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Inference in machine learning

* Today’s challenge: exponentially many options

* For each pixel: decide if it is foreground or background.
* The space of possible structures is exponential
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* Complex structures dominate machine learning applications:

- Computer vision

- Natural language processing
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- Computational biology

- and more..



Outline

* Random perturbation - why and how!

- Sampling likely structures as fast as finding the most likely one.



Outline

* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.
* Connections and Alternatives to Gibbs distribution:

- the marginal polytope

- the modeling power of perturb-max models



Outline

* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.

* Connections and Alternatives to Gibbs distribution:
- the marginal polytope
- the modeling power of perturb-max models
* | earning with perturb-max models
- log-likelihood learning
- interactive learning using new entropy bounds
- online learning

- loss minimization and PAC-Bayesian bounds
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* machine learning applications are characterized by:
- complex structures Yy = (Y1, ..., Un)

- potential function that scores these structures

eyla' 7yn Ze yz _|_ Z 9,] yzayj
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Gibbs distribution

P(Y1y s Yn) = %exp (Z%(yi) + Z@,j(yz‘,yj))
) 1,7
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* Many efficient sampling algorithms for special cases:
- Ising models (Jerrum 93)
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- Approximating the permanent (Jerrum 04)

- Many others...
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Gibbs distribution

* Gibbs distribution hasa p(y) x exp (Z 0u(yi) + D 05 (i, yj))
significant impact on statistics 7; »
and computer science
- Efficient sampling in Ising models 0351

(Jerrum 93) sl

- Attractive pairwise potentials
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* Sampling from the Gibbs p(y) o exp 0i(us) + > 6, (i, v
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Sampling likely structures

* Sampling from the Gibbs * Recall: sampling from the Gibbs
distribution is provably hard in distribution is easy in Ising
Al applications (Goldberg 05, models (Jerrum 93)
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* Sampling from the Gibbs * Recall: sampling from the Gibbs
distribution is provably hard in distribution is easy in Ising
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Sampling likely structures

* Sampling from the Gibbs * Recall: sampling from the Gibbs
distribution is provably hard in distribution is easy in Ising
Al applications (Goldberg 05, models (Jerrum 93)
lerrum 93)
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* Instead of sampling, it may be * The most likely structure
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- Graph-cuts = = = °
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* Maximum a-posteriori (MAP) inference.
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Most likely structure

y* = arg max ZH i)+ D 0 (Yir )

Y1,---9Yn
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* Maximum a-posteriori (MAP) inference.

* Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation

- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry
05), mini-buckets (Dechter 97)

- Linear programming relaxations (Schlesinger 76,VWainwright 05,
Kolmogorov 06, Komodakis 07,VWerner 07, Sontag 08, Hazan 10,
Kappes | 3, Savchynskyy | 3, Tarlow | 3)

- CKY for parsing
- Many others...



The challenge

Sampling from the likely high dimensional structures
(with millions of variables, e.g., image segmentation
with |12 million pixels) as efficient as optimizing
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Random perturbations

scores scores -

ﬂ |-||_||-|> 4[] [1 0,

Y structures f structures
*

Y
* Randomly perturbing the system reveals its complexity

- little effect when the maximizing structure is “evident”

- substantial effect when there are alternative high scoring
structures

* Related work:
- McFadden 74 (Discrete choice theory)

- Talagrand 94 (Canonical processes)
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Random perturbations

* For every structure y, the perturbation value y(y)is a
random variable (y is an index, traditional notation is 7y).
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Random perturbations

* For every structure y, the perturbation value y(y)is a
random variable (y is an index, traditional notation is 7y).

* Perturb-max models: how stable is the maximal structure
to random changes in the potential function.

scores # (9 (y* )

I I I structures
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Outline

* Random perturbation - why and how!

- Sampling likely structures as fast as finding the most likely one.

* Connections and Alternatives to Gibbs distribution:
- the marginal polytope
- the modeling power of perturb-max models
* | earning with perturb-max models
- log-likelihood learning
- interactive learning using new entropy bounds
- online learning

- loss minimization and PAC-Bayesian bounds
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* Theorem

Let 7(y) be i.i.d. with Gumbel distribution with zero mean‘

F(t) 2 Ply(y) < t] = exp(— exp(—t))

then the perturb-max model is the Gibbs distribution

1

 exD(0(y)) = Pynumsealy = argmax{6(3) +~(5)}]
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Perturb-max models

* Why Gumbel distribution? F'(t) = exp(— exp(—t))

e Since maximum of Gumbel variables is a Gumbel variable.

Let v(y) be i.i.d Gumbel ( Ply(y) <t] = F(t) ). Then

max{0(y) + v(y)}

(2

has Gumbel distribution whose mean is log Z

* Proof: Py [max{0(y) +v(y)} <] = HFt—

= exp(— Zexp( (t - H(y)))) = F(t —log Z)

Yy



Perturb-max models

* Max stability:

log (Z exp(@(y))) = By Gumbel {myax{e(y) + ”Y(y)}}

(2

* Implications (taking gradients):



Perturb-max models

* Max stability:

log (Z exp(@(y))) = By Gumbel {myax{e(y) + ”Y(y)}}

(2

* Implications (taking gradients):

1

7 exp(0(y)) = Py~Gumbel |y = arg mgax{@(??) + 7(9) }]
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Perturb-max models

* Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P,ly = arg mgx{ﬁ(z)) + ()}

* Use low dimension perturbations (Papandreou & Yuille |1,
Tarlow et al. |2, Hazan & Jaakkola I2)

P ly = arg max{@ ) + Z Vi (Y



Outline

* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.

