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What the reconstructed networks are expected to be 1 (1)
Regulatory networks

E. coli regulatory network

I relationships between
gene and their products

I inhibition/activation

I impossible to recover at
large scale

I always incomplete

Figure 1: Regulatory network of E. Coli displayed with colors for each MixNet class (5 groups).
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1and are presumably wrongly assumed to be
3



What the reconstructed networks are expected to be (2)
Regulatory networks

Figure: Regulatory network identified in mammalian cells: highly structured
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What the reconstructed networks are expected to be (3)
Protein-Protein interaction networks

Figure: Yeast PPI network : do not be mislead by the representation, trust stat !
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Why caring about network inference?

Unraveling significant interactions at large scale is impossible “manually”.

Exploratory research

Assist the biologist by

I pointing important molecules/pathways in a organism,

I giving further insight about the regulatory mechanisms,

I elucidation of gene/protein functions,

 It helps at formulating a hypothesis for further wet lab experiment.
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Unraveling significant interactions at large scale is impossible “manually”.

Exploratory research

Assist the biologist by

I pointing important molecules/pathways in a organism,

I giving further insight about the regulatory mechanisms,

I elucidation of gene/protein functions,

 It helps at formulating a hypothesis for further wet lab experiment.

May plausibly

help to understand the mechanisms of complex diseases or treatments.

Does not (and I do not think it will in close future)

reconstruct a trustful regulatory network at large scale.
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How is this measured?
Microarray technology: parallel measurement of many biological features

Focus e.g. on transcription, looking toward gene regulatory networks

DNA RNA
TF

genes
transcription

regulates
regulates

signal processing

X =

x 1
1 x 2

1 x 3
1 . . . xp

1
...
x 1
n x 2

n x 2
1 . . . xp

n


Matrix of features n � p

Expression levels of p

probes are simultaneously

monitored for n individuals

pretreatment
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How is this measured?
Next Generation Sequencing: parallel measurement of even many more biological features

Focus e.g. on transcription, looking toward gene regulatory networks

DNA RNA
TF

genes
transcription

regulates
regulates

assembling

X =

k11 k21 k31 . . . kp1
...
k1n k2n k21 . . . kpn


Matrix of features n≪ p

Expression counts are extracted

from small repeated sequences

and monitored for n individuals

pretreatment
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Summary of the problem at hand

Inference

≈ 10s/1000s assays

≈ 1000/100,000s features

g1

g2

g3

g4 g5

g6

g7

g8

g9

g10

g11

g12

g13

1. Nodes (genes) are fixed

I restricted to a set of interest
(e.g., TF/target or via DA)

Q: what if we missed some

relevant actors?

2. Edges (regulations) are inferred

I based upon statistical
concepts

Q: biological relevance?

Main statistical challenges

1. Ultra high dimensionality (n≪ p),

2. Heterogeneity of the data (noise, many techniques/signals/scales).

 Omic data is hopefully structured in many ways.
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Gaussian Graphical Model: canonical settings

Microarrays in comparable Gaussian conditions

Profiles of a set P = {1, . . . , p} of genes is described by X ∈ Rp such as

1. X ∼ N (µ,Σ), with Θ = Σ−1 the precision matrix.

2. a sample (X 1, . . . ,X n) of chips stacked in an n × p data matrix X.

Conditional independence structure

(i , j ) /∈ E ⇔ Xi ⊥⊥ Xj |X\{i ,j} ⇔ Θij = 0.

Graphical interpretation

G = (P, E)

X1

X2

X4

X3 X5

X6

X7

Θ
X1

X1

X2

X2

X3

X3

X4

X4

X5

X5

X6

X6

X7

X7

 “Covariance” selection

The data

Stacking (X 1, . . . ,X n), we met the usual individual/variable table X

stacked in X =

x 1
1 x 2

1 x 3
1 . . . xp

1
...
x 1
n x 2

n x 2
1 . . . xp

n
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Gaussian Graphical Model and Linear Regression

Linear regression viewpoint

Gene expression Xi is linearly explained by the other genes’:

Xi |X\i = −
∑
j 6=i

Θij

Θii
Xj + εi , εi ∼ N (0, σi), εi ⊥ X

Conditional on its neighborhood, other profiles do not give additional
insights

Xi |X\i =
∑

j∈neighbors(i)

βjXj + εi with βj = −Θij

Θii
.

