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Motivation
Create mechanistic models of cancer to :

Understand how gene expression is influenced by genomic events,
Identify cancer driver genes and their targets.

Need to develop statistical methods that allow to integrate multi-omics
data :

Genomic (DNA copy number),
Transcriptomic (gene expression, microARN),
Methylomic (DNA methylation).

Extend these methods to a pancancer analysis.

· · · · · · · · · · Face the big data challenge · · · · · · · · · ·



Data overview
NIH project to extensively characterize
the cancer genome (more than 20 cancers
and 500 patients each)

Gene & miRNA expression (Agilent
& Affy microarray - RNA
sequencing)
Copy number (Affy SNP 6.0)
DNA methylation (Agilent Infinium
(27k))
Mutation (DNA sequencing)
Pathology images
Medical images (MRI, CT)



Data overview

Cancer Type TCGA code Samples Genes
Bladder cancer BLCA 181 15,432
Breast cancer BRCA 985 16,020

Colorectal cancer COADREAD 589 15,533
Glioblastoma GBM 501 17,811

Head and Neck squamous carcinoma HNSC 371 15,828
Kidney clear cell carcinoma KIRC 509 16,123
Acute myeloid carcinoma LAML 173 14,296

Lung adenocarcinoma LUAD 489 16,092
Lung squamous carcinoma LUSC 490 16,219

Ovarian cancer OV 541 17,814
Endometrial cancer UCEC 508 15,706



AMARETTO :
Multi-omics data fusion for cancer data

Discovering cancer driver genes and their targets



Method : AMARETTO algorithm
Multi-omics data fusion of gene expression, copy number and DNA
methylation

Two-step algorithm :
1. Identifying driver genes based on copy number and methylation,
2. Associating cancer driver genes with their downstream targets.
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Step 1 : Generating the list of candidate drivers

If gene expression can be
explained by genomic events

↓
Candidate driver gene

Model gene expression as a function of copy number and DNA methylation :

ExpressionGenei
= f (β1 MethylationGenei︸ ︷︷ ︸

MethylMix

+β2 Copy NumberGenei︸ ︷︷ ︸
GISTIC

).



Step 1 : Cancer driver gene filtering

Use dedicated modeling on copy number and DNA methylation before
AMARETTO integration :

GISTIC : identifies recurrent copy number alterations,
MethylMix : identifies hyper & hypo-methylated genes.

Gene
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Transfer of a methyl-group to the DNA :
causes gene expression silencing,
deregulated in cancer
(hyper/hypo-methylation)



Step 1 : Cancer driver gene filtering (MethylMix)

Remarks :
No formal method to model hyper
and hypo methylated in cancer
The normal state is unknown

Step 1 :
typical DNA methylation data
distribution
beta value

Gevaert et al., Genome Biology, 2015



Step 1 : Cancer driver gene filtering (MethylMix)

Step 2 :
mixture of beta distributions
identification of two
components



Step 1 : Cancer driver gene filtering (MethylMix)

Step 3 :
comparison with DNA
methylation in normal
samples

An example of hyper-methylation of BRCA1 in ovarian cancer



Step 1 : Cancer driver gene filtering (MethylMix)

Step 4 :
inverse correlation with gene
expression

R-square statistic to quantify
amount of variation explained



MethylMix results

TCGA code Total of Genes Hyper-methylated Hypo-methylated
BLCA 15,432 443 74
BRCA 16,020 798 203

COADREAD 15,533 847 177
GBM 17,811 246 140
HNSC 15,828 728 101
KIRC 16,123 319 251
LAML 14,296 470 77
LUAD 16,092 576 182
LUSC 16,219 605 133

OV 17,814 234 229
UCEC 15,706 618 238



Step 1 : Results for glioblastoma



Step 2 : Associating candidate drivers with their
downstream targets
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∀ Modulei, ExpressionModulei
= f (α1Driver1 + ...+ αnDrivern)

