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Motivation

Create mechanistic models of cancer to :
@ Understand how gene expression is influenced by genomic events,

o Identify cancer driver genes and their targets.

Need to develop statistical methods that allow to integrate multi-omics
data :

@ Genomic (DNA copy number),
@ Transcriptomic (gene expression, microARN),
@ Methylomic (DNA methylation).

Extend these methods to a pancancer analysis.



Data overview

NIH project to extensively characterize
the cancer genome (more than 20 cancers
and 500 patients each)

o Gene & miRNA expression (Agilent
& Affy microarray - RNA
sequencing)

o Copy number (Affy SNP 6.0)

@ DNA methylation (Agilent Infinium
(27k))

@ Mutation (DNA sequencing)
@ Pathology images
@ Medical images (MRI, CT)

The Cancer
Genome Atlas




Data overview

Cancer Type TCGA code Samples Genes
Bladder cancer BLCA 181 15,432
Breast cancer BRCA 985 16,020
Colorectal cancer COADREAD 589 15,533
Glioblastoma GBM 501 17,811
Head and Neck squamous carcinoma HNSC 371 15,828
Kidney clear cell carcinoma KIRC 509 16,123
Acute myeloid carcinoma LAML 173 14,296
Lung adenocarcinoma LUAD 489 16,092
Lung squamous carcinoma LUSC 490 16,219
Ovarian cancer ov 541 17,814
Endometrial cancer UCEC 508 15,706

The Cancer

Genome Atlas
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Method : AMARETTO algorithm

@ Multi-omics data fusion of gene expression, copy number and DNA
methylation

@ Two-step algorithm :
1. Identifying driver genes based on copy number and methylation,
2. Associating cancer driver genes with their downstream targets.
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Gevaert et al., Interface Focus, 2013



Step 1 : Generating the list of candidate drivers

If gene expression can be
explained by genomic events

{

Candidate driver gene

Model gene expression as a function of copy number and DNA methylation :

ExpressionGepe, = f (51 MethylationGepe +5> Copy Numbergepe, )-

MethylMix GISTIC



Step 1 : Cancer driver gene filtering

Use dedicated modeling on copy number and DNA methylation before
AMARETTO integration :

@ GISTIC : identifies recurrent copy number alterations,

@ MethylMix : identifies hyper & hypo-methylated genes.

Expression

Transfer of a methyl-group to the DNA :

@ causes gene expression silencing,

Methylation . @ deregulated in cancer
Expression (hyper/hypo-methylation)

A



Step 1 : Cancer driver gene filtering (MethylMix)

Remarks : 6

@ No formal method to model hyper 50
and hypo methylated in cancer

@ The normal state is unknown

Frequency

Step 1:
o typical DNA methylation data
distribution Methylation

@ beta value
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Step 1 : Cancer driver gene filtering (MethylMix)
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Step 1 : Cancer driver gene filtering (MethylMix)

- Tumor
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@ comparison with DNA
methylation in normal
samples

Frequency

Methylation

An example of hyper-methylation of BRCAI in ovarian cancer



Step 1 : Cancer driver gene filtering (MethylMix)

Step 4 :

@ inverse correlation with gene
expression

R-square statistic to quantify
amount of variation explained

Frequency

Gene expression

BRCA1
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Low methylation
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MethylMix results

TCGA code Total of Genes Hyper-methylated Hypo-methylated

BLCA 15,432 443 74
BRCA 16,020 798 203
COADREAD 15,533 177
GBM 17,811 246 140
HNSC 15,828 728 101
KIRC 16,123 319

LAML 14,296 470 77
LUAD 16,092 576 182
LUSC 16,219 605 133
ov 17,814 234 229

UCEC 15,706 618 238



Number of Genes

Step 1 : Results for glioblastoma

B CNV B MET CNV and MET

1137

299 370
I- 229 116 89 133 50 32 55 15 11

20% 30% 40% 50%

Variance of Gene Expression Explained (R-square)



Step 2 : Associating candidate drivers with their
downstream targets

Modules of co-expressed genes Set of driver genes

Patients Patients

] 8
Clustering = Kno iS from
— 8 trans m@ 1
K-means = facto ‘

V Module;, ExpressionModule[ = f(«Driver| + ... + a,Driver,)

Genes

Linear regression + lasso regularization



Module network
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AMARETTO captures drivers of cancer

Results obtained for Glioblastoma

Cancer driver Number of modules

ZNF300 10
TNFRSF1A 10 Top cancer drivers in GBM are :
PTRF 8 e ZNF300, associated with immune
WWIRI 8 system in Leukemia
MYTI 7 . .
PYCARD 7 o TNFRSF1A, associated with NF-kB
PATZ1 7 pathway and angiogenesis in GBM
BASPI 6 @ RAB32, associated with
RAB32 6 hyper-methylation
SATB1 6



AMARETTO modules capture pathways

Results obtained for Ovarian cancer




AMARETTO identifies drivers of subtypes

TCGA molecular subtypes of ovarian cancer :
@ immuno-reactive
o differentiated
@ mesenchymal

@ proliferative

— modules correlated with subtypes point to potential driver genes

Bell et al., Nature, 2011



AMARETTO identifies drivers of subtypes

Drivers

Module
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To a pancancer AMARETTO analysis ?

