
On the likelihood of randomly
perturbed max-solutions

Tamir Hazan	

Technion	

!
!
!
!

Inference in machine learning

• 20 years ago: does an image contain a person?

Inference in machine learning

• 10 years ago: which object is in the image?

Inference in machine learning

• Today’s challenge: exponentially many options

• For each pixel: decide if it is foreground or background. 	

• The space of possible structures is exponential	

Inference in machine learning

• Interactive annotation:

Inference in machine learning

• Interactive annotation:

• Complex structures dominate machine learning applications: 	

Inference in machine learning

• Complex structures dominate machine learning applications: 	

- Computer vision	

!
!

!

Inference in machine learning

• Complex structures dominate machine learning applications: 	

- Computer vision	

!
!

!
- Natural language processing	

!
!

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Inference in machine learning

• Complex structures dominate machine learning applications: 	

- Computer vision	

!
!

!
- Natural language processing	

!
!
!

- Computational biology	

!
!
!

- and more..

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Inference in machine learning

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

• machine learning applications are characterized by: 	

- complex structures 	

 y = (y1, ..., yn)

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	

 y = (y1, ..., yn)

y 2 {0, 1}n

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	

 y = (y1, ..., yn)

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	

- potential function that scores these structures	

y = (y1, ..., yn)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

Inference in machine learning

• machine learning applications are characterized by: 	

- complex structures 	

- potential function that scores these structures	

y = (y1, ..., yn)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

high score low score

Inference in machine learning

Gibbs distribution

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang

• Many efficient sampling algorithms for special cases:

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang

• Many efficient sampling algorithms for special cases:
- Ising models (Jerrum 93)

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang

• Many efficient sampling algorithms for special cases:
- Ising models (Jerrum 93)
- Counting bi-partite matchings in planar graphs (Kasteleyn 61)

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang

• Many efficient sampling algorithms for special cases:
- Ising models (Jerrum 93)
- Counting bi-partite matchings in planar graphs (Kasteleyn 61)
- Approximating the permanent (Jerrum 04)

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• MCMC samplers:
- Gibbs sampling, Metropolis-Hastings, Swendsen-Wang

• Many efficient sampling algorithms for special cases:
- Ising models (Jerrum 93)
- Counting bi-partite matchings in planar graphs (Kasteleyn 61)
- Approximating the permanent (Jerrum 04)
- Many others…

p(y1, ..., yn) =
1

Z
exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Gibbs distribution has a
significant impact on statistics
and computer science 	

Gibbs distribution

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

Gibbs distribution

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

- Attractive pairwise potentials	

!
!
!
!

- No data terms

✓i(yi) = 0

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

Gibbs distribution

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

- Attractive pairwise potentials	

!
!
!
!

- No data terms

✓i(yi) = 0

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Gibbs distribution

• Gibbs distribution has a
significant impact on statistics
and computer science 	

- Efficient sampling in Ising models

(Jerrum 93)	

- Attractive pairwise potentials	

!
!
!
!

- No data terms

✓i(yi) = 0

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Nicely behaved distribution
that is centered around the
(1,…,1) or (0,…,0)

Gibbs distribution

• Sampling likely structures may easily handle ambiguities

structures

Sampling likely structures

probabilities

• Sampling likely structures may easily handle ambiguities

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

structures

Sampling likely structures

probabilities

• Sampling likely structures may easily handle inaccurate modeling

Sampling likely structures

• Sampling likely structures may easily handle inaccurate modeling

structures

probabilities

Sampling likely structures

• Sampling likely structures may easily handle inaccurate modeling

structures

probabilities

Sampling likely structures

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

• RGB color of pixel ixi

✓i(yi) = log q(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Sampling likely structures

• RGB color of pixel ixi

✓i(yi) = log q(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Sampling likely structures

✓i(yi) = log q(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

Sampling likely structures

✓i(yi) = log q(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

• Recall: sampling from the Gibbs
distribution is easy in Ising
models (Jerrum 93)

✓i(yi) = 0✓i(yi) = log q(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

• Recall: sampling from the Gibbs
distribution is easy in Ising
models (Jerrum 93)

✓i(yi) = 0✓i(yi) = log q(yi|xi)

• Sampling from the Gibbs
distribution is provably hard in
AI applications (Goldberg 05,
Jerrum 93)

Sampling likely structures

• Recall: sampling from the Gibbs
distribution is easy in Ising
models (Jerrum 93)

