Input output kernel regression for protein-protein interaction prediction and metabolite identification

Céline Brouard

MIA Toulouse

5 Octobre 2018

Outline

1 Protein-protein interaction network inference

2 Input Output Kernel Regression for structured output prediction

3 Application to metabolite identification

Protein-protein interactions

• Most proteins perform their functions by interacting with other proteins.

• Nodes \leftrightarrow proteins

- An edge between two nodes means a physical interaction between the corresponding proteins
- We omit that interactions take place in time and space

Yeast PPI network

Cystic fibrosis and the CFTR protein (1)

- Cystic fibrosis :
 - lethal, genetic disease
 - related to mutations of the gene *CFTR*, causing an alteration of the protein encoded by this gene
- CFTR protein
 - main function : regulates the ion transport through the cellular membrane

Cystic fibrosis and the CFTR protein (2)

- CFTR interacts with many proteins
 ⇒ Impact on the stability, the localization and the function of CFTR
- The identification of these interactions is important for understanding the function and the regulation of CFTR

Motivation

- Limitations of existing experimental methods for PPI detection
 - Small-scale methods : very precise but time consuming (determine one pair of proteins at a time)
 - Large-scale techniques : allow identifying a large number of interactions in a single experiment but are known to be more error-prone

Goals

- develop *in silico* prediction methods of protein-protein interactions which can be applied in human
- suggest new interactions to biologists for experimental validation
- propose a general framework to solve this problem

Protein-protein interaction prediction

The problem of protein-protein interaction prediction can be seen as a link prediction problem in a graph.

Goal : learning a prediction function

 $f:(u,u') \longrightarrow \begin{cases} 1 & \text{if there exists an interaction between the nodes } u \text{ and } u' \\ 0 & \text{otherwise} \end{cases}$

from

- labeled data, i.e. a set of known interactions and absences of interactions
- information on the nodes

Protein-protein interaction prediction

- few protein-protein interactions are known
- however a lot of properties are known on the proteins

 \Rightarrow machine learning approach in the semi-supervised setting in order to benefit form the information of unlabeled data.

- $U_{\ell} = \{u_1, \dots, u_{\ell}\}$: set of ℓ labeled nodes (for which the presences and absences of links are assumed to be known)
- A_{ℓ} : adjacency matrix of the known sub-network
- $\{u_{\ell+1}, \ldots, u_{\ell+n}\}$: set of *n* unlabeled nodes

Output Kernel Regression framework for link prediction joint work with F. d'Alché-Buc and M. Szafranski

We consider an output kernel $k_y : \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ that encodes the information of the proximity between objects as nodes in the unknown graph.

Diffusion kernel [Kondor & Lafferty, 2002]

The labeled Gram matrix K_Y is defined as :

 $K_{\mathbf{Y}} = \exp(-\beta L),$

where $L = D_{\ell} - A_{\ell}$, D_{ℓ} being the diagonal matrix containing the degrees.

- defines a global and smooth similarity measure
- the kernel value between 2 nodes takes into account all paths in the graph (even non direct) between them

The binary classification problem is converted into a kernel learning problem.

Building a classification function from $\hat{k_v}$:

Given an approximation $\hat{k_y}$ of k_y , a classification function f_{θ} is defined by thresholding its output values :

 $\forall (u, u') \in \mathcal{U} \times \mathcal{U}, f_{\theta}(u, u') = \operatorname{sgn}(\hat{k_y}(u, u') - \theta).$

An interaction is predicted between 2 proteins u and u' when the kernel prediction for this pair is above some threshold.

Evaluation of kernel values as a scalar product : $k_y(u, u') = \langle \phi_y(u), \phi_y(u') \rangle_{\mathcal{F}_y}$ where \mathcal{F}_y is a Hilbert space and $\phi_y : \mathcal{U} \to \mathcal{F}_y$ a mapping.

- $\phi_y(u)$ is close to $\phi_y(u')$ in \mathcal{F}_y if u and u' are connected
- Depending on the kernel, $\phi_y(u)$ is not always explicitly known

Given an approximation of the output feature map ϕ_y with a vector-valued function h, an approximation of k_y is built from the following scalar product :

$$\hat{k}_{y}(u, u') = \langle h(u), h(u') \rangle_{\mathcal{F}_{y}}.$$

Using the kernel trick in the output space reduces the problem of learning a pairwise classifier to the problem of learning a single variable function with values in a Hilbert space.

