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Inference in machine learning

• 20 years ago: does an image contain a person? 
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• 10 years ago:  which object is in the image? 
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• Today’s challenge:  exponentially many options 

• For each pixel: decide if it is foreground or background. 	


• The space of possible structures is exponential	
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• Complex structures dominate machine learning applications: 	

- Computer vision	
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- Natural language processing	
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- Computational biology	
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- and more..

Probabilistic Vs. Rule-Based 

• Rule based grammars do not generalize well 
across domains and languages:  
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• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	
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• Nicely behaved distribution 
that is centered around the 
(1,…,1) or (0,…,0)

Gibbs distribution
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• Sampling from the Gibbs 
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Sampling likely structures

• Recall: sampling from the Gibbs 
distribution is easy in Ising 
models (Jerrum 93)

✓i(yi) = 0✓i(yi) = log q(yi|xi)

• Data terms (signals) that are important in 
AI applications significantly change the 
complexity of sampling
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• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry 

05), mini-buckets (Dechter 97)
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Kolmogorov 06, Komodakis 07, Werner 07, Sontag 08, Hazan 10, 
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- CKY for parsing
- Many others… 



The challenge

Sampling from the likely high dimensional structures 
(with millions of variables, e.g., image segmentation 
with 12 million pixels) as efficient as optimizing
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• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring 

structures	
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• Related work: 	

- McFadden 74 (Discrete choice theory) 	

- Talagrand 94 (Canonical processes)
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• For every structure y, the perturbation value        is a 
random variable (y is an index, traditional notation is     ).	


�(y)
�y

• Perturb-max models: how stable is the maximal structure 
to random changes in the potential function.
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•Theorem	

Let         be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y)  t] = exp(� exp(�t))

then the perturb-max model is the Gibbs distribution

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]
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y = (y1, ..., yn)



Perturb-max models

• Representing the Gibbs distribution using perturb-max 
models may require exponential number of perturbations 

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Probabilistic Vs. Rule-Based 

• Rule based grammars do not generalize well 
across domains and languages:  
 



Perturb-max models

• Representing the Gibbs distribution using perturb-max 
models may require exponential number of perturbations 

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Use low dimension perturbations (Papandreou & Yuille 11, 
Tarlow et al. 12, Hazan & Jaakkola 12)

P� [y = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}]
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• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	


• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	


• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	
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- Sampling likely structures as fast as finding the most likely one.	
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- interactive learning using new entropy bounds	
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- loss minimization and PAC-Bayesian bounds	
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• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	

- Used in Gibbs sampling, Belief propagation etc.  	


!

• What is the modeling power of perturb-max models ? 	


• Can they model dependencies beyond graph neighborhoods?

Dependencies
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Long range dependencies

• With Gibbs distribution the arm movements are 
independent of the legs given the body. 

• Perturb-max can model these long range dependencies 
(e.g., legs / arms dependencies). 

• Graphical model whose 
vertices are the joints.
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P [y1, y3|y2] 6= P [y1|y2]P [y3|y2]



Perturb-max models

• max-value flows in perturb-max models incorporate long-
range interactions when using independent perturbations

P [y1, y2, y3] = P� [y = argmax

ŷ
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Perturb-max models

• Proof idea: although fixing       decomposes the max, 
information about the max-value flows.

y2

• High                    will allow more values of           �1,2(y1, y2) �2,3(y2, y3)

max

ŷ1
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max
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• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	


• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	


• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	
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ŷ

�X

↵
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Log-likelihood learning

• Examples	

- Learning segmentation potentials 	
 yi 2 {�1, 1}

✓i(yi; �i) = �iyi

✓i,j(yi, yj ; �i,j) =

(
�i,j if yi = yj
��i,j otherwise

• General notation: 

✓↵(y↵; �↵) = �↵�↵(y↵)
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• When using log-concave perturbations the deviation of 
sampled average from the expectation decays 
exponentially (Orabona, Hazan, Sarwate, Jaakkola 14)
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Interactive learning

• Choose an area with the largest uncertainty reduction	
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Online Learning

• How to choose your route to work? 	


• Choosing your route daily using perturb-max models is 
as good (on average) as choosing the best route [Kalai & 
Vempala 05, Cohen &  Hazan 15]



Loss minimization

• Can we learn from a finite sample set and generalize?	


• Minimizing the average loss using perturb-max models 
generalize well [Hazan et al. 13]



Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	


• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	


• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	




Open problems



Open problems

• Perturb-max models: 



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?
- When do perturb-max models preserve the most likely assignment? 



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?
- When do perturb-max models preserve the most likely assignment? 
- How do the perturbations dimension affect the model properties?  



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?
- When do perturb-max models preserve the most likely assignment? 
- How do the perturbations dimension affect the model properties?  
- In what ways higher dimension perturbations reveal complex 

structures in the model? 



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?
- When do perturb-max models preserve the most likely assignment? 
- How do the perturbations dimension affect the model properties?  
- In what ways higher dimension perturbations reveal complex 

structures in the model? 
- How to apply perturbations in restricted spaces, e.g., super-modular 

potential functions? 



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?
- When do perturb-max models preserve the most likely assignment? 
- How do the perturbations dimension affect the model properties?  
- In what ways higher dimension perturbations reveal complex 

structures in the model? 
- How to apply perturbations in restricted spaces, e.g., super-modular 

potential functions? 
- How to encourage diverse sampling? 



Open problems

• Perturb-max models: 
- When does fixing variables in the max-function amount to statistical 

conditioning?
- When do perturb-max models preserve the most likely assignment? 
- How do the perturbations dimension affect the model properties?  
- In what ways higher dimension perturbations reveal complex 

structures in the model? 
- How to apply perturbations in restricted spaces, e.g., super-modular 

potential functions? 
- How to encourage diverse sampling? 



Thank you