✓i(yi) = 0✓i(yi) = log q(yi|xi)

• Data terms (signals) that are important in
AI applications significantly change the
complexity of sampling

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

Most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

Most likely structure

• The most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

- Graph-cuts

Most likely structure

• The most likely structure

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

- Graph-cuts

Most likely structure

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

• The most likely structure

✓i(yi) = log q(yi|xi)

• Instead of sampling, it may be
significantly faster to find the
most likely structure	

- Graph-cuts

Most likely structure

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

• The most likely structure

✓i(yi) = log q(yi|xi)

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry

05), mini-buckets (Dechter 97)

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry

05), mini-buckets (Dechter 97)
- Linear programming relaxations (Schlesinger 76, Wainwright 05,

Kolmogorov 06, Komodakis 07, Werner 07, Sontag 08, Hazan 10,
Kappes 13, Savchynskyy13, Tarlow 13)

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry

05), mini-buckets (Dechter 97)
- Linear programming relaxations (Schlesinger 76, Wainwright 05,

Kolmogorov 06, Komodakis 07, Werner 07, Sontag 08, Hazan 10,
Kappes 13, Savchynskyy13, Tarlow 13)

- CKY for parsing

Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10),
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry

05), mini-buckets (Dechter 97)
- Linear programming relaxations (Schlesinger 76, Wainwright 05,

Kolmogorov 06, Komodakis 07, Werner 07, Sontag 08, Hazan 10,
Kappes 13, Savchynskyy13, Tarlow 13)

- CKY for parsing
- Many others…

The challenge

Sampling from the likely high dimensional structures
(with millions of variables, e.g., image segmentation
with 12 million pixels) as efficient as optimizing

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

✓(y) =
X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

y = (y1, ..., yn)

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

• Selecting the maximizing structure is appropriate
when one structure (e.g., segmentation / parse)
dominates others

structures

scores

y⇤

Most likely structure

• The maximizing structure is not robust in case of
multiple high scoring alternatives

Most likely structure

• The maximizing structure is not robust in case of
multiple high scoring alternatives

structures

scores

y⇤

Most likely structure

• The maximizing structure is not robust in case of
multiple high scoring alternatives

structures

scores

y⇤

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Most likely structure

• The maximizing structure is not robust in case of
multiple high scoring alternatives

Most likely structure

• The maximizing structure is not robust in case of
multiple high scoring alternatives

structures

scores

y⇤

Most likely structure

• Randomly perturbing the system reveals its complexity

structures

scores

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity

structures

scores

- little effect when the maximizing structure is “evident”

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”

structures

scores

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

• Randomly perturbing the system reveals its complexity	

- little effect when the maximizing structure is “evident”	

- substantial effect when there are alternative high scoring

structures	

!

• Related work: 	

- McFadden 74 (Discrete choice theory) 	

- Talagrand 94 (Canonical processes)

structures

scores

structures

scores

y⇤

y⇤

Random perturbations

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

scores (potential) ✓(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

scores (potential)

perturbed score

✓(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

�(y)

scores (potential)

perturbed score

perturbations �(y)

✓(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

• Notation:

�(y)

scores (potential)

perturbed score

perturbations �(y)

✓(y)

✓(y) + �(y)

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

�(y)

• For every structure y, the perturbation value is a
random variable (y is an index, traditional notation is).	

�(y)
�y

Random perturbations

structures

scores

y⇤

✓(y⇤)

✓(y)

y

�(y)

• For every structure y, the perturbation value is a
random variable (y is an index, traditional notation is).	

�(y)
�y

• Perturb-max models: how stable is the maximal structure
to random changes in the potential function.

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y)  t] = exp(� exp(�t))

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y)  t] = exp(� exp(�t))

f(t) = F 0
(t) = exp(�t)F (t)

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y)  t] = exp(� exp(�t))

Perturb-max models

•Theorem	

Let be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
= P [�(y)  t] = exp(� exp(�t))

then the perturb-max model is the Gibbs distribution

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

Z =

X

y

exp(✓(y))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

•Proof: P� [max

y
{✓(y) + �(y)}  t] =

Y

y

F (t� ✓(y))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)

Perturb-max models

• Why Gumbel distribution? 	

