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Inference in machine learning

• 20 years ago: does an image contain a person? 
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• 10 years ago:  which object is in the image? 



Inference in machine learning

• Today’s challenge:  exponentially many options 

• For each pixel: decide if it is foreground or background. 	



• The space of possible structures is exponential	
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- and more..

Probabilistic Vs. Rule-Based 

• Rule based grammars do not generalize well 
across domains and languages:  
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• Learning with perturb-max models	


- log-likelihood learning	


- interactive learning using new entropy bounds	


- online learning	


- loss minimization and PAC-Bayesian bounds	
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• Nicely behaved distribution 
that is centered around the 
(1,…,1) or (0,…,0)

Gibbs distribution
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Sampling likely structures

• Recall: sampling from the Gibbs 
distribution is easy in Ising 
models (Jerrum 93)

✓i(yi) = 0✓i(yi) = log q(yi|xi)

• Data terms (signals) that are important in 
AI applications significantly change the 
complexity of sampling



• Instead of sampling, it may be 
significantly faster to find the 
most likely structure	



Most likely structure



• Instead of sampling, it may be 
significantly faster to find the 
most likely structure	



Most likely structure

• The most likely structure



• Instead of sampling, it may be 
significantly faster to find the 
most likely structure	


- Graph-cuts

Most likely structure

• The most likely structure



• Instead of sampling, it may be 
significantly faster to find the 
most likely structure	


- Graph-cuts

Most likely structure

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

• The most likely structure

✓i(yi) = log q(yi|xi)



• Instead of sampling, it may be 
significantly faster to find the 
most likely structure	


- Graph-cuts

Most likely structure

✓i,j(yi, yj) =

(
wi,j if yi = yj
�wi,j otherwise

wi,j � 0

• The most likely structure

✓i(yi) = log q(yi|xi)



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 
- Graph-cuts for image segmentation



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry 

05), mini-buckets (Dechter 97)



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry 

05), mini-buckets (Dechter 97)
- Linear programming relaxations (Schlesinger 76, Wainwright 05, 

Kolmogorov 06, Komodakis 07, Werner 07, Sontag 08, Hazan 10, 
Kappes 13, Savchynskyy13, Tarlow 13)



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 
- Graph-cuts for image segmentation
- branch and cut (Gurobi), local consistency (Larrosa 03, de Givry 

05), mini-buckets (Dechter 97)
- Linear programming relaxations (Schlesinger 76, Wainwright 05, 

Kolmogorov 06, Komodakis 07, Werner 07, Sontag 08, Hazan 10, 
Kappes 13, Savchynskyy13, Tarlow 13)

- CKY for parsing



Most likely structure

y⇤ = arg max

y1,...,yn

X

i

✓i(yi) +
X

i,j

✓i,j(yi, yj)

• Maximum a-posteriori (MAP) inference.

• Many efficient optimization algorithms for special cases:
- Beliefs propagation: trees (Pearl 88), perfect graphs (Jebara 10), 
- Graph-cuts for image segmentation
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Kappes 13, Savchynskyy13, Tarlow 13)
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The challenge

Sampling from the likely high dimensional structures 
(with millions of variables, e.g., image segmentation 
with 12 million pixels) as efficient as optimizing
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• Related work: 	


- McFadden 74 (Discrete choice theory) 	


- Talagrand 94 (Canonical processes)
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• Perturb-max models: how stable is the maximal structure 
to random changes in the potential function.
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•Theorem	


Let         be i.i.d. with Gumbel distribution with zero mean�(y)

F (t)
def
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y = (y1, ..., yn)
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• Representing the Gibbs distribution using perturb-max 
models may require exponential number of perturbations 

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

y = (y1, ..., yn)

Probabilistic Vs. Rule-Based 

• Rule based grammars do not generalize well 
across domains and languages:  
 



Perturb-max models

• Representing the Gibbs distribution using perturb-max 
models may require exponential number of perturbations 

P� [y = argmax

ŷ
{✓(ŷ) + �(ŷ)}]

• Use low dimension perturbations (Papandreou & Yuille 11, 
Tarlow et al. 12, Hazan & Jaakkola 12)
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• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	



• Connections and Alternatives to Gibbs distribution: 	


- the marginal polytope	


- the modeling power of perturb-max models	



• Learning with perturb-max models	


- log-likelihood learning	


- interactive learning using new entropy bounds	


- online learning	


- loss minimization and PAC-Bayesian bounds	
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• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	



• Connections and Alternatives to Gibbs distribution: 	


- the marginal polytope	


- the modeling power of perturb-max models	



• Learning with perturb-max models	


- log-likelihood learning	


- interactive learning using new entropy bounds	


- online learning	


- loss minimization and PAC-Bayesian bounds	
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• Gibbs distribution is defined by its Markov property:  
a variable is independent of the rest given its neighbors 	


- Used in Gibbs sampling, Belief propagation etc.  	
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• What is the modeling power of perturb-max models ? 	



• Can they model dependencies beyond graph neighborhoods?

Dependencies
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• With Gibbs distribution the arm movements are 
independent of the legs given the body. 

• Perturb-max can model these long range dependencies 
(e.g., legs / arms dependencies). 

• Graphical model whose 
vertices are the joints.
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ŷ3
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ŷ3
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ŷ1,ŷ3
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• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	
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• Learning with perturb-max models	


- log-likelihood learning	


- interactive learning using new entropy bounds	


- online learning	
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Log-likelihood learning

• Examples	


- Learning segmentation potentials 	

 yi 2 {�1, 1}

✓i(yi; �i) = �iyi

✓i,j(yi, yj ; �i,j) =

(
�i,j if yi = yj
��i,j otherwise

• General notation: 

✓↵(y↵; �↵) = �↵�↵(y↵)
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• When using log-concave perturbations the deviation of 
sampled average from the expectation decays 
exponentially (Orabona, Hazan, Sarwate, Jaakkola 14)
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• Random perturbation - why and how? 	


- Sampling likely structures as fast as finding the most likely one.	



• Connections and Alternatives to Gibbs distribution: 	


- the marginal polytope	
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Interactive learning

• Choose an area with the largest uncertainty reduction	
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Online Learning

• How to choose your route to work? 	



• Choosing your route daily using perturb-max models is 
as good (on average) as choosing the best route [Kalai & 
Vempala 05, Cohen &  Hazan 15]



Loss minimization

• Can we learn from a finite sample set and generalize?	



• Minimizing the average loss using perturb-max models 
generalize well [Hazan et al. 13]
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Thank you