 “Neighborhood” selection
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Gaussian Graphical Model and Linear Regression

Linear regression viewpoint

Gene expression Xi is linearly explained by the other genes’:

Xi |X\i = −
∑
j 6=i

Θij

Θii
Xj + εi , εi ∼ N (0, σi), εi ⊥ X

Conditional on its neighborhood, other profiles do not give additional
insights

Xi |X\i =
∑

j∈neighbors(i)

βjXj + εi with βj = −Θij

Θii
.

Graphical Interpretation

Local Markov property Global Markov property
conditioning on the neighborhood conditioning on a separating node

X1

X2

X4

X3 X5

X6

X7

X1

X2

X4

X3 X5

X6

X7

 “Neighborhood” selection
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Gold standard penalized approaches
Use `1 for both regularizing and promoting sparsity

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008)

Θ̂λ = arg max
Θ∈S+

`(Θ; X)− λ‖Θ‖1

+ symmetric, positive-definite

− solved by the “Graphical-Lasso” (O(p3), Friedman et al, 2007).

Neighborhood Selection (Meinshausen & Bülhman, 2006)

β̂
(i)

= arg min
β∈Rp−1

1

n

∥∥Xi −X\i β
∥∥2
2

+ λ ‖β‖1

CLIME – Pseudo-likelihood (Cai et al., 2011; Yuan, 2010)

Θ̂ = arg min
Θ

‖Θ‖1 subjected to
∥∥n−1XtXΘ− I

∥∥
∞ ≤ λ
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∥∥Xi −X\i β
∥∥2
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− not symmetric, not positive-definite
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Θ̂ = arg min
Θ

‖Θ‖1 subjected to
∥∥n−1XtXΘ− I

∥∥
∞ ≤ λ

− not positive-definite

+ p linear programs easily distributed (O(p2d) for d neighbors).
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Gold standard penalized approaches
Use `1 for both regularizing and promoting sparsity

Penalized likelihood (Banerjee et al., Yuan and Lin, 2008)

Θ̂λ = arg max
Θ∈S+

`(Θ; X)− λ‖Θ‖1

Neighborhood Selection (Meinshausen & Bülhman, 2006)

β̂
(i)

= arg min
β∈Rp−1

1

n

∥∥Xi −X\i β
∥∥2
2

+ λ ‖β‖1

CLIME – Pseudo-likelihood (Cai et al., 2011; Yuan, 2010)

Θ̂ = arg min
Θ

‖Θ‖1 subjected to
∥∥n−1XtXΘ− I

∥∥
∞ ≤ λ

Variants and recent improvements

’13 NIPS submissions

I Use square-root Lasso in place of Lasso for tuning insensitive
property package

I Solve CLIME for p = 106 (on 400 cores).

See R package huge, fastclime, flare, QUIC.
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Practical implications of theoretical results

Selection consistency (Ravikumar, Wainwright, 2009-2012)

Denote d = maxj∈P(degreej). Consistency for an appropriate λ and

I n ≈ O(d2 log(p)) for the graphical Lasso and Clime.

I n ≈ O(d log(p)) for neighborhood selection (sharp).

(Irrepresentability) conditions are not strictly comparable. . .

Ultra high-dimension phenomenon (Verzelen, 2011)

Minimax risk for sparse regression with d -sparse models: useless when

d log(p/d)

n
≥ 1/2, (e.g.,n = 50, p = 200, d ≥ 8).

Good news! when n is small, we don’t need to solve huge problems
because they can’t but fail.
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Model selection

Cross-validation

Optimal in terms of prediction, not in terms of selection

Information based criteria

Since, df(β̂lasso
λ ) =

∥∥∥β̂lasso
λ

∥∥∥
0

(Zou, Hastie, 2008)

I Straightforward application of BIC/AIC

I Adaptation for the sparse high dimensionalproblem (eBIC, AICc,. . . ),

I GGMSelect (Girault et al, ’12) selects among a family of candidates.