• Since maximum of Gumbel variables is a Gumbel variable.
F (t) = exp(� exp(�t))

= exp(�
X

y

exp(�(t� ✓(y)))) = F (t� logZ)

•Proof: P� [max

y
{✓(y) + �(y)}  t] =

Y

y

F (t� ✓(y))

has Gumbel distribution whose mean is

Let be i.i.d Gumbel (). Then�(y)

logZ

max

y
{✓(y) + �(y)}

P [�(y)  t] = F (t)

Perturb-max models

• Max stability:

• Implications (taking gradients):

log

⇣X

y

exp(✓(y))
⌘
= E�⇠Gumbel

h
max

y
{✓(y) + �(y)}

i

Perturb-max models

• Max stability:

1

Z
exp(✓(y)) = P�⇠Gumbel[y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Implications (taking gradients):

log

⇣X

y

exp(✓(y))
⌘
= E�⇠Gumbel

h
max

y
{✓(y) + �(y)}

i

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Probabilistic Vs. Rule-Based

• Rule based grammars do not generalize well
across domains and languages:

Perturb-max models

• Representing the Gibbs distribution using perturb-max
models may require exponential number of perturbations

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Use low dimension perturbations (Papandreou & Yuille 11,
Tarlow et al. 12, Hazan & Jaakkola 12)

P� [y = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}]

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

The marginal polytope
✓(y1, ..., yn) =

X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

The marginal polytope

y1 y2 y3

✓2(0)

✓2(1)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

✓1(0)

✓1(1)

✓3(0)

✓3(0)

The marginal polytope

y1 y2 y3

✓2(0)

✓2(1)

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

✓1,2(0, 0)✓1,2(0, 1)

✓1,2(1, 0)✓1,2(1, 1)

✓2,3(0, 0)✓2,3(0, 1)

✓2,3(1, 0)✓2,3(1, 1)
✓1(0)

✓1(1)

✓3(0)

✓3(0)

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

M

µ

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

AM

µ

The marginal polytope

y1 y2 y3

✓(y1, ..., yn) =
X

i2V

✓i(yi) +
X

i,j2E

✓i,j(yi, yj)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

AM

µ
9p(y1, y2, y3) s.t. µ1(y1) =

X

y2,y3

p(y1, y2, y3), ...

µ1,2(y1, y2) =
X

y3

p(y1, y2, y3), ...

The marginal polytope

M

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

The marginal polytope

M

p(y) / exp

⇣X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)
⌘

minimal

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

A

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

• Proof idea:

µi(yi) =
@E�

h
maxy

�P
i ✓i(yi) +

P
i,j ✓i,j(yi, yj) +

P
i �i(yi)

 i

@✓i(yi)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

A

The marginal polytope

M

p(y) = P�

h
y = argmax

y

�X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj) +
X

i

�i(yi)
 i

minimal

• Proof idea:

µi(yi) =
@E�

h
maxy

�P
i ✓i(yi) +

P
i,j ✓i,j(yi, yj) +

P
i �i(yi)

 i

@✓i(yi)

µ =

0

@
µ1(0), µ1(1), µ2(0), µ2(1), µ3(0), µ3(1),
µ1,2(0, 0), µ1,2(0, 1), µ1,2(1, 0), µ1,2(1, 1),
µ2,3(0, 0), µ2,3(0, 1), µ2,3(1, 0), µ2,3(1, 1))

1

A

µi,j(yi, yj) =
@E�

h
maxy

�P
i ✓i(yi) +

P
i,j ✓i,j(yi, yj) +

P
i �i(yi)

 i

@✓i,j(yi, yj)

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	

!

Dependencies

• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	

!

Dependencies

• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	

- Used in Gibbs sampling, Belief propagation etc. 	

!

Dependencies

• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	

- Used in Gibbs sampling, Belief propagation etc. 	

!

• What is the modeling power of perturb-max models ? 	

Dependencies

• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	

- Used in Gibbs sampling, Belief propagation etc. 	

!

• What is the modeling power of perturb-max models ? 	

• Can they model dependencies beyond graph neighborhoods?

Dependencies

Long range dependencies

• Graphical model whose
vertices are the joints.

Long range dependencies

• With Gibbs distribution the arm movements are
independent of the legs given the body.

• Graphical model whose
vertices are the joints.

Long range dependencies

• With Gibbs distribution the arm movements are
independent of the legs given the body.

• Perturb-max can model these long range dependencies
(e.g., legs / arms dependencies).

• Graphical model whose
vertices are the joints.

