputs or
outputs : graphs, trees ...

e Structured output prediction can also concerns multiple outputs linked by
some relationship
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Input Output Kernel Regression (IOKR)
[Brouard et al., 2011, 2016]

Extension of Input Output Kernel Regression (IOKR) to the general case of
structured output prediction :

can be used to learn mappings between two structured spaces X and ).

e The internal structure of the outputs is encoded using an output kernel
function ky, : Y x Y — R

e ky is associated with a feature space F, and a feature mapping function
oy Y = Fy

V(}’v}’/) €Y x), ky(%}’/) = <¢y(}’)7¢y(y/)>fy

33 /55
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Input Output Kernel Regression

X f y

Decomposition of the regression problem in two tasks :

@ Output Kernel Regression : learn a function h: X — F, that
approximates the output feature map ¢,

® Computation of the pre-image : define or learn a function g : 7, — ) to
provide an output in the set ).
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Pre-image step

To determine the output f(x;) in ) associated with the input x; € X', we must
determine the pre-image of h(x;) by ¢, :

F(xi) = argmin || A(xi) — ¢y ()3,

yey

Using the kernel trick in the output space, it can be rewritten as :

F(xi) = argmin k, (y,y) — 2(k%) T (M + Kx) 1 kY.
yey
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Outline

© Application to metabolite identification
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Introduction

o Metabolites : small molecules inside biological cells

e Key problem in metabolomics : identify the metabolites that are present in
a biological sample
e Diverse applications :
e medical diagnostic
pharmaceutical drug development
screening for traces of explosives in airport
screening of environmental contaminants
assessing food and drink quality
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IOKR for structured output prediction

Metabolite identi

Metabolite identification

Metabolite identification relies on tandem mass spectrometry (MS/MS) data,
produced by :

e fragmenting the metabolite,

e recoding the masses and relative abundances (intensities) of the molecular
fragments

A measurement results in an MS/MS spectrum with peaks representing the
intensities as a function of the masses for the different fragments.

beta-Lapachone

tandem mass spectra: beta-Lapachone

@em peak

T T
160 180 200 220
Mass [m/z)

Intensity [%]
60 80 100

40

20

o

molecular formula
C15H1403

parent peak
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Machine learning for metabolite identification
joint work with J. Rousu, H. Shen, S. Bdcker and K. Diihrkop

MS/MS spectra Metabolite

w0 W @ g w0 w0 w0 oo ~,

s 0

X y

Metabolite identification can be seen as a structured prediction problem :
e X : set of MS/MS spectra
e ) : set of molecules
e Learn a function f : X — ) that maps a MS? spectrum to a molecule

We use IOKR in the supervised setting to learn this mapping.
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Pre-image

F(x) = argmin[|A(x) — ¢, (y)|%, -
yey*

e V* : set of candidate molecules from molecular databases such as
PubChem or KEGG.

e V™ can be filtered using the mass of the unknown molecule or its
molecular formula if already known

e Search the space of molecules for one with image nearest to h(x) :

Output feature space Sort by distance
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Input kernels

We considered 24 scalar input kernels and combined them using multiple kernel
learning :

ks (x, X,) = Z/ﬁkj(xﬂxl)'
=

Two MKL approaches :
e Uniform MKL (UNIMKL) : pj =1/m, forj=1,...,m.

e ALIGNF [Cortes et al., 2012] :
search the weights that maximize the centered alignment between
Kv =22 1K and K, .
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Metabolite identification

Input kernels : probability product kernel
[Heinonen et al., 2012]

e A mass spectrum is defined as a set of peaks : x = {x(€)};~,.
o Each peak is modelled as a 2D normal distribution centered around the
observed position : pyy ~ N(x(€), X).

2
e The covariance is shared with all peaks : X = {Ué" O?].

Creatine m
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80 I \H‘

Intensity

5
3
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Input kernel : probability product kernel

e A spectrum is represented as a mixture of its peak distributions :
1 &
Px=— > Pu0)
M3

o Probability product kernel [Jebara et al., 2004] between the peaks of two
spectra x and x’ :

Koex) = [ pu(a)po(a)ez

Nx N,/

1 1

NxNy 4momo;

_ LY e <_% (x(0) = X' ()T T (x(0) - x’(e’)))

0,0'=1
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Protein-protein interaction prediction