Stability selection (Meinshausen and Bühlman, 2010, Bach 2008)

Keep edges frequently selected on an range of λ after sub-samplings

+ Selecting “the” right λ is not a problem anymore

+ Works well for network inference (see Haury et al. 2012).
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Limitations towards biological network inference

I Sparse GGM

+ very solid statistical and computational framework
+ extend to non strictly normal distribution (NGS)

I DREAM 5 benchmark, 2012.

+ competitive to other inference methods
− performances remain questionable on real data, as for other methods

Idea: try to take into account biological/data features

Three tentatives follow to strengthen the inference by handling with

1. structure of the network (organization of biological mechanisms)

2. sample heterogeneity (patient heterogeneity)

3. horizontal integration (use multiple data and platforms)

 Illustration on cancer data sets.
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Handling with the data structure and scarcity
By introducing some prior

Priors should be biologically grounded

1. no too many genes effectively interact: sparsity,

2. networks are organized: latent clustering.

A1 A2

A3

B1

B2

B3

B4

B5

C1

C2
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Structured regularization

SIMoNe: Statistical Inference for MOdular NEtworks

arg max
Θ,Z

`(Θ; X)− λ ‖PZ ?Θ‖`1 ,

where PZ is a matrix of weights depending on a underlying latent
structure Z (depicted through a stochastic block model).

 Cluster-driven inference via an EM-like strategy.

Ambroise, Chiquet, Matias. Inferring sparse GGM with latent structure, EJS, 2009.

Charbonnier, Chiquet, Ambroise. Weighted-Lasso for Structured Network Inference from

Time Course Data, SAGMB, 2010.

Chiquet et al., SIMoNe R-package (needs updates. . . ), Note Bioinformatics, 2009.
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Structured regularization
“Bayesian” interpretation of `1 regularization

Laplacian prior on Θ depends on the clustering Z

P(Θ|Z) ∝
∏
i ,j

exp
{
−λ ·PZ

ij · |Θij |
}
.

PZ summarizes prior information on the position of edges

-1.0 -0.5 0.0 0.5 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Θij

P
ro

b
ab

il
it

é
a

p
ri

or
i

d
e

Θ
ij
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How to come up with a latent clustering?

Biological expertise

I Build Z from prior biological information
I transcription factors vs. regulatees,
I number of potential binding sites,
I KEGG pathways, . . .

I Build the weight matrix from Z.

Inference: Erdös-Rényi Mixture for Networks
(Daudin et al., 2008; Latouche et al., 2011)

I Equivalent to the Stochastic Bloc Model (SBM);

I Spread the nodes into Q classes;

I Connexion probabilities depend upon node classes:

P(i ↔ j |i ∈ class q , j ∈ class `) = πq`.

I Build PZ ∝ 1− πq`. 20



Learning scheme

SIMoNESuppose you want to recover a clustered network:

Target Adjacency Matrix

Graph

Target Network

21



Learning scheme

SIMoNEStart with microarray data

Data
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Learning scheme

SIMoNE

Data
Adjacency Matrix

corresponding to G?

Inference without prior
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Learning scheme

SIMoNE

Data
Adjacency Matrix

corresponding to G?

Inference without prior

πZ

Connectivity matrix

Mixer

Penalty matrix PZ

Decreasing transformation

Adjacency Matrix
corresponding to G?Z

+

Inference with clustered prior

21



Illustration on breast Cancer
Prediction of the outcome of preoperative chemotherapy

Hess et al.

Journal. of Clinical

Oncology, 2006.

Data set

133 patients classified as

1. pathologic complete
response,

2. residual disease,

according to a signature of
26 genes (small network).