Linear regression + lasso regularization



Module network



AMARETTO captures drivers of cancer

Results obtained for Glioblastoma

Cancer driver Number of modules
ZNF300 10

TNFRSF1A 10
PTRF 8

WWTR1 8
MYT1 7

PYCARD 7
PATZ1 7
BASP1 6
RAB32 6
SATB1 6

Top cancer drivers in GBM are :
ZNF300, associated with immune
system in Leukemia
TNFRSF1A, associated with NF-kB
pathway and angiogenesis in GBM
RAB32, associated with
hyper-methylation



AMARETTO modules capture pathways

Results obtained for Ovarian cancer



AMARETTO identifies drivers of subtypes

TCGA molecular subtypes of ovarian cancer :
immuno-reactive
differentiated
mesenchymal
proliferative

→ modules correlated with subtypes point to potential driver genes

Bell et al., Nature, 2011



AMARETTO identifies drivers of subtypes
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To a pancancer AMARETTO analysis?

After running AMARETTO on the 11 cancer sites, 11 module networks
were produced, with :

100 modules per network,
an averaged number of 408 drivers per network,
between 348 (BRCA) and 452 (LUAD) driver genes.

In addition,
each module from all cancer sites is regulated by an averaged number
of 7.67 drivers,

→ sparse method
→ most of them are methylated

45 drivers regulate more than 15 modules across all cancer sites.



To a pancancer AMARETTO analysis?



To a pancancer AMARETTO analysis?

Number of regulated modules Number of involved cancers
FSTL1 31 7
IFFO1 29 6
MLPH 28 5

SPARCL1 26 5
CLIP3 24 4
MFAP4 24 4
BEND5 24 4
NUAK1 23 6
CAPS 23 9

PP1R16B 23 5
OLFML1 23 5

SLA 20 3
DDR2 20 7



To a pancancer AMARETTO analysis?



AMARETTO :
Multi-omics data fusion for cancer data

Pancancer module networks



Pancancer analysis
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Pancancer analysis
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Pancancer module network

Hypergeometric test to measure whether there is a significant association
between all pairs of modules from all cancer types.
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p-value to compare modules
enrichment score using negative log of the p-value



Pancancer module network

Hypergeometric test to measure whether there is a significant association
between all pairs of modules from all cancer types.
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Community detection algorithm

To detect communities, we used the Girvan Newman algorithm (edge
betweeness detection algorithm), which consists in :

1- computing the betweeness score of all graph edges (numbers of shortest
paths that run along each edge),

2- removing from the graph the edge with the highest score,
3- running Step 1 and Step 2 with the new graph obtained after Step 2.

BWeight edge betweenness score with the − log p-value score.

Newman et al., Physical Review E., 2004



Pancancer AMARETTO results

Edge betweeness algorithm detected 20 communities

· between 9 and 74 modules
· averaged number of 30.5 modules
· around 10 cancer sites represented

in each community



Pancancer histone community

· Contains 11 modules representing
all different cancers (one module
for each cancer)

· Overlapping cancer driver genes
are part of histones

· Enrichment in cell cycle genes



Pancancer smoking community

· Contains 15 modules representing
8 different cancers (KIRC, GBM
and LAML are not represented)

· Overlapping cancer driver genes
3 genes in 3 modules
1 gene in 8 modules

GPX2

· Enrichment in smoking related
pathways



Pancancer smoking community
Collecting clinical data, GPX2 expression is significantly associated
with smoking profile.



Pancancer smoking community



Pancancer immune response community

· Contains 15 modules representing
10 different cancers (only KIRC is
not represented here)

· Overlapping cancer driver genes
6 genes in 4 modules
1 gene in 6 modules
1 gene in 10 modules

OAS2

· Enrichment in immune response
pathways



Pancancer immune response community
Most of the drivers are part of interferons.



Conclusion
AMARETTO

Identifies driver genes through multi-omics data integration
Connects them to their downstream targets

Pancancer AMARETTO
Identifies major oncogenic pathways and master regulators involved in
mulitple cancers
Identifies an interferon master regulator involved in immune response
pathway

AMARETTO extension
Will allow the integration of miRNA data to identify drivers miRNAs
and their effect on mRNAs

R-package available at
https://bitbucket.org/gevaertlab/pancanceramaretto
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