Outline

- Introduction
- Exact algorithms
 - Search
 - Dynamic Programming
- Approximate Algorithms
 - Upper bounds: Incomplete Search (greedy, local)
 - Lower bounds: EPT, Relaxation
 - Unbounded approx: Iterative Message Passing

Outline

- Introduction
- Exact algorithms
 - Search
 - Dynamic Programming
- Approximate Algorithms
 - Upper bounds: Incomplete Search (greedy, local)
 - Lower bounds: EPT, Relaxation
 - Unbounded approx: Iterative Message Passing

Lower Bounds

- Equivalence Preserving Transformations (EPT):
 - Modifications of the problem while preserving the query.
 - We only consider moving costs among factors (the constraint graph is not changed)

Relaxations:

- Modifications of the problem w/o preserving the query, which makes the problem easier to solve.
- We only consider removing factors (the constraint graph is changed reducing cyclicity)

Lower Bounds

- Equivalence Preserving Transformations (EPT):
 - Modifications of the problem while preserving the query.
 - We only consider moving costs among factors (the constraint graph is not changed)

Relaxations:

- Modifications of the problem w/o preserving the query, which makes the problem easier to solve.
- We only consider removing factors (the constraint graph is changed reducing cyclicity)

Operations on factors: division (\bigcirc)

• Inverse of combination: (a \otimes b) \otimes b = a

• In our running example: (5 - 2) + 5 = 5

Over factors:

It must remain in the
valuation structure

X ₁	X ₂	f(x ₁ , x ₂)
0	0	4
0	1	3
1	0	5
1	1	10

(x ₁)
3
4

$$F(X) = f(x_1, x_2) = (f(x_1, x_2) - g(x_1)) + g(x_1)$$

- Project:
 - Moves costs from higher to smaller arity functions

Both definitions are equivalent $F(X) = g(x_1) + f(x_1, x_2) + h(x_2)$ $= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + h(x_2)$ Reparameterization $g'(x_1)$ $f'(x_1, x_2)$ Message

- Extend:
 - Moves costs from smaller to higher arity functions

- Project:
 - Moves costs from higher to smaller arity functions

$$F(X) = g(x_1) + f(x_1, x_2) + h(x_2)$$

$$= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + h(x_2)$$

$$= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + (h(x_2) - A) + A$$

- Extend:
 - Moves costs from smaller to higher arity functions

- Project:
 - Moves costs from higher to smaller arity functions

$$F(X) = g(x_1) + f(x_1, x_2) + h(x_2)$$

$$= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + h(x_2)$$

$$= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + (h(x_2) - A) + A$$

- Extend:
 - Moves costs from smaller to higher arity functions

$$F(X) = g(x_1) + f(x_1, x_2) + h(x_2)$$

$$= (g(x_1) - \delta(x_1)) + (f(x_1, x_2) + \delta(x_1)) + h(x_2)$$

- Project:
 - Moves costs from higher to smaller arity functions

$$F(X) = g(x_1) + f(x_1, x_2) + h(x_2)$$

$$= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + h(x_2)$$

$$= (g(x_1) + \lambda(x_1)) + (f(x_1, x_2) - \lambda(x_1)) + (h(x_2) - A) + A$$

- Extend: = Projecting the inverse
 - Moves costs from smaller to higher arity functions

$$F(X) = g(x_1) + f(x_1, x_2) + h(x_2)$$

$$= (g(x_1) + (-\delta(x_1))) + (f(x_1, x_2) - (-\delta(x_1))) + h(x_2)$$

"Generalized" EPT

- Given a function f:
 - Compute a function λ s.t.:
 - $var(\lambda) \subseteq var(f)$
 - f $\bigotimes \lambda$ remains in the valuation structure
 - Update the network by:
 - (f ⊗ λ) ⊗ λ
- The resulting network is equivalent.

EPT's Algorithms

- Goal: maximize f_ø
- Chaotic application of EPTs:
 - 1. It may not end.
 - 2. The ending point may be different.
- Planned application of EPTs:
 - Over the naturals: finding a sequence of EPTs that maximizes f_{\emptyset} is NP-complete.
 - Over the rationals: finding a set of EPTs that maximize f_{\emptyset} is polinomial time.

EPT: Optimal Soft Arc Consistency

EPT: Other Algorithms

- Idea:
 - To restrict the application of EPTs s.t. its termination is guaranteed.
- Over the naturals:
 - Local Consistencies: NC*, AC*, DAC*, FDAC*, EDAC*.
- Over the rationals:
 - Virtual Arc Consistency / Augmenting DAG.
 - Min-Sum Diffusion.

Branch and Bound + EPT Algorithms

```
f_{\varnothing} is the LB
function Solve(F, ub)
    if Constant(F) then return min{F,ub};
    if (LB(F) \ge ub) return ub;
                                              Trade-off between quality
    x:= SelectVar(F);
                                              of f_{\varnothing} and time complexity
    ub:=Solve(EPT_Algorithm(F(x')), ub);
    return Solve(EPT Algorithm(F(x)), ub);
endfunction
```

Initial call: Solve(F, UB(F))

Cost $O(2^n)$

Lower Bounds

- Equivalence Preserving Transformations (EPT):
 - Modifications of the problem while preserving the query.
 - We only consider moving costs among factors (the constraint graph is not changed)

Relaxations:

- Modifications of the problem w/o preserving the query, which makes the problem easier to solve.
- We only consider removing factors (the constraint graph is changed reducing cyclicity)

Relaxations

Duplicating a variable + removing equality constraint

2. Removing a function

Mini-Bucket Elimination

Mini-Bucket Elimination

```
function LB(F, z)
    if Constant(F) then return F
                                                         - Is that partition unique?
    x := SelectVar(F);
                                                         - How to partition a bucket?
    return Solve(MiniElim(F, x, z));
endfunction
function MiniElim(F, x, z)
   B := factors with x in their scope;
   {Q_1,...,Q_p} := Partition(B, z);
F' := replace B by {\min_x \sum f}_{j=1}^p in F;
   return F';
                                    f \in Q_j
                                             Cost MiniElim x: O(2^{z+1})
endfunction
                                             Cost: O(2^{z+1})
```

Mini-Bucket Elimination

The partition is not unique:

- The choice is made heuristically:
 - scope-based or content-based heuristics.