Gibbs distribution

p(y1, y2, y3) =
1

Z
exp

�
✓1,2(y1, y2) + ✓2,3(y2, y3)

�

Gibbs distribution

p(y1, y2, y3) =
1

Z
exp

�
✓1,2(y1, y2) + ✓2,3(y2, y3)

�

• Conditional independence:

p(y1, y3|y2) = p(y1|y2)p(y3|y2)

Gibbs distribution

• Probability of intersection = product of probabilities

p(y1, y2, y3) =
1

Z
exp

�
✓1,2(y1, y2) + ✓2,3(y2, y3)

�

• Conditional independence:

p(y1, y3|y2) = p(y1|y2)p(y3|y2)

Gibbs distribution

=

[y1, y3|y2] [·, y3|y2]

[y1, ·|y2]

• Probability of intersection = product of probabilities

p(y1, y2, y3) =
1

Z
exp

�
✓1,2(y1, y2) + ✓2,3(y2, y3)

�

• Conditional independence:

p(y1, y3|y2) = p(y1|y2)p(y3|y2)

Perturb-max models

P [y1, y2, y3] = P� [y = argmax

ŷ
{
X

i,j

✓i,j(ŷi, ŷj) + �i,j(ŷi, ŷj)}]

Perturb-max models

• max-value flows in perturb-max models incorporate long-
range interactions when using independent perturbations

P [y1, y2, y3] = P� [y = argmax

ŷ
{
X

i,j

✓i,j(ŷi, ŷj) + �i,j(ŷi, ŷj)}]

Perturb-max models

• max-value flows in perturb-max models incorporate long-
range interactions when using independent perturbations

P [y1, y2, y3] = P� [y = argmax

ŷ
{
X

i,j

✓i,j(ŷi, ŷj) + �i,j(ŷi, ŷj)}]

P [y1, y3|y2] 6= P [y1|y2]P [y3|y2]

Perturb-max models

• max-value flows in perturb-max models incorporate long-
range interactions when using independent perturbations

P [y1, y2, y3] = P� [y = argmax

ŷ
{
X

i,j

✓i,j(ŷi, ŷj) + �i,j(ŷi, ŷj)}]

P [y1, y3|y2] 6= P [y1|y2]P [y3|y2]

=

[y1, y3|y2] [·, y3|y2]

[y1, ·|y2]

Perturb-max models

• Proof idea: although fixing decomposes the max,
information about the max-value flows.

y2

Perturb-max models

• Proof idea: although fixing decomposes the max,
information about the max-value flows.

y2

max

ŷ1,ŷ3

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2) + ✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)} =

Perturb-max models

• Proof idea: although fixing decomposes the max,
information about the max-value flows.

y2

max

ŷ1

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2)}+max

ŷ3

{✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)}

max

ŷ1,ŷ3

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2) + ✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)} =

Perturb-max models

• Proof idea: although fixing decomposes the max,
information about the max-value flows.

y2

• High will allow more values of �1,2(y1, y2) �2,3(y2, y3)

max

ŷ1

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2)}+max

ŷ3

{✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)}

max

ŷ1,ŷ3

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2) + ✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)} =

Perturb-max models

• Proof idea: although fixing decomposes the max,
information about the max-value flows.

y2

• High will allow more values of �1,2(y1, y2) �2,3(y2, y3)

max

ŷ1

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2)}+max

ŷ3

{✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)}

max

ŷ1,ŷ3

{✓1,2(ŷ1, y2) + �1,2(ŷ1, y2) + ✓2,3(y2, ŷ3) + �2,3(y2, ŷ3)} =

✓i,j =
h 3 0
0 1

i

�1,2
�2,3

h 0 0
0 0

i h �3 0
0 0

i

high low

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

Log-likelihood learning

• Given training data of observed structures	

S

Log-likelihood learning

• Given training data of observed structures	

- e.g., foreground background segmentations 	

S
y 2 S

Log-likelihood learning

• Given training data of observed structures	

- e.g., foreground background segmentations 	

S
y 2 S

• Learn the parameters that maximize the perturb-max
likelihood 	

w

Log-likelihood learning

• Given training data of observed structures	

- e.g., foreground background segmentations 	

S
y 2 S

• Learn the parameters that maximize the perturb-max
likelihood 	

w

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

Log-likelihood learning

• Examples	

- Learning segmentation potentials 	

 yi 2 {�1, 1}

Log-likelihood learning

• Examples	

- Learning segmentation potentials 	

 yi 2 {�1, 1}

✓i(yi; �i) = �iyi

✓i,j(yi, yj ; �i,j) =

(
�i,j if yi = yj
��i,j otherwise

Log-likelihood learning

• Examples	

- Learning segmentation potentials 	

 yi 2 {�1, 1}

✓i(yi; �i) = �iyi

✓i,j(yi, yj ; �i,j) =

(
�i,j if yi = yj
��i,j otherwise

• General notation:

✓↵(y↵; �↵) = �↵�↵(y↵)

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

log-concave

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

strongly  
log-concave

log-concave

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

strongly  
log-concave

log-concave

strongly concave ⇒ generalize well

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

strongly concave ⇒ generalize well

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

non-smooth

strongly concave ⇒ generalize well

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

smooth non-smooth

strongly concave ⇒ generalize well

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Key fact: the perturb-max models are convolutions

p(y;w) = P�⇠qw

h
y = argmax

ŷ

�X

↵

✓↵(ŷ↵; �↵)
 i

=

Z
qw(�)1

⇥
y = argmax

ŷ
{
X

↵

✓↵(ŷ↵; �↵)}
⇤
d�

smooth non-smooth

strongly concave ⇒ generalize well

smooth (vanishing gradient ⇒ optimum)

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Gradients match between prior and posterior predictions

@
P

y2S log p(y;w)

@w
=

X

y2S

⇣
E
h
�
��� y = argmax

ŷ

X

↵

✓↵(ŷ↵; �↵)
i
� w

⌘

Log-likelihood learning

• Learn the parameters that maximize the perturb-max
likelihood

w

max

w

X

y2S

log p(y;w)

• Gradients match between prior and posterior predictions

@
P

y2S log p(y;w)

@w
=

X

y2S

⇣
E
h
�
��� y = argmax

ŷ

X

↵

✓↵(ŷ↵; �↵)
i
� w

⌘

• When using log-concave perturbations the deviation of
sampled average from the expectation decays
exponentially (Orabona, Hazan, Sarwate, Jaakkola 14)

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

Interactive learning

• Use perturb-max models to sample possible annotations
and estimate user clicks [Maji, Hazan, Jaakkola 14]	

Interactive learning

• Use perturb-max models to sample possible annotations
and estimate user clicks	

Interactive learning

• Use perturb-max models to sample possible annotations
and estimate user clicks	

Interactive learning

• Choose an area with the largest uncertainty reduction	

y⇤ = argmax

ŷ
{✓(ŷ) +

nX

i=1

�i(ŷi)}U(p✓) = E�

h nX

i=1

�i(y
⇤
i)
i

Online Learning

• How to choose your route to work? 	

• Choosing your route daily using perturb-max models is
as good (on average) as choosing the best route [Kalai &
Vempala 05, Cohen & Hazan 15]

Loss minimization

• Can we learn from a finite sample set and generalize?	

• Minimizing the average loss using perturb-max models
generalize well [Hazan et al. 13]

Outline

• Random perturbation - why and how? 	

- Sampling likely structures as fast as finding the most likely one.	

• Connections and Alternatives to Gibbs distribution: 	

- the marginal polytope	

- the modeling power of perturb-max models	

• Learning with perturb-max models	

- log-likelihood learning	

- interactive learning using new entropy bounds	

- online learning	

- loss minimization and PAC-Bayesian bounds	

Open problems

Open problems

• Perturb-max models:

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?
- When do perturb-max models preserve the most likely assignment?

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?
- When do perturb-max models preserve the most likely assignment?
- How do the perturbations dimension affect the model properties?

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?
- When do perturb-max models preserve the most likely assignment?
- How do the perturbations dimension affect the model properties?
- In what ways higher dimension perturbations reveal complex

structures in the model?

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?
- When do perturb-max models preserve the most likely assignment?
- How do the perturbations dimension affect the model properties?
- In what ways higher dimension perturbations reveal complex

structures in the model?
- How to apply perturbations in restricted spaces, e.g., super-modular

potential functions?

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?
- When do perturb-max models preserve the most likely assignment?
- How do the perturbations dimension affect the model properties?
- In what ways higher dimension perturbations reveal complex

structures in the model?
- How to apply perturbations in restricted spaces, e.g., super-modular

potential functions?
- How to encourage diverse sampling?

Open problems

• Perturb-max models:
- When does fixing variables in the max-function amount to statistical

conditioning?
- When do perturb-max models preserve the most likely assignment?
- How do the perturbations dimension affect the model properties?
- In what ways higher dimension perturbations reveal complex

structures in the model?
- How to apply perturbations in restricted spaces, e.g., super-modular

potential functions?
- How to encourage diverse sampling?

Thank you