Task of learning the function h: **Output Kernel Regression** (OKR)

Previous works : Output Kernel Regression Trees [Geurts et al., 2006, 2007].

Proposed approach : *Input Output Kernel Regression* [Brouard et al., 2011, 2016] :

- able to take into account structure in input data
- uses the framework of penalized regression, that allows to use smoothness penalties for semi-supervised learning

We use kernels both in input and output spaces.

Learning functions with values in a Hilbert space

Prediction problem : approximation of the function h whose values are vectors belonging to the output feature space \mathcal{F}_y .

RKHS theory devoted to vector-valued functions [Senkene & Tempel'man, 1973; Michelli & Pontil, 2005]

- Operator-valued kernels : extension of scalar kernels for vector-valued functions
- Existing applications :
 - Multi-task learning [Michelli & Pontil, 2005; Argyriou & Pontil, 2008]
 - Prediction of functional data [Kadri et al., 2010]
 - Structured classification [Dinuzzo et al., 2011]

Operator-valued kernel

Let ${\mathcal X}$ be some input space and $\widetilde{{\mathcal Y}}$ an Hilbert space.

An operator-valued kernel \mathcal{K}_x is a function whose values are operators from $\widetilde{\mathcal{Y}}$ to $\widetilde{\mathcal{Y}} : \mathcal{K}_x : \mathcal{X} \times \mathcal{X} \to \mathcal{B}(\widetilde{\mathcal{Y}}).$

$$\begin{split} &\mathcal{K}_{x} \text{ is an operator-valued kernel if :} \\ & \textcircledleft \begin{subarray}{l} & \end{matrix}$$

Example : decomposable operator-valued kernel

$$\mathcal{K}_x(x,x')=k_x(x,x')A,$$

where $k_x : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a scalar-valued kernel and A is an operator from $\widetilde{\mathcal{Y}}$ to $\widetilde{\mathcal{Y}}$.

Representer theorem in the supervised setting

• Given an OVK $\mathcal{K}_x : \mathcal{X} \times \mathcal{X} \to \mathcal{B}(\widetilde{\mathcal{Y}})$, there exists a unique vector-valued RKHS \mathcal{H} which admits \mathcal{K}_x as the reproducing kernel.

Representer theorem (Micchelli & Pontil 2005)

Given a training set $\{(x_i, \tilde{\mathbf{y}}_i)\}_{i=1}^{\ell} \subseteq \mathcal{X} \times \widetilde{\mathcal{Y}}$, the minimizer of the following optimization problem

$$\operatorname*{argmin}_{h\in\mathcal{H}}\sum_{i=1}^{\ell}\mathcal{L}(h(x_i),\tilde{\mathbf{y}}_i)+\lambda\|h\|_{\mathcal{H}}^2\;,\;\;\lambda>0$$

admits an expansion of the form

$$\hat{h}(\cdot) = \sum_{j=1}^{\ell} \mathcal{K}_{\mathsf{x}}(\cdot, \mathsf{x}_j) \mathsf{c}_j, \quad \mathsf{c}_j \in \widetilde{\mathcal{Y}}, \ j = 1, \cdots, \ell.$$

Approximation of the output feature map for link prediction

We use the IOKR framework with a least-squares loss function to learn an approximating of the output feature map ϕ_Y :

$$\underset{h\in\mathcal{H}}{\operatorname{argmin}}\sum_{i=1}^{\ell}\|h(u_i)-\phi_y(u_i)\|_{\mathcal{F}_{\mathbf{y}}}^2+\lambda\|h\|_{\mathcal{H}}^2\;,\;\;\lambda>0$$

• Considered operator-valued kernel : $\mathcal{K}_x(u, u') = k_x(u, u')I$, where k_x is a scalar-valued kernel and I the identity operator.

Solution of the optimization problem :

$$\hat{h}(u) = \sum_{i=1}^{\ell} \alpha_i(u) \phi_y(u_i)$$
, with $\alpha(u) = (\lambda I + K_X)^{-1} k_X^u$

- $K_X \in \mathbb{R}^{\ell imes \ell}$: kernel matrix of k_x
- $k_X^u = [k_x(u_1, u), \dots, k_x(u_\ell, u)]^T$

Extension of the representer theorem to the semi-supervised setting

Addition of a regularization term, that forces the target function h to be smooth with respect to the underlying manifold.

