Outline

 Introduction
* Exact algorithms

— Search
— Dynamic Programming
* Approximate Algorithms
— Upper bounds: Incomplete Search (greedy, local)

— Lower bounds: EPT, Relaxation
— Unbounded approx: Iterative Message Passing

Outline

* |ntroduction
e Exact algorithms

— Search
— Dynamic Programming
* Approximate Algorithms
— Upper bounds: Incomplete Search (greedy, local)

— Lower bounds: EPT, Relaxation
— Unbounded approx: Iterative Message Passing

Lower Bounds

e Equivalence Preserving Transformations (EPT):
— Modifications of the problem while preserving the
query.
— We only consider moving costs among factors (the
constraint graph is not changed)

e Relaxations:

— Modifications of the problem w/o preserving the
query, which makes the problem easier to solve.

— We only consider removing factors (the constraint
graph is changed reducing cyclicity)

Lower Bounds

e Equivalence Preserving Transformations (EPT):
— Modifications of the problem while preserving the
query.
— We only consider moving costs among factors (the
constraint graph is not changed)

Operations on factors: division (Q)

* Inverse of combination: (a © b) ® b=a

* |[n our running example: (5 -2) + 5=5

It must remain in the

° Over faCtorS: valuation structure

|
ENEN ENENIT
0 0 4 0 0 4-3
0 1 3 - 0 3 = 0 1 3-3
1 0 5 1 4 1 0 5-4
1 1 10 1 1 10-4

F(X) = f(xy, X;) = (f(xy, X;) = 8(x;)) + g(x,)

EPTs

* Project:
— Moves costs from higher to smaller arity functions
Both definitions F(X) = 8(X1) + f(XP Xz) + h(Xz)

are equivalent
Update / - (Ebal e Rbgll oy o) Akl + M)
Reparameterization W

g'(xl) f’(xl’ XZ) Message
 Extend:

— Moves costs from smaller to higher arity functions

EPTs

* Project:
— Moves costs from higher to smaller arity functions
F(X) = g(x,) + f(xy, X;) + h(x,) rower @
= (8(x1) + Alxq)) + (f(xq, x3) = A(xy)) + h(x,) fy

= (g(xq) + Alx)) + (f(xq, x5) = A(x)) + (h(x,) — A) + A
e Extend:

— Moves costs from smaller to higher arity functions

EPTs

* Project:
— Moves costs from higher to smaller arity functions
F(X) = g(x;) + f(xy, X,) + h(x,)
= (8(xy) + Alxy)) + (f(xq, x;) = Alx;)) + h(xy)

= (g(xq) + Alx)) + (f(xq, x5) = A(x)) + (h(x,) — A) + A
e Extend:

— Moves costs from smaller to higher arity functions
F(X) = g(x,) + f(xy, X;) + h(x,)

= (8(xq) = 6(xy)) + (f(x, X;) + 6 (x1)) + h(x;)

EPTs

* Project:
— Moves costs from higher to smaller arity functions
F(X) = g(x,) + f(xy, X;) + h(x,)

= (8(xq) + Alxq)) + (f(xq, x;) = A(x1)) + h(x,)
= (8(xq) + Axy)) + (f(x, %) = Alxy)) + (h(x;) — A) + A
 Extend: = Projecting the inverse

— Moves costs from smaller to higher arity functions
F(X) = g(x,) + f(xy, X;) + h(x,)

= (8(xq) + (= 6(xy))) + (f(xq, X;) = (= 6(x,))) + h(x,)

“Generalized” EPT

e Given a function f:

— Compute a function A s.t.:

e var(A) € var(f)

 f © A remains in the valuation structure
— Update the network by:

* (FON)XDA

* The resulting network is equivalent.

EPT’s Algorithms

e Goal: maximize fQ,

* Chaotic application of EPTs:
1. It may not end.

2. The ending point may be different.

* Planned application of EPTs:

— QOver the naturals: finding a sequence of EPTs that
maximizes f;is NP-complete.

— Over the rationals: finding a set of EPTs that maximize f is
polinomial time.

EPT: Optimal Soft Arc Consistency

Tm

max fy + () + y()

subject to:

v()

8(x1) + Alx;) = B() 8'(xy)
+

f(x1; Xz) -)\(Xl) - 6()(2) f"(x1, X;)
+

h(xy) +8(x;) —v() hx)
+

fy + B0+ v() fg’

g(0)+a—-e=0

) +Ab) B0 20 < T
—~ h(xy) +6(x,)—y() 20
B f(xq, X5) - A(xq) - 6(x,) 20

EPT: Other Algorithms

* |dea:

— To restrict the application of EPTs s.t. its termination is
guaranteed.

e Over the naturals:
— Local Consistencies: NC*, AC*, DAC*, FDAC*, EDAC*.

e Qver the rationals:

— Virtual Arc Consistency / Augmenting DAG.
— Min-Sum Diffusion.

Branch and Bound + EPT Algorithms

function Solve(F, ub) fois the LB
if Constant(F) then return min{F,ub};
if (LB(F)= ub) return ub;

Trade-off between quality
x:= SelectVa r(F), of fand time complexity
ub:=Solve(EPT Algorithm(F(x”)),ub);
return Solve(EPT Algorithm(F(x)),ub);

endfunction

Lower Bounds

e Relaxations:

— Modifications of the problem w/o preserving the
query, which makes the problem easier to solve.