Choice fixed to 30 edges

AMFR

BB_S4
BECNI

BTG3

CA12

CTNND2

E2F3

ERBB4

FGFRIOP

FLJ10916

FLJI2650

GAMT

GFRAI

IGFBP4

JMJD2B

KIA1467

MAPT

MBTP_SI

MELK

METRN

PDGFRA

RAMPI

RRM2

SCUBE2
THRAP2

ZNF552

Figure: Pooling the data, Neighborhood Selection
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Journal. of Clinical
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Data set

133 patients classified as
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response,
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Figure: Pooling the data, SIMoNE with clustering 22
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Handling the scarcity of data

Merge several experimental conditions

condition 1 condition 2 condition 3

Multiple inference of GGM

arg max
Θ(c),c=1...,C

C∑
c=1

`(Θ(c); S(c))− λ pen`1(Θ(c)).

24



Handling the scarcity of data

Inferring each graph independently does not help

condition 1 condition 2 condition 3

(X
(1)
1 , . . . ,X

(1)
n1 ) (X

(2)
1 , . . . ,X

(2)
n2 ) (X

(3)
1 , . . . ,X

(3)
n3 )

inference inference inference

Multiple inference of GGM

arg max
Θ(c),c=1...,C

C∑
c=1

`(Θ(c); S(c))− λ pen`1(Θ(c)).
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Handling the scarcity of data

By pooling all the available data (like we just have with Hess’ data set)

condition 1 condition 2 condition 3

(X1, . . . ,Xn ), n = n1 + n2 + n3.

inference

Multiple inference of GGM

arg max
Θ(c),c=1...,C

C∑
c=1

`(Θ(c); S(c))− λ pen`1(Θ(c)).
24
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A multitask approach
Chiquet, Grandvalet, Ambroise, Statistics and Computing 2010/11

Break the separability

Joint the optimization problem by either modifying

arg max
Θ(c),c=1...,C

C∑
c=1

˜̀(Θ(c); S̃(c))− λ pen`1(Θ(c)).

1. the fitting term

2. the regularization term

25



A multitask approach
Chiquet, Grandvalet, Ambroise, Statistics and Computing 2010/11

Break the separability

Joint the optimization problem by either modifying

arg max
Θ(c),c=1...,C

C∑
c=1

˜̀(Θ(c); S̃(c))− λ pen`1(Θ(c)).

1. the fitting term

2. the regularization term

Intertwined-Lasso

I S = 1
n

∑T
t=1 ntS

(t) is the “pooled-tasks” covariance matrix.

I S̃(t) = αS(t) + (1− α)S is a mixture between specific and pooled
covariance matrices.

25



A multitask approach
Chiquet, Grandvalet, Ambroise, Statistics and Computing 2010/11

Break the separability

Joint the optimization problem by either modifying

arg max
Θ(c),c=1...,C

C∑
c=1

˜̀(Θ(c); S̃(c))− λ pen`1(Θ(c)).

1. the fitting term

2. the regularization term

Sparsity with grouping effect

I Group-Lasso (Yuan and Lin 2006, Grandvalet and Canu, 1998),

I Cooperative-Lasso (Chiquet et al, AoAS, 2012),

25



Grouping effects induced

Potential groups Group(s) induced by edges (1, 2)
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Grouping effects induced

Recent works

I Use Fused-Lasso, sparse group-Lasso
I Adapted several time to the Graphical Lasso framework

I See, e.g. D. Witten’s team works.
I The multitask/neighborhood selection’s approach remains competitive.

I Promising manuscript (Mohan et al. arXiv, 2013)
I Networks differences are only due to perturbations at the node level.
I For instance, a hub is encouraged to be shared across tasks.
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Revisiting the Hess et al. data set

AMFR

BBS4

BECNI

BTG3

CA12

CTNND2

E2F3

ERBB4

FGFRIOP

FLJ10916

FLJI2650

GAMT

GFRAI

IGFBP4

JMJD2B

KIA1467

MAPT

MBTPSI

MELK

METRN

PDGFRA

RAMPI

RRM2

SCUBE2

THRAP2

ZNF552

Figure: Cooperative-Lasso applied on the two sets of patients (PCR/noPCR).
Bold edges are different in the finally selection graph.
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Application: ER status in Breast cancer

Dataset: 466 patients with breast cancer

provided by Guedj et al.,
A refined molecular taxonomy of breast cancer, Oncogene, 2011.