- $\{u_i\}_{i=1}^{\ell+n}$: additional set of unlabeled examples
- W : matrix measuring the local similarities between objects in the input space

Optimization problem

$$\underset{h\in\mathcal{H}}{\operatorname{argmin}}\sum_{i=1}^{\ell}\|h(u_i)-\phi_{\mathcal{Y}}(u_i)\|_{\mathcal{F}_{\mathcal{Y}}}^2+\lambda_1\|h\|_{\mathcal{H}}^2+\lambda_2\sum_{i,j=1}^{\ell+n}W_{ij}\|h(u_i)-h(u_j)\|_{\mathcal{F}_{\mathcal{Y}}}^2,$$

where λ_1 and $\lambda_2 > 0$.

Extension of the representer theorem to the semi-supervised setting

Theorem [Brouard et al, 2011; Minh & Sindwhani, 2011]

The function h minimizing this optimization problem admits the following form :

$$h(\cdot) = \sum_{j=1}^{\ell+n} \mathcal{K}_x(\cdot, u_j) \mathbf{c}_j, \ \mathbf{c}_j \in \mathcal{F}_y.$$

Solution of the optimization problem :

$$\hat{h}(u) = \sum_{i=1}^{\ell} \alpha_i(u) \phi_y(u_i), \text{ with } \alpha(u) = J(\lambda I_{\ell+n} + K_X(J^T J + 2\lambda_2 L))^{-1} k_X^u$$

- $K_X \in \mathbb{R}^{(\ell+n) \times (\ell+n)}$: kernel matrix of k_x
- $k_X^u = [k_x(u_1, u), \dots, k_x(u_{\ell+n}, u)]^T$
- $J = [I_{\ell}, 0] \in \mathbb{R}^{\ell \times (\ell + n)}$
- L : Graph Laplacian of W

In the supervised setting the approximation of the output kernel can be written as follows :

$$\begin{aligned} \hat{k}_{y}(u, u') &= \langle h(u), h(u') \rangle_{\mathcal{F}_{y}} \\ &= \sum_{i,j=1}^{\ell} \alpha_{i}(u) \alpha_{j}(u') \langle \phi_{y}(u), \phi_{y}(u') \rangle_{\mathcal{F}_{y}} \\ &= \sum_{i,j=1}^{\ell} \alpha_{i}(u) \alpha_{j}(u) k_{y}(u, u') \end{aligned}$$

We can notice that we do not need to know the explicit expressions of the output $\phi_y(u)$ to compute this scalar product (it is the same in the semi-supervised setting).

Application to yeast PPI network

Build a yeast protein-protein interaction network based on the DIP database (Database of Interacting Proteins)

• Taking into account the proteins annotated for each input kernel and involved in at least one interaction

 \Rightarrow obtaining a network containing 815 nodes with a link density of 0.0054

Experimental protocol :

- p% of the nodes are subsampled as labeled nodes
- the performances are averaged over ten random choices of the labeled set

Application to yeast PPI network

Input features	kernel
Gene expressions [Eisen et al., 1998]	gaussian
Gene expressions [Spellman et al., 1998]	gaussian
Subcellular localizations [MIPS]	gaussian
Genetic interactions [BioGRID]	gaussian
Sequence [NCBI Protein]	k-spectrum
Domain-domain interactions [Pfam, DOMINE]	diffusion
Transcription factors [YEASTRACT]	gaussian
Biological processes [Gene Ontology]	gaussian
Molecular functions [Gene Ontology]	gaussian
Cellular components [Gene Ontology]	gaussian
Interologs [Inparanoid, DIP, MINT, BioGRID]	diffusion
Phylogenetic profiles [Phylopro]	gaussian

Contribution of semi-supervised learning For 5% of labeled nodes

Extern combination : $\forall u, u' \in \mathcal{U}, \ \hat{\kappa_y}(u, u') = \frac{1}{p} \sum_{j=1}^{p} \hat{\kappa_y}^{(j)}(u, u')$, where $\hat{\kappa_y}^{(j)}$ corresponds to the approximation of the output kernel obtained when the *j*-th input kernel is used, and *p* to the number of considered kernels.

