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Introduction
We are interested in the resolution of general Markov decision pro-
cesses (MDP) with factored state and action spaces, called FA-FMDP
[4]. We are in particular interested in reward functions which con-
strain the system to be in an admissible domain, defined by several
conditions, the longest time as possible.

There are few algorithms able to resolve FA-FMDPs with both
a reasonable complexity and a reasonable quality of approximation.
Some recent algorithms described in [9], can be used with affine al-
gebraic decision diagrams (AADDs), which are more suited to mul-
tiplicative rewards than algebraic decision diagrams (ADDs). The
drawback of these algorithms is that they are designed for binary
state and action variables, and do not scale to variables with more
than two modalities. Most of the other existing methods for solving
MDPs with large state and action spaces make the assumption of an
additive reward, like approximate linear programming [3] or mean
field approaches [10]. As an alternative, we propose to consider mul-
tiplicative rewards as an interesting way of modelling objectives de-
fined as admissible domains, and because this trick, as we will see,
allows to find methods of approximate policy evaluation.

Recently, several decision problems have been resolved with
methods of inference in graphical models, an idea which has been
recently called planning as inference [2]. We may cite for exam-
ple [11] which proposes an EM algorithm for solving (non factored)
MDPs or [6] which proposes a belief propagation algorithm for solv-
ing influence diagrams. Our idea is to follow this trend and propose
an (approximate) policy iteration type algorithm [8] for solving FA-
FMDPs with multiplicative rewards. This algorithm iterates over two
steps : an evaluation step and an optimization step. In this commu-
nication, we focus on the approximate evaluation step of stochastic
policies for FA-FMDPs with multiplicative rewards. The method we
propose is based on the computation of normalization constants of
factor graphs with increasing sizes by existing variational or belief
propagation methods which are applicable on large size graphs.

1 Preliminaries
We consider a FA-FMDP [4] with multiplicative rewards as a MDP
< S,A, P,R, γ > where :

• S is the factored state space : S =
∏n
i=1 Si, with each Si a
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2 We will note with capital letters the random variables and with lower case
letters their realizations.

finite set ; the state of the system at time t is noted2 : St =
(St1, ..., S

t
n) ∈ S

• A is the factored action space : A =
∏m
j=1Aj , with each Aj a

finite set ; the action at time t is noted At = (At1, ..., A
t
m) ∈ A

• P is the global transition function : P (st+1|st, at) =∏n
i=1 Pi(s

t+1
i |paP (s

t+1
i )) where paP (s

t+1
i ) ⊂ {stj , j =

1...n, st+1
k , k = 1...n, atl , l = 1...m} (we authorize synchronous

arcs)
• R is the global reward function : R(st, at) =∏k

α=1Rα
(
stα, a

t
α

)
=

∏k
α=1Rα

(
paR(R

t
α)
)

where
paR(R

t
α) ⊂ {sti, i = 1...n, atj , j = 1...m} ; R(st, at) is

supposed to be in R+ and bounded by Rmax

• γ ∈]0; 1[ is the discount factor.

A (stochastic) factored policy is defined by : δ(at|st) =∏m
j=1 δj(a

t
j |paδ(atj)) where paδ(atj) ⊂ {sti, i = 1...n, atj , j =

1...m}. It represents the probability of choosing At = at when
the system is in state st. We limit our study to problems where
the directed graph generated by the paP (.) and paδ(.) functions is
acyclic over state and action variables in time steps t and t + 1. In
this case, for a given factored policy δ and a given factored dis-
tribution on initial states P 0(s0) =

∏n
i=1 Pi(s

0
i |paP (s0i )) (with

paP (s
0
i ) = ∅ ∀i = 1...n), the probability distribution over the

finite horizon trajectories (s, a)0:t =< s0, a0, ..., st, at > may be
represented as a DBN :

Pδ((s, a)0:t|P 0) =

t∏
t′=0

(
n∏
i=1

Pi(s
t′
i |paP (st

′
i ))

m∏
j=1

δj(a
t′
j |paδ(at

′
j ))

)

The objective of this paper is to provide a way to compute the value
of a given factored policy δ for a given factored distribution on initial
states. In a FA-FMDP this value is defined as :

Vδ(P
0) = E

[
+∞∑
t=0

γtR(st, at)

∣∣∣∣∣P 0, δ

]