Objective: identify changes in regulatory mechanisms

I ER+/ER−: breast cancer growth stimulated by estrogen hormones,

I ER+ tackled with anti-hormonal therapies,

I ER− found clinically more aggressive.

Jeanmougin, Charbonnier, Guedj and Chiquet, Network inference in breast cancer with
Gaussian graphical models and extensions.

Probabilistic graphical models for genetics, Oxford University Press, to appear.
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Application: ER status in Breast cancer
Network inference with cooperative-Lasso on 200 candidate genes (partial view)

Figure: The dashed black edges are inferred only under the ER- condition and the
solid black edges are only predicted under the ER+ condition. Gray are common to
both conditions
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Application: ER status in Breast cancer
Network inference with the cooperative-Lasso fits known anti-apoptotic mechanisms

ERBB4 

ERBB3 

IGF1R  EGFR 

ESR1 

BCL2 

Apoptosis 

Extracellular space 

Plasma membrane 

Cytoplasm 

Nucleus 

Growth Hormone IGF‐1 

ac?va?on 

repression 

Kinase 

Ligand‐dependent nuclear receptor 

Transmembrane receptor 

Other 

MAPT 

B binding 

CDK6 

B

ER+ specific regula?on 

ER‐ specific regula?on 

Figure: Most edges are supported by the literature (except two)
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Outline

Introduction

Statistical framework: sparse GGM

GGM with latent structure

Inferring Multiple Graphical Structures

Multiattribute GGM
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Why Multi-attribute Networks?
Joint work with E. Kolaczyk (Boston) and C. Ambroise (Évry)

DNA RNA Proteins

TF

Enz.

genes
transcription translation

replication

may bind

regulates

regulates

Data integration

I Omic technologies can profile cells at different levels: DNA, RNA,
protein, chromosomal, and functional.

I multiple molecular profiles combined on the same set of biological
samples can be synergistic.

Remark: a close independent work of Kolar and Xing appeared late
2012. . .
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Multiattribute GGM

Consider e.g. some p genes of interest and the K = 2 omic experiments

1. Xi1 is the expression profile of gene i (transcriptomic data),

2. Xi2 is the corresponding protein concentration (proteomic data).

Define a block-wise precision matrix

I X = (X1, . . . ,Xp)T ∼ N (0,Σ) in RpK ,

I Xi = (Xi1, . . . ,XiK )ᵀ ∈ RK .

Θ = Σ−1 =

Θ11 Θ1p

. . .

Θp1 Θpp

 , Θij ∈MK ,K , ∀(i , j ) ∈ P2.

Graphical Interpretation

Define G = (P, E) as the multivariate analogue of the conditional graph:

(i , j ) ∈ E ⇔ Θij 6= 0KK .
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Multiattribute GGM as Multivariate regression

Multivariate analysis view point

Straightforward algebra and we have

Xi |X\i = x ∼ N (−Θ−1ii Θi\ix ,Θ
−1
ii ) .

or equivalently, letting BT
i = −Θ−1ii Θi\i ,

Xi |X\i = BT
i X\i + εi εi ∼ N (0,Θ−1ii ), εi ⊥ X .

Remembering the univariate case?

Xi |X\i = −
∑

j∈neighbors(i)

Θij

Θii
Xj + εi , εi ∼ N (0,Σii), εi ⊥ X .
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So once the data set as been carefully reshaped...

The Data

X =

x1

...

xN

 =
[
X1 . . . Xp

]
=

x1
1 . . . x1

p
...

xN
1 . . . xN

p


=

x
1
11 x 1

1K . . . x 1
p1 . . . x 1

pK
...

... . . .

xN
11 xN

1K . . . xN
1K . . . xN

pK

 ,
I xn , is a pK -size row vector containing the data related to the nth

individual.