Comparison in the supervised setting 5-cv experiment

a) AUC-ROC :

Method	GO-BP	GO-CC	GO-MF	int
Naive	60.8 ± 0.8	64.4 ± 2.5	64.2 ± 0.8	67.7 ± 1.5
kCCA	82.4 ± 3.6	77.0 ± 1.7	75.0 ± 0.6	85.7 ± 1.6
kML	83.2 ± 2.4	77.8 ± 1.1	$\textbf{76.6} \pm \textbf{1.9}$	84.5 ± 1.5
Local	79.5 ± 1.6	73.1 ± 1.3	$\textbf{66.8} \pm \textbf{1.2}$	83.0 ± 0.5
OK3+ET	84.3 ± 2.4	81.5 ± 1.6	$\textbf{79.3} \pm \textbf{1.8}$	86.9 ± 1.6
IOKR	$\textbf{88.8} \pm \textbf{1.9}$	$\textbf{87.1} \pm \textbf{1.3}$	$\textbf{84.0} \pm \textbf{0.6}$	91.2 ± 1.2

b) AUC-PR :

Method	GO-BP	GO-CC	GO-MF	int
Naive	4.8 ± 1.0	2.1 ± 0.6	2.4 ± 0.4	8.0 ± 1.7
kCCA	7.1 ± 1.5	7.7 ± 1.4	4.2 ± 0.5	9.9 ± 0.4
kML	7.1 ± 1.3	3.1 ± 0.6	3.5 ± 0.4	7.8 ± 1.6
Local	6.0 ± 1.1	1.1 ± 0.3	0.7 ± 0.0	22.6 ± 6.6
OK3+ET	$\textbf{19.0} \pm \textbf{1.8}$	$\textbf{21.8} \pm \textbf{2.5}$	$\textbf{10.5} \pm \textbf{2.0}$	$\textbf{26.8} \pm \textbf{2.4}$
IOKR	15.3 ± 1.2	20.9 ± 2.1	8.6 ± 0.3	22.2 ± 1.6

Comparison with transductive approaches

- EM [Kato et al., 2005]
- PKMR (Penalized Kernel Matrix Regression) [Yamanishi & Vert, 2007]

Results corresponding to the combination of predictions obtained for each input ${\sf kernel}$:

Inference of the PPI network around CFTR (1) joint work with A. Edelman

- Network of 198 proteins
- Manual curation of interactions in the literature (BioGRID, DIP, MINT, Intact, NextProt)

Inference of the PPI network around CFTR (2)

Input features	Kernel type
Gene expressions [Su et al., 2004]	gaussian
Protein expressions [The Human Protein Atlas]	gaussian
Subcellular localizations [The Human Protein Atlas]	gaussian
Sequence [NCBI Protein]	k-spectrum
Domain-domain interactions [Pfam, DOMINE]	diffusion
Biological processes [Gene Ontology]	gaussian
Molecular functions [Gene Ontology]	gaussian
Cellular components [Gene Ontology]	gaussian
Interologs [Inparanoid, DIP, MINT, BioGRID, Intact]	diffusion
Phylogenetic profiles [BLASTP]	gaussian

Protocol

Missing annotations are taken into account

- S : CFTR + proteins interacting directly with CFTR (34)
- *T* : set of proteins interacting directly with the proteins in the set *S* (163)
- Prediction of interactions between proteins in *S* and proteins in *T*
- Several iterations :
 - *i*th iteration : *T* is randomly splited into two subsets *T*_{1,i} and *T*_{2,i}
 - At the end, the predictions are combined

Prediction of known interactions

- The interactions predicted between two proteins u and u' are sorted according to the value taken by $\hat{\kappa_y}(u, u')$
- True positive rate obtained for the n first predictions :

Prediction of new interactions

• List of interactions obtained from a study of the literature for the first 100 predictions obtained :

Prot 1	Prot 2	Method	Reference
XIAP	PTEN	enzymatic study	Van Themsche C (2009)
NEDD4	PTEN	pull down	Wang X (2008)
NEDD4	PTEN	enzymatic study	Wang X (2008)
SNAP23	VAMP2	pull down	Kawanishi M (2000)
SNAP23	VAMP1	two hybrid	Ravichandran V (1996)
SNAP23	STX6	pull down	Martin-Martin B (2000)
SNAP23	STXBP2	in vivo	Schraw TD (2003)
DNAJC5	STUB1	affinity capture western	Schmidt BZ (2009)
ANXA5	ANXA1	co-localization	Arur S (2003)

Outline

1 Protein-protein interaction network inference

2 Input Output Kernel Regression for structured output prediction

O Application to metabolite identification

Structured output learning

- Many real world applications involve objects with an explicit or implicit structure
- Examples of structured data that we may want to use as inputs or outputs : graphs, trees ...
- Structured output prediction can also concerns multiple outputs linked by some relationship

Input Output Kernel Regression (IOKR) [Brouard et al., 2011, 2016]

Extension of Input Output Kernel Regression (IOKR) to the general case of structured output prediction :

can be used to learn mappings between two structured spaces \mathcal{X} and \mathcal{Y} .