Input kernels : fragmentation trees
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e Model of the fragmentation process in a tree shape :
o Nodes ~ peaks ~ molecular formula of fragments
e Edges = losses
e Fragmentation trees can be predicted from spectra
o We use 23 different kernels based on these trees

o Edge-based kernels
e Node-based kernels
e Path-based kernels
o Alignment-based kernels
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Output kernels : molecular fingerprints

beta-lapachone

Q CH,

o o cH, [oJoJoJo]1Jof1]o]1fofofofo]JoJofo]1]of1][0]o]0]
NH, *' CH,
Q \/)H

e Molecular fingerprint : encodes the structure of a molecule using a bit (or
count) vector.
e Each entry indicates the existence or the frequency of a certain molecular
property :
e atom or bond type,
e substructure (e.g. aromatic ring).

Fingerprint kernels :
linear, polynomial and gaussian kernels over fingerprint vectors
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Output kernels

We also considered different graph kernels :
o Path kernel
e Shortest-path kernel
o Graphlet kernel

But we obtained better performances with fingerprint kernels. In the next part,
we will therefore show the results obtained with IOKR for fingerprint kernels.
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Protocol

4138 tandem mass spectra from the GNPS spectral library.

10-fold cross-validation (data with the same structure are contained in the
same fold).

Pre-image step : search among PubChem structures having the same
molecular formula as the target compound.
Evaluation :

@ For each test example : evaluate the rank of the true molecular structure
among the candidates.

® Compute the percentage of structures that have been ranked lower than k
for1 < k<20.
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Per of correctly identified metabolites
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Comparison with the state of the art : CSI-FingerID
[Shen et al. (2014), Diihrkop et al. (2015)]

Metabolite identifi

o}
Il
NOH
molecular structure
database
NH,, NI o
>y ~, N
— L0 L
trimethylnitrosourea propylnitrosourea
Y™
”u“’"! guanidinopropionic acid
MS/MS spectrum @
1. Use SVM to predict fingerprint 2. Compare with molecular database
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Comparison with CSI :FingerlD

Scoring function for comparing the candidate fingerprints with the predicted
fingerprint :
e Unit :
e counts the number of common molecular properties.
¢ Modified Platt :

e combines maximum likelihood and Platt scores (posterior probability
estimates of the fingerprint) for defining the scoring function.
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Comparison with CSI :FingerlD

Metabolite identifi

@
o
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§ o =] I =Y
ES — 1
@
g1 1
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S -2 IOKR_in alignf 1
=4 IOKR_Gauss unimkl
€ -3 IOKR_Gauss alignf B
38 CSI-FingerID unit
S -4 CSl-FingerID mod Platt |
o
5 J
6 J
1 10 15 20
Top k
Method MKL Top 1 Top 10 Top 20
CSI :FingerID unit ALIGNF 24.82 60.47 68.2
CSI :FingerID mod Platt ALIGNF 28.84 66.07 73.07
IOKR linear ALIGNF 28.54 65.77 73.19
UNIMKL 30.02 66.05 73.66
IOKR Gaussian ALIGNF 20.78 67.84 74.79
UNIMKL 30.66 67.94 75.00
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Comparison with CSI :FingerID : running times

4138 training compounds (GNPS) / 625 test compounds (MassBank)

Fix the values of the parameters

The computation of the fragmentation trees, input kernels and fingerprints
was not taken into account.

Training time Test time
CSI :FingerlD 82h28min23s 1h1llmin3ls
IOKR linear 42 s 1 min15s
IOKR polynomial 38s 21 min 58 s
IOKR Gaussian 41 s 33 min15s

IOKR is ~7000 times faster to train that CSI :FingerID because
CSI :FingerID needs to train 2765 SVMs (one for each molecular property).

IOKR linear : avoid kernel computations in the pre-image step by
computing explicitly the output feature vectors.
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CASMI challenge 2016

Schymanski et al., 2017

CASMI (Critical Assessment of Small Molecule Identification) : contest on the
identification of small molecules from mass spectrometry data.

Three categories :
® manual methods
® automatic methods

© automatic methods using metadata

IOKR performed best in category 2 with 78 molecules identified among 208
challenges (37.5%).
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Conclusions and perspectives

o Introduction of a new setting for solving structured prediction problems
o Application on two different problems : link prediction and metabolite
identification

e Extensions of IOKR for metabolite identification have been developed

Perspectives :
e Learning better output representations :

e taking into account dependencies between molecular properties using a
probabilistic graphical model

e learning the output kernel

e combination of multiple output kernels
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Thank you for your attention
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