After running AMARETTO on the 11 cancer sites, 11 module networks
were produced, with :

@ 100 modules per network,
@ an averaged number of 408 drivers per network,
o between 348 (BRCA) and 452 (LUAD) driver genes.

In addition,

@ each module from all cancer sites is regulated by an averaged number
of 7.67 drivers,
— sparse method
— most of them are methylated

@ 45 drivers regulate more than 15 modules across all cancer sites.



To a pancancer AMARETTO analysis ?

400

350

300

250 1

200 -

& CNV only
150 ] 1 & MET only
100 — ~ CNV and MET

50 -

Number of regulator genes




To a pancancer AMARETTO analysis ?

Number of regulated modules  Number of involved cancers

FSTL1 31

~

IFFO1 29 6
MLPH 28 5
SPARCLI1 26 5
CLIP3 24 4
MFAP4 24 4
BENDS 24 4
NUAKI1 23 6
CAPS 23 9
PPIR16B 23 5
OLFML1 23 5
SLA 20 3
DDR2 20 7



To a pancancer AMARETTO analysis ?

Apoptosis = Metastases ® Infegrin EGFR
= Angiogenesis = Hypoxia = EMT Cellcycle = Immune response
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Pancancer analysis

BLCA GBM modules
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Pancancer analysis
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Pancancer module network

Hypergeometric test to measure whether there is a significant association
between all pairs of modules from all cancer types.

Module X Module Y
28 2B

@ p-value to compare modules

@ enrichment score using negative log of the p-value

All modules

All modules




All modules

Pancancer module network

Hypergeometric test to measure whether there is a significant association

between all pairs of modules from all cancer types.

All modules

BLCA
BRCA
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GBM
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Community detection algorithm

To detect communities, we used the Girvan Newman algorithm (edge
betweeness detection algorithm), which consists in :

1- computing the betweeness score of all graph edges (numbers of shortest
paths that run along each edge),

2- removing from the graph the edge with the highest score,
3- running Step 1 and Step 2 with the new graph obtained after Step 2.

A Weight edge betweenness score with the — log p-value score.

Newman et al., Physical Review E., 2004



Pancancer AMARETTO results

Edge betweeness algorithm detected 20 communities

- between 9 and 74 modules
- averaged number of 30.5 modules
- around 10 cancer sites represented

in each community
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Pancancer histone community

- Contains 11 modules representing

all different cancers (one module
for each cancer)

- Overlapping cancer driver genes
are part of histones

- Enrichment in cell cycle genes




Pancancer smoking community

- Contains 15 modules representing
8 different cancers (KIRC, GBM
and LAML are not represented)

- Overlapping cancer driver genes
3 genes in 3 modules
1 gene in 8 modules

GPX2

- Enrichment in smoking related
pathways




Pancancer smoking community

@ Collecting clinical data, GPX?2 expression is significantly associated
with smoking profile.

Head and neck cancer

“utt

Bladder cancer

GPX2 expression

p-value =0.03 pvalue = 1.5¢%

Lifelong ~ Cuentreformed  Current reformed  Curreat smoker

Lifelong Current reformed ~ Current reformed  Current smoker
non-smoker  smoker for > 15 years

non-smoker  smoker for > 15 years smoker

smoker
for < or = 15 years for < or = 15 years



Oxidative stress signature

Head and Neck cancer
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Pancancer smoking community

Lung adenocarcinoma
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Pancancer immune response community

- Contains 15 modules representing
10 different cancers (only KIRC is
not represented here)

- Overlapping cancer driver genes
6 genes in 4 modules
1 gene in 6 modules
1 gene in 10 modules
0AS2

- Enrichment in immune response
pathways




Pancancer immune response community

@ Most of the drivers are part of interferons.

Type I and II:

AIM2, CCLS, EPSTI1, ETV7, GBP4, HCPS,
HLA-F, IFI35, IRF7, ISG20, MX2, NMI,
‘0AS2_ PSMBS. RARRES3. SLC15A3. SP100.
TMEM140, TRIM21, TRIM22, XAF1

Type I-II and III:
BATF2. BST2. IFI6. OAS1. PARP?. SP110



Conclusion

AMARETTO
o Identifies driver genes through multi-omics data integration

@ Connects them to their downstream targets

Pancancer AMARETTO

o Identifies major oncogenic pathways and master regulators involved in
mulitple cancers

o Identifies an interferon master regulator involved in immune response
pathway

AMARETTO extension

o Will allow the integration of miRNA data to identify drivers miRNAs
and their effect on mRNAs

R-package available at
https://bitbucket.org/gevaertlab/pancanceramaretto



Thanks for your attention !
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