- The internal structure of the outputs is encoded using an output kernel function $k_y : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$
- k_y is associated with a feature space \mathcal{F}_y and a feature mapping function $\phi_y: \mathcal{Y} \to \mathcal{F}_y$:

$$\forall (y, y') \in \mathcal{Y} \times \mathcal{Y}, \ k_y(y, y') = \langle \phi_y(y), \phi_y(y') \rangle_{\mathcal{F}_y}$$

Input Output Kernel Regression

Decomposition of the regression problem in two tasks :

- Output Kernel Regression : learn a function $h : \mathcal{X} \to \mathcal{F}_y$ that approximates the output feature map ϕ_y
- **②** Computation of the pre-image : define or learn a function $g : \mathcal{F}_y \to \mathcal{Y}$ to provide an output in the set \mathcal{Y} .

Pre-image step

To determine the output $f(x_i)$ in \mathcal{Y} associated with the input $x_i \in \mathcal{X}$, we must determine the pre-image of $h(x_i)$ by ϕ_y :

$$\hat{f}(x_i) = \operatorname*{argmin}_{y \in \mathcal{Y}} \|\hat{h}(x_i) - \phi_y(y)\|_{\mathcal{F}_y}^2$$

Using the kernel trick in the output space, it can be rewritten as :

$$\hat{f}(x_i) = \operatorname*{argmin}_{y \in \mathcal{Y}} k_y(y, y) - 2(k_Y^y)^T (\lambda I + K_X)^{-1} k_X^{x_i}.$$

Outline

1 Protein-protein interaction network inference

2 Input Output Kernel Regression for structured output prediction

3 Application to metabolite identification

Introduction

- Metabolites : small molecules inside biological cells
- Key problem in metabolomics : identify the metabolites that are present in a biological sample
- Diverse applications :
 - medical diagnostic
 - pharmaceutical drug development
 - screening for traces of explosives in airport
 - screening of environmental contaminants
 - assessing food and drink quality

Metabolite identification

Metabolite identification relies on tandem mass spectrometry (MS/MS) data, produced by :

- fragmenting the metabolite,
- recoding the masses and relative abundances (intensities) of the molecular fragments

A measurement results in an MS/MS spectrum with peaks representing the intensities as a function of the masses for the different fragments.

Machine learning for metabolite identification joint work with J. Rousu, H. Shen, S. Böcker and K. Dührkop

Metabolite identification can be seen as a structured prediction problem :

- \mathcal{X} : set of MS/MS spectra
- $\mathcal Y$: set of molecules

• Learn a function $f : \mathcal{X} \to \mathcal{Y}$ that maps a MS² spectrum to a molecule We use IOKR in the supervised setting to learn this mapping.

$$\hat{f}(x) = \underset{y \in \mathcal{Y}^*}{\operatorname{argmin}} \|\hat{h}(x) - \phi_y(y)\|_{\mathcal{F}_{y}}^2.$$

- + \mathcal{Y}^* : set of candidate molecules from molecular databases such as PubChem or KEGG.
- + \mathcal{Y}^* can be filtered using the mass of the unknown molecule or its molecular formula if already known
- Search the space of molecules for one with image nearest to h(x):

Input kernels

We considered 24 scalar input kernels and combined them using multiple kernel learning :

$$k_x(x,x') = \sum_{j=1}^m \mu_j k_j(x,x').$$

Two MKL approaches :

- Uniform MKL (UNIMKL) : $\mu_j = 1/m$, for $j = 1, \dots, m$.
- ALIGNF [Cortes et al., 2012] : search the weights that maximize the centered alignment between $K_x = \sum_j \mu_j K_j$ and K_y .

Input kernels : probability product kernel [Heinonen et al., 2012]

- A mass spectrum is defined as a set of peaks : $x = \{x(\ell)\}_{\ell=1}^{n_x}$.
- Each peak is modelled as a 2D normal distribution centered around the observed position : p_{x(ℓ)} ~ N(x(ℓ), Σ).
- The covariance is shared with all peaks : $\Sigma = \begin{bmatrix} \sigma_m^2 & 0 \\ 0 & \sigma_i^2 \end{bmatrix}$.