2 A method for the evaluation of stochastic policies
based on the computation of normalization
constants

Let us use the linearity of the expectation in order to express the value
of δ for P 0 in another way :



Vδ(P
0) =

+∞∑
t=0

γtE[R(st, at)|P 0, δ] since γt → 0

=

+∞∑
t=0

γt
∑
s0...st

∑
a0...at

Pδ((s, a)0:t|P 0)R(st, at)

=

+∞∑
t=0

γt
∑
s0...st

∑
a0...at

Pδ((s, a)0:t|P 0)

k∏
α=1

Rα
(
paR(R

t
α)
)

We thus have Vδ(P 0) =
∑+∞
t=0 γ

tC(t) where C(t) is the nor-
malization constant of a factor graph [5] as the one represented
in Figure 1, whose variable nodes, represented by circles, are the
s0i ...s

t
i, i = 1...n and a0j ...a

t
j , j = 1...m and the factor nodes,

represented by squares, are the Pi, i = 1...n (repeated in each
’time slice’), δj , j = 1...m (repeated in each ’time slice’) and
Rα, α = 1...k (only in the last ’time slice’). Any technique allow-
ing the computation of normalization constants of factor graphs may
then be used successively to compute Vδ(P 0). We may cite for ex-
ample the junction tree algorithm [1] which is exact (and applicable
only to problems with a reasonable treewidth), loopy belief propaga-
tion [5] or generalized belief propagation [13], tree-reweighted belief
propagation [12] which gives an upper bound, mean field [7] which
gives a lower bound... We propose to deal with the infinite horizon by
using a cut-off time t∗ managed with a parameter ε corresponding to

the following condition : γ
t∗+1

1−γ Rmax ≤ ε, guaranteeing an absolute
error less than ε in the policy evaluation, in the (utopian) case where
we can compute C(t) exactly. The evaluation of the policy is thus
obtained by the computation of t∗ normalization constants.

Figure 1. Example of factor graph representing
Pδ((s, a)0:t|P 0)

∏k
α=1 Rα

(
paR(R

t
α)
)

for a given FA-FMDP with two
state and action variables and two reward features (n = m = k = 2)

In the case of additive rewards : R(st, at) =∑k
α=1Rα

(
paR(R

t
α)
)
, we can also rewrite the value of δ for

P 0 as a sum of normalization constants :

Vδ(P
0) =

+∞∑
t=0

γt
∑
s0...st

∑
a0...at

Pδ((s, a)0:t|P 0)

k∑
α=1

Rα
(
paR(R

t
α)
)

=

+∞∑
t=0

γt
k∑

α=1

∑
s0...st

∑
a0...at

Pδ((s, a)0:t|P 0)Rα
(
paR(R

t
α)
)

We thus have Vδ(P 0) =
∑+∞
t=0 γ

t∑k
α=1 Cα(t) where Cα(t) is the

normalization constant of a factor graph which is slightly different
from the one of figure 1, with only the reward feature α in the last
time slice. With the same stopping time t∗ as before, the evaluation
is obtained by the computation of kt∗ normalization constants.

Results of experiments on simulations will be given during the
workshop, for small size problems in comparison with the MDP
value (computed by matrix calculus), and for large size problems in
comparison with an evaluation by Monte-Carlo simulations.

Conclusion
We have proposed an original way of evaluating a stochastic factored
policy in the general case of FA-FMDPs, based on the computation of
normalization constants of factor graphs with increasing sizes. The
first results are encouraging. We are now thinking to an optimization
procedure, in order to develop a policy iteration algorithm. The pol-
icy iteration algorithm iterates phases of policy evaluation and phases
of greedy optimisation of the current policy δ :

∀s ∈ S, δ′(s) = argmax
a

{
R(s, a) + γ

∑
s′

P (s′|s, a)Vδ(s′)

}
In our case where policies are stochastic, this greedy optimisation
problem is a continuous optimisation problem (the parameters of the
local functions δj , j = 1...m should be optimised). The difficulty of
this optimisation problem depends on whether the function to max-
imise has some convexity property, which still has to be determined.
In all cases, local optimisation methods (gradient-based approaches,
for example), may allow to strictly improve the value of the current
policy, which is generally sufficient for an approximate policy itera-
tion algorithm to compute ”satisfying” approximately optimal poli-
cies.
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