— We only consider removing factors (the constraint
graph is changed reducing cyclicity)

Relaxations

@) G

1. Duplicating a variable + 2. Removing a function
removing equality constraint

VE

MBE(z = 2)

Mini-Bucket Elimination

Select a var ! Combine . Marginalize | Output

Mini-Bucket Elimination

function LB(F, 2)

if Constant(F) then return F

x := SelectVar(F);

return Solve(MiniElim(F, x, z));
endfunction

- Is that partition unique?
- How to partition a bucket?

function MiniElim(F, x, z)
B := factors with x in-their scope;
{Qy,...,Q,} := Partition(B, z);
F' :=replace B by {minx Ef}’;=1 in F;
return F’; fE0;
endfunction

Mini-Bucket Elimination

* The partition is not unique:

* The choice is made heuristically:
— scope-based or content-based heuristics.

Mini-Bucket Elimination + EPT

Select a var . Relax + Combine | Marginalize

Move costs
(generalized EPT)

, , based on a preestablished order
There are different strategies:

based on min-sum diffusion

Branch and Bound + MIBE

function Solve(F, ub, 2) z controls the strenght of LB
if Constant(F) thenreturn min{F,ub};
if (MBE(F, z) 2 ub) return ub; MBE does not maintain
x := SelectVar(F); ngﬁnce e onene
ub := Solve(F(x’), ub);
return Solve(F(x), ub);

endfunction

Branch and Bound + MIBE

function Solve(F, ub, 2) z controls the strenght of LB
if Constant(F) thenreturn min{F,ub};
if (MBE(F, z) 2 ub) return ub; MBE does not maintain
x := SelectVar(F); Ewg:ﬁnce e onene
ub := Solve(EPT Algorithm(F(x”)), ub);
return Solve(EPT Algorithm(F(x)), ub);

endfunction

Relaxations

. Duplicating a variable + 2. Removing a function

removing equality constraint

EPT + removing a function

x| % | e,)
0O O 4

0
1
1

1
0
1

A(x;) 8(x,) minimizee +j+ k+ m
subject to:
3—a—-d=j
Move costs 5—b—c=k

10—-b—-d=m

EPT + removing a function

a5 L1y x) o L5, | i)

= O O

o« HIEH BEN o o -

1 3 - 0 a - 0 C = 0 1 J

0 5 1 b 1 d 1 0 k

1 10 1 1 m
Error
A

0 4 BEE o o .-
1 3 = 0 a + O C + 0 1 J =0
0 5 1 b 1 d 1 0 k =0
1 10 1 1 m=0

VE + (EPT + removing a function)

Fully eliminate x1 ...

Outline

* |ntroduction
e Exact algorithms

— Search
— Dynamic Programming
* Approximate Algorithms
— Upper bounds: Incomplete Search (greedy, local)

— Lower bounds: EPT, Relaxation
— Unbounded approx: Iterative Message Passing

Incomplete Search: Greedy

If we consider the whole search space:

"

Greedy choice according
to an heuristic h

o

Greedy Search only traverses ONE path.

Incomplete Search: Greedy

function UB(F, h)
if Constant(F) then return F;
x:= SelectVar(F);
if h(F(x’)) =2 h(F(x)) then return UB(F(x’),h);
return UB(F(x),h); lhciezlelbackiaiin:

It’s the best local choice

endfunction

Incomplete Search: Local

Choose one neighbour Decide if it is replaced or not

A 0
YN
O0—0——0

)
O—0O
(}

O—0—0—0—"0

O
®

Neighbourhood relation

Incomplete Search: Local

function UB(F) - or greedy local search
X := random assighment; X is good enough
. . . - A computation budget T is
while (Flnallse?(X)) do exhausted
L .= Nelghbour(X) - Mutate X in some way
e /
| . - Best according to F
X’ := Choose(L); !
if Move?(X, X’) then X := X’;

: - Only if best according to F
endwhile - If best and if worse with

some probability

endfunction

Local Search + Branch and Bound

function Solve(F, ub)
if Constant(F) then return min{fub};
if (LB(F)= ub) return ub;
x:= SelectVar(F);
ub:=Solve(F(x’),ub);
return Solve(F(x),ub);
endfunction

UB)

Outline

* |ntroduction
e Exact algorithms

— Search
— Dynamic Programming
* Approximate Algorithms
— Upper bounds: Incomplete Search (greedy, local)

— Lower bounds: EPT, Relaxation
— Unbounded approx: Iterative Message Passing

Iterative Cluster Message Passing
@‘@
@v@

Increasing complexity

(%] (%] (%]
s s e
© © ©
> > >
< < i
= = =
2 = =
(%] (%] (%]
s s o
() () (]
-+ -+ +
(%] (%] (%]
= = =
@) @) ©)

Iterative Cluster Message Passing

Termination condition:

— msg remain unchanged from previous iterations
(converge).

— a maximum number of iterations has been reached.

Convergence over arbitrarily graphs:
— Not guaranteed on standard message-passing algorithms.

Upon convergence, what is its accuracy?

It’s an active line of research in the Machine Learning
community.