I Xi ∈MN ,K is N ×K bloc matrix containing the data related to
the ith gene.
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Multivariate Neighborhood selection

The penalized multivariate regression approach

For each node /gene, recover its neighborhood by solving

arg min
Bi∈M(p−1)K ,K

1

2N

∥∥Xi −X\iBi

∥∥2
F

+ λΩ(Bi),

Choice of Penalty

Group-based penalty to activate the set of attributes simultaneously on a
given link:

Ω(Bi) =
∑
j∈P\i

‖Bij ‖ , Bij ∈MKK

I ‖M ‖ = ‖M ‖F =
(∑

i ,j M
2
ij

)1/2
, the Frobenius norm,

I ‖M ‖ = ‖M ‖∞ = maxi ,j |Mij |, the sup norm (shared magnitude),

I ‖M ‖ = ‖M ‖? =
∑

eig(M ), the nuclear norm (rank penalty).
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Simulation Study Design

Small study, set up as follows.

1. Simulation of an Erdös-Renyi graph;

2. Expand the adjacency matrix to multivariate space

A = (A + I )⊗ IK×K ;

3. Compute Θ a positive definite approximation of A by replacing null
and negative eigenvalues by a small constant

4. Θ = Θ + γI with γ a parameter controlling the difficulty of the
problem;

5. Draw an i.i.d. sample X of X ∼ N (0,Σ) .

38



Simulation Results
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Settings

I K=2 attributes

I p = 20 (small networks),

I 20 edges on average,

I vary n from p/2 to 2p,

I AUC averaged over 50 runs.

Aggregation improves upon single-attribute methods for learning networks
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Simulation Results
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I K=4 attributes

I p = 20 (small networks),

I 20 edges on average,

I vary n from p/2 to 2p,

I AUC averaged over 50 runs.

Aggregation improves upon single-attribute methods for learning networks
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Illustration on the NCI-60 data set
Molecular profile data on a panel of 60 diverse human cancer cell lines

1. Protein: reverse-phase lysate arrays (RPLA) for 92 antibodies;
2. Gene : Human Genome U95 affymetrix (∼ 9,000 genes).

 consensus set with 91 protein and corresponding gene profiles.

0.0

0.1

0.2

0.3

0 100 200 300 400 500
edges

ja
cc

ar
d

couple

gene / (gene+protein)

gene / protein

protein / (gene+protein)

Jaccard’s similarity index

J (A,B) =
|A ∩ B |
|A ∪ B |

 multiattribute network shares
a high Jaccard index with both
uni attribute networks.
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Illustration: Three Types of Regulatory Networks

 gene+protein (multi attri.) gene protein

multi attribute attribute 1 attribute 2
gene + protein gene protein
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Illustration: Three Types of Regulatory Networks

 gene+protein (multi attri.) gene & protein gene | protein

multi attribute attribute 1 & 2 attribute 1 | 2
gene + protein gene AND protein gene OR protein
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Conclusion

Sparse Gaussian Graphical Model

Well established framework with a vast, growing literature

1. Nice modeling tool (conditional dependencies),

2. Good theoretical framework (which I have not much talked about),

3. Powerful algorithms (screening, first-order, homotopy)
I that scale the dimension (large p large n)
I that allow resampling/parallelization (for robustness)

 Great tool for covariance estimation/selection in a reasonably high
dimensional settings.

Still. . .

I phenomena are quite complex: a biological interaction is not even
well defined

I more data is coming. . .

 Need for methods with data integration and to solve couple problems
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Perspectives/Ongoing work
Joint network inference to the estimation of a related biological feature

Enhance network reconstruction by simultaneously identifying TF

Knowledge of TF is crucial to achieve good network reconstruction

Haury et al., BMC Bioinformatics, 2012.

 With S. Robin, we are working on TF elucidation at large scale from
transcriptomic data through penalized multivariate regression.

Couple differential analysis (DA) to network inference

Introducing network knowledge is of great benefit for DA

F. Rapaport et al., BMC Bioinfo, 2007 / L. Jacob et al.,Ann. Appl. Stat., 2012.

 With P. Gutierrez and G. Rigaill we proposed fused-ANOVA, a
penalized model for differential analysis
 A unifying convex method is planed to be part of Trung Ha’s PhD
Thesis (with Guillem and M-L Martin-Magnette).
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Thanks

To you for your patience and for listening. . .
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