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BDeu local scores and BN structure learning

log P(G|D) = Zz,-(G) = Z zi(Pa;(G))

Let W be a candidate parent set for i:
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Bounding local scores: why do we care?

» If W D W and z(W) > z;(W’) then W’ cannot be a parent
set for i in an optimal BN.

» If YW W D W we have z(W) > z;(W’), then all these
subsets can be pruned from a search for an optimal parent set.

1. Wcw

2. a/qi(W') <0.8349

3. z(W) > —q) (W) logr;
then neither W' nor any superset of W' can be an optimal parent
set for i. de Campos and Ji [1]
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Column generation for integer linear programming

approaches to BN learning

> In ILP approaches to BN structure learning we can represent
choosing parent set W for child i by setting a binary variable
(W — i) to 1.

» Unless the number of possible parent sets is artificially
restricted there will be too many variables to represent
explicitly.

» This motivates a column generation (= variable generation)
approach where variables with negative reduced cost are
created.

» A bound on the local score (the ‘unreduced’ cost) provides a
bound on negative reduced cost.
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The beta function of r variables

Define the beta function of r variables:
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Alzer's (upper) bound

Let ¢ > 0 be a real number and let r > 2 be an integer. Then we

have for all real numbers xx > c (k=1,...,r):
r X71/2+Xk
B(Xl,...,Xr) < ﬁr(c) =Lk

- Xk)*1/2+22:1 Xk

with the best possible constant §,(c) = r

re=1/2 (r—1)/2 (Fgfcg _

» Apply to B (nU1 + ﬁa---”ijri + ﬁ)
6]

» with ¢ =
t ¢ qiri
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Plugging in Alzer's bound

After much algebraic manipulation . ..

zi(W)
< alogr+qM[(r —1)log(r/qir;) — log(r)]/2
(N + 0)Hs (i W)

gth

+— Zlog (nu ) Zlog<

)

where
» Hz(i|W) is conditional entropy (‘fit to data’)
> If W' S W then Hp(i|W) > Hy(i| W)
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Plugging in Alzer's bound

After much algebraic manipulation . ..

zi(W)
< alogr+qM[(r —1)log(r/qir;) — log(r)]/2
(N + 0)Hs (i W)
q+)

)

+— Zlog (nu ) Zlog<

where
» Hz(i|W) is conditional entropy (‘fit to data’)
> If W D W then Hg(i|W) > Hy(i|W')
> D is the posterior distribution in the saturated model when
starting from a Dirichlet prior determined by a.
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Rewarding determinism

The last term:
Z log (nu + > Z log <’7Uk + >

» Note that n; >0

» Each njj > 0 exacts a penalty

» Each njj = 0 (typically) bestows a reward
» ‘Best’ situation is njj = njjs for some k' ...

» ...this is when (according to the data) parents determine the
child’s value
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Scores and bounds. 100 datapoints. a =1
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Scores and bounds. 10000 datapoints. oo = 1

-1500

-2000 -

-2500 -

-3000 -

-3500 -

-4000 -

-4500 -

-5000 PR A R R P S rres

-5500 I I I I I I
0 100 200 300 400 500 600 700

James Cussens, University of York An upper bound for BDeu scores



0.01

a
n
4
<
(@)
o
T
4+
()
e
(@]
o
i
%)
e
e
=
o
o)
e
c
(¢v]
()]
()
—
O
O
V)]

110

140

120

100

80

60

40

20

An upper bound for BDeu scores

James Cussens, University of York



Scores and bounds. 100 datapoints. «
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Scores and bounds. 100 datapoints. o = 100
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A looser bound for pruning

This is not in the paper ...

z(W) < alogr;
—(N + a)Hp(i|W)
1 o
=4 =
+7q(+) |og I qiri
152
Suppose W c W c W
If
1 a
HEV.VA 1 ( ) + qiri
alogri — (N + a)Hp(i|W) + Eq log 7@4 < zi(W)
qiri

then W can not be an optimal parent set for J.



Comparison with de Campos and Ji

1 a
— 1 P =

z(W) > alogr; — (N + a)Hy(il W) + 5 log (1+qa> (1)
qiri

zi(W) > —q) log r; (2)

» Prune if either (1) or (2) applies.
> (1) motivates a bidirectional search.
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