* Connections and Alternatives to Gibbs distribution:
- the marginal polytope
- the modeling power of perturb-max models
* | earning with perturb-max models
- log-likelihood learning
- interactive learning using new entropy bounds
- online learning

- loss minimization and PAC-Bayesian bounds
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The marginal polytope

minimW
p(y) = P, [y = arg max i Z 0:(yi) + Z 0i,i (yir y;) + Z%(yqz)}}

* Proof idea:

OB, | max, { 2, 0:(0:) + X, 00 (ir v3) + 30, %i(i)}|
1i(yi) = 90, (y:)
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Outline

* Random perturbation - why and how!

- Sampling likely structures as fast as finding the most likely one.

* Connections and Alternatives to Gibbs distribution:
- the marginal polytope
- the modeling power of perturb-max models
* | earning with perturb-max models
- log-likelihood learning
- interactive learning using new entropy bounds
- online learning

- loss minimization and PAC-Bayesian bounds
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* Gibbs distribution is defined by its Markov property:
a variable is independent of the rest given its neighbors

- Used in Gibbs sampling, Belief propagation etc.
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* What is the modeling power of perturb-max models ?

* Can they model dependencies beyond graph neighborhoods?
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Long range dependencies

* Graphical model whose
vertices are the joints.

* With Gibbs distribution the arm movements are
independent of the legs given the body.

* Perturb-max can model these long range dependencies
(e.g., legs / arms dependencies).
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Gibbs distribution

1

p(Y1,Y2,¥Y3) = 7 EXDP (01,2(y1,y2) + 02.3(y2,y3))

* Conditional independence:

p(y1,ysly2) = p(y1|y2)p(ys|y2)

* Probability of intersection = product of probabilities
Y1, Y3|y2)
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Perturb-max models
P[yla Y2, yS] — P’Y [y — arg m@ax{z 92,] (?3@7 g)]) -+ Vi, g (gza g)])}]
1,]

* max-value flows in perturb-max models incorporate long-
range interactions when using independent perturbations

Ply1,y3ly2) # Ply1|y2) Plys|ya)

r Y1, -|y2] -
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* Proof idea: although fixing ¥2 decomposes the max,
information about the max-value flows.

%naéx{ﬁl,g(ﬁl, yz) + ’71,2(221, y2) =+ 92,3(927 @3) T 72,3(927 1&3)} —
1,93
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* Random perturbation - why and how!?

- Sampling likely structures as fast as finding the most likely one.

* Connections and Alternatives to Gibbs distribution:
- the marginal polytope
- the modeling power of perturb-max models
* | earning with perturb-max models
- log-likelihood learning
- interactive learning using new entropy bounds
- online learning

- loss minimization and PAC-Bayesian bounds
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Log-likelihood learning

* Given training data S of observed structures

- e.g., foreground background segmentations Yy € S

FARARE

* | earn the parameters w that maximize the perturb-max
likelihood

p(y;w) = Pyg, {y = argmax (Y ba(fa; %)}}
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Log-likelihood learning

* Examples
- Learning segmentation potentials y; € {—1,1}

97;(%; %‘) — YilYi

Y= 4 Vg Y=Y

e General notation:

Oc(Ya; Ya) = YaPa (Ya)
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Log-likelihood learning

* Learn the parameters w that maximize the perturb-max
likelihood

max Z log p(y; w) strongly concave = generalize well
w

S L : :
ye smooth (vanishing gradient = optimum)

* Key fact: the perturb-max models are convolutions

p(y;w) = Pyeg, {y = argmax { ZQ yav%é)}}
/qw 1y = arg maX{ZH (Y Vo) } dy

smooth non-smooth
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Log-likelihood learning

* Learn the parameters w that maximize the perturb-max
likelihood

max ) logp(y; w)

YyeS

* Gradients match between prior and posterior predictions

0% eslogplysw) =S (B[ | - argmgxzea(ga;%)} —w)

ow
yesS

* When using log-concave perturbations the deviation of
sampled average from the expectation decays
exponentially (Orabona, Hazan, Sarwate, Jaakkola |4)



Outline

* Random perturbation - why and how!

- Sampling likely structures as fast as finding the most likely one.
* Connections and Alternatives to Gibbs distribution:

- the marginal polytope

- the modeling power of perturb-max models
* | earning with perturb-max models

- log-likelihood learning

- interactive learning using new entropy bounds

- online learning

- loss minimization and PAC-Bayesian bounds



learning

Interactive

Jaakkola 14]

’

* Use perturb-max models to sample possible annotations
and estimate user clicks [Maji, Hazan
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Interactive learning

* Choose an area with the largest uncertainty reduction

Ul(pe) = E, Z%(?ﬁ) y* = arg max{0(y) + Z%(Z)z‘)}




Online Learning

* How to choose your route to work!?

* Choosing your route daily using perturb-max models is

as good (on average) as choosing the best route [Kalai &
Vempala 05, Cohen & Hazan 15]



L oss minimization

* Can we learn from a finite sample set and generalize?

* Minimizing the average loss using perturb-max models
generalize well [Hazan et al. 13]
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