Mini-Bucket Elimination + EPT

There are different strategies:

based on a preestablished order based on min-sum diffusion

Branch and Bound + MBE

```
function Solve(F, ub, z)
                                           z controls the strenght of LB
    if Constant(F) then return min{F,ub};
    if (MBE(F, z) \ge ub) return ub;
                                           MBE does not maintain
                                           equivalence of the original
    x := SelectVar(F);
                                           problem
    ub := Solve(F(x'), ub);
    return Solve(F(x), ub);
endfunction
```

Initial call: Solve(F, UB(F), z)

Cost $O(2^n)$

Branch and Bound + MBE

```
function Solve(F, ub, z)
                                          z controls the strenght of LB
    if Constant(F) then return min{F,ub};
    if (MBE(F, z) \ge ub) return ub;
                                          MBE does not maintain
                                          equivalence of the original
   x := SelectVar(F);
                                          problem
    ub := Solve(EPT Algorithm(F(x')), ub);
    return Solve(EPT Algorithm(F(x)), ub);
endfunction
```

Initial call: Solve(F, UB(F), z)

Cost $O(2^n)$

Relaxations

Duplicating a variable + removing equality constraint

2. Removing a function

EPT + removing a function

x ₁	x ₂	f(x ₁ , x ₂)
0	0	4
0	1	3
1	0	5
1	1	10

	x ₁	λ(x ₁)		X ₂	δ(x ₂)
-	0	а	_	0	С
	1	b		1	d

X ₁	x ₂	า(x ₁ , x ₂)
0	0	е	
0	1	j	
1	0	k	
1	1	m	

Move costs

minimize e + j + k + m

subject to:

$$4 - a - c = e$$

$$3 - a - d = j$$

$$5 - b - c = k$$

$$10 - b - d = m$$

EPT + removing a function

X ₁	x ₂	f(x ₁ , x ₂)
0	0	4
0	1	3
1	0	5
1	1	10

	x ₁	λ(x ₁)		x ₂	δ(x ₂)
-	0	а	-	0	С
	1	b		1	d

	X ₁	x ₂	h(x ₁ , x ₂)
	0	0	е
=	0	1	j
	1	0	k
	1	1	m

x ₁	X ₂	f(x ₁ , x ₂)
0	0	4
0	1	3
1	0	5
1	1	10

	x ₁	λ(x ₁)		X ₂	δ(x ₂)
=	0	а	+	0	С
	1	b		1	d

_				_
ı	X ₁	X ₂	h(x ₁ , x ₂)	
	0	0	e = 0	
+	0	1	j = 0	
	1	0	k = 0	
	1	1	m = 0	

Error

VE + (EPT + removing a function)

... but if the value of the control parameter is exceeded then:

Outline

- Introduction
- Exact algorithms
 - Search
 - Dynamic Programming
- Approximate Algorithms
 - Upper bounds: Incomplete Search (greedy, local)
 - Lower bounds: EPT, Relaxation
 - Unbounded approx: Iterative Message Passing

Incomplete Search: Greedy

If we consider the whole search space:

Greedy Search only traverses **ONE** path.

Incomplete Search: Greedy

```
function UB(F, h)
                                          It's the best local choice
    if Constant(F) then return F;
    x:= SelectVar(F);
    if h(F(x')) \ge h(F(x)) then return UB(F(x'),h);
    return UB(F(x),h);
                                          There is no backtracking
endfunction
```

Cost O(n)

Incomplete Search: Local

Choose one neighbour

Decide if it is replaced or not

Neighbourhood relation

Incomplete Search: Local

```
function UB(F)
   X := random assignment;
   while (Finalise?(X)) do
      L := Neighbour(X);
      X' := Choose(L); <
      if Move?(X, X') then X := X';
   endwhile
endfunction
```

- or greedy local search
- X is good enough
- A computation budget T is exhausted
- Mutate X in some way
- Best according to F
- At random
- Only if best according to F
- If best and if worse with some probability

Cost O(T)

Local Search + Branch and Bound

```
function Solve(F, ub)
   if Constant(F) then return min{F,ub};
   if (LB(F) \ge ub) return ub;
   x:= SelectVar(F);
   ub:=Solve(F(x'), ub);
   return Solve(F(x), ub);
endfunction
```

Initial call: Solve(F, UB(F))

Cost $O(2^n)$

Outline

- Introduction
- Exact algorithms
 - Search
 - Dynamic Programming
- Approximate Algorithms
 - Upper bounds: Incomplete Search (greedy, local)
 - Lower bounds: EPT, Relaxation
 - Unbounded approx: Iterative Message Passing

Iterative Cluster Message Passing

Iterative Cluster Message Passing

- Termination condition:
 - msg remain unchanged from previous iterations (converge).
 - a maximum number of iterations has been reached.
- Convergence over arbitrarily graphs:
 - Not guaranteed on standard message-passing algorithms.
- Upon convergence, what is its accuracy?
- It's an active line of research in the Machine Learning community.