Input kernel : probability product kernel

• A spectrum is represented as a mixture of its peak distributions :

$$p_{\mathsf{x}} = rac{1}{n_{\mathsf{x}}}\sum_{\ell=1}^{n_{\mathsf{x}}}p_{\mathsf{x}(\ell)}.$$

• Probability product kernel [Jebara et al., 2004] between the peaks of two spectra x and x':

$$k(x, x') = \int_{\mathbb{R}^2} p_x(\mathbf{z}) p_{x'}(\mathbf{z}) d\mathbf{z}$$
$$= \frac{1}{n_x n_{x'}} \frac{1}{4\pi \sigma_m \sigma_i} \sum_{\ell, \ell'=1}^{n_x, n_{x'}} \exp\left(-\frac{1}{4} \left(x(\ell) - x'(\ell')\right)^T \Sigma^{-1} \left(x(\ell) - x'(\ell')\right)\right)$$

Input kernels : fragmentation trees

- Model of the fragmentation process in a tree shape :
 - Nodes \approx peaks \approx molecular formula of fragments
 - Edges \approx losses
- Fragmentation trees can be predicted from spectra
- We use 23 different kernels based on these trees
 - Edge-based kernels
 - Node-based kernels
 - Path-based kernels
 - Alignment-based kernels

Output kernels : molecular fingerprints

- Molecular fingerprint : encodes the structure of a molecule using a bit (or count) vector.
- Each entry indicates the existence or the frequency of a certain molecular property :
 - atom or bond type,
 - substructure (e.g. aromatic ring).

Fingerprint kernels :

linear, polynomial and gaussian kernels over fingerprint vectors

Output kernels

We also considered different graph kernels :

- Path kernel
- Shortest-path kernel
- Graphlet kernel

But we obtained better performances with fingerprint kernels. In the next part, we will therefore show the results obtained with IOKR for fingerprint kernels.

Protocol

- 4138 tandem mass spectra from the GNPS spectral library.
- 10-fold cross-validation (data with the same structure are contained in the same fold).
- **Pre-image step** : search among PubChem structures having the same molecular formula as the target compound.
- Evaluation :
 - For each test example : evaluate the rank of the true molecular structure among the candidates.
 - **②** Compute the percentage of structures that have been ranked lower than k for $1 \leq k \leq 20$.

Kernel performances

Comparison with the state of the art : CSI-FingerID [Shen et al. (2014), Dührkop et al. (2015)]

Comparison with CSI :FingerID

Scoring function for comparing the candidate fingerprints with the predicted fingerprint :

- Unit :
 - counts the number of common molecular properties.
- Modified Platt :
 - combines maximum likelihood and Platt scores (posterior probability estimates of the fingerprint) for defining the scoring function.

Comparison with CSI :FingerID

Method	MKL	Top 1	Top 10	Top 20
CSI :FingerID unit	ALIGNF	24.82	60.47	68.2
CSI :FingerID mod Platt	ALIGNF	28.84	66.07	73.07
IOKR linear	ALIGNF	28.54	65.77	73.19
	UNIMKL	30.02	66.05	73.66
IOKR Gaussian	ALIGNF	29.78	67.84	74.79
	UNIMKL	30.66	67.94	75.00

Comparison with CSI :FingerID : running times

- 4138 training compounds (GNPS) / 625 test compounds (MassBank)
- Fix the values of the parameters
- The computation of the fragmentation trees, input kernels and fingerprints was not taken into account.

	Training time	Test time
CSI :FingerID	82 h 28 min 23 s	1 h 11 min 31 s
IOKR linear	42 s	1 min 15 s
IOKR polynomial	38 s	21 min 58 s
IOKR Gaussian	41 s	33 min 15 s

- IOKR is ≈7000 times faster to train that CSI :FingerID because CSI :FingerID needs to train 2765 SVMs (one for each molecular property).
- **IOKR linear** : avoid kernel computations in the pre-image step by computing explicitly the output feature vectors.

CASMI challenge 2016 Schymanski et al., 2017

CASMI (Critical Assessment of Small Molecule Identification) : contest on the identification of small molecules from mass spectrometry data.

Three categories :

- manual methods
- @ automatic methods
- 3 automatic methods using metadata

IOKR performed best in category 2 with 78 molecules identified among 208 challenges (37.5%).

Conclusions and perspectives

- Introduction of a new setting for solving structured prediction problems
- Application on two different problems : link prediction and metabolite identification
- Extensions of IOKR for metabolite identification have been developed

Perspectives :

- Learning better output representations :
 - taking into account dependencies between molecular properties using a probabilistic graphical model
 - · learning the output kernel
 - combination of multiple output kernels

Thank you for your attention