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Mapping spatial phenomena (e.g. crop growth, weeds, etc.)
has become a central task in precision agronomy for manag-
ing production at landscape or field scale. Maps are costly to
obtain since they require intensive surveys in the field, most
of the time performed by human annotators or with human-
controlled Unmanned Aerial Vehicles (UAVs). Data acqui-
sition can also be performed by deploying sensing devices,
but given the generally limited available amount of such sen-
sors, and their fixed sensing radius, to decide where to place
the sensors constitutes a challenge for mapping spatial phe-
nomena. Many techniques try to optimise their deployment,
yet in certain cases it is infeasible in practice, or too costly,
to install fixed sensors (e.g. large exploitations).

New technologies of sensors embarked on mobile de-
vices, like autonomous UAVs or wheeled robots, face a sim-
ilar optimization issue, but can allow to use a single device
to cover the whole field. Such a device should be deployed
on-demand, reducing as much as possible off-line calcula-
tions, and should be usable for a vast array of mapping situ-
ations, given the dynamic environment we aim at monitoring
in precision agriculture. An adaptive sampling approach for
mapping in crop fields, focusing on which plots are more
“interesting” to sample, would take advantage of on-line se-
quential decision-making capabilities of mobile devices.

Gaussian processes and Markov Random Fields (MRF)
have been successfully used to model the spatial phenom-
ena in the optimization problem, respectively to select where
to place sensor devices on an area, and to perform adap-
tive sampling in crop fields (Singh et al. 2007; Peyrard et al.
2013). However, past approaches do not take into account
the limited battery life that affect mobile devices, which can
drastically reduce the amount of gathered data.

Approaches that allow to optimise data collection under
limited sampling budget, e.g. (Bonneau et al. 2014), require
very long off-line computation time to preliminarily com-
pute the parameters of the sampling policy. This does not
match our need for devices to be deployed on-demand, effi-
ciently performing sampling and mapping with light logis-
tics and low-budget computations.

We propose an alternative way to solve these issues,
where we couple MRFs and Automated Planning, in order to
optimise the sequence of sampling by balancing map quality
and cost objectives.

Automated Planning is the branch of Artificial Intelli-

gence that is concerned with selecting the next-to-apply ac-
tion in order to lead an agent toward a desired goal. Cou-
pling MRFs with Automated Planning techniques offers a
methodology to solve on-line tasks for sampling and sens-
ing: on one side, MRFs are used to represent and update
probabilistic knowledge about the measured phenomena
–that remains uncertain to the observer–, and on the other
side, a planner (the solver) can automatically produce de-
cision rules (a controller) from a description of the task, in
order to drive an autonomous device toward sampling plots
in the field, while minimising the cost of the mission and
maximising the quality of the map reconstruction.

In the following, we detail more formally our approach
coupling MRFs and planners, and we illustrate it on a UAV
application to adaptively sample in a crop field for weeds
species mapping (Albore et al. 2015).

Automated Planning
A key element for fully autonomous agents is the ability to
select and organize actions over time in order to fulfil some
objective (e.g. maximising reward functions, reaching given
symbolic system states). This implies deciding on the course
of potentially uncertain events and situations that may occur
during the execution of the task, as several sources of uncer-
tainty can impact the mission (Ingrand and Ghallab 2014).

Artificial Intelligence planning (Ghallab, Nau, and
Traverso 2004) is a model-based and theorem-proving ap-
proach to this problem. Given a dynamical model of the
available actions, which includes environmental conditions
on their applicability and descriptions of their effects on the
world, an AI planning solver generates a sequence of actions
named plan, that can achieve a given objective, in the case
such a solution plan exists.

Many variants of AI planning have been studied and ap-
plied, ranging from “classical” planning, where effects of
actions and environmental observations of a single agent are
deterministic, to probabilistic planning where it is asked to
the solver to provide a policy that associates a state with an
action, instead of a plan. The simplest model of planning is
where actions are assumed to have deterministic effects and
the agent’s position is always perfectly known; this classical
planning framework has been used to produce ordered se-
quences of plots to sample in a mapping task with an UAV,
while minimizing the travelled distance. The formal model



underlying the planning problem can be described by the tu-
ple P = 〈S, s0, SG, O, ϕ〉 where S is a finite set of states,
s0 ∈ S is the initial state, and SG ⊆ S is the set of goal
states. Transitions between states are given by O, the set of
operators associating to a state s its successor state s′ using
a state transition function ϕ : S ×O → S. A fixed action a
is applicable in a state s when there exists at least one target
state s′ such that ϕ(s, a) = s′.

AI planning does not provide any means to actually gener-
ate the high-level objectives that we call goals, but it allows
the planning agent to autonomously select relevant actions
and organize them over time in order to achieve these objec-
tives. We aim at using graphical models, like Markov Ran-
dom Fields, to effectively select such goals in the context of
mapping crop fields: from the probabilistic representation of
the spatial phenomena observed, given by the MRF, we se-
lect the list of plots that will provide relevant information to
build the map of the field.

MRF modelling of abundance maps
Common practice in field sampling is to divide the crop field
in a regular grid of N plots of small area. An observation in
a plot is the abundance class of the weed species (discretised
in K classes), and we assume no measurement error.

To each plot i ∈ V = {1, . . . , N} of the MRF model,
is attached a discrete random variable Xi with domain D =
{1 . . .K}, where K is the number of abundance classes. The
joint distribution of the whole map X = (X1, . . . , XN ) is
assumed to be expressed as a pairwise MRF: ∀x ∈ DN ,

P(X = x) =
1

Z

N∏
i=1

fi(xi)
∏

(i,j)∈E

fi,j(xi, xj)

The set E is the set of all pairs of neighbours in the grid
of plots and Z is a normalising constant. The fi andfi,j
are non negative functions called respectively order-1 and
order-2 potential functions. Roughly speaking, the order-1
potential functions weight the relative proportions of the K
abundance classes while the order-2 potential functions en-
code spatial correlation between abundance values at differ-
ent plots. The choice of an appropriate MRF model amounts
to the choice of these potential functions.

Sampling in MRF with an objective of map reconstruction
is modelled as the problem of finding samples that optimise
the Maximum Posterior Marginals (MPM) criterion, classi-
cally used in image analysis; we use it to derive an estimator
x∗ of the hidden map x given the history of past observations
xA = (xA0 , xA1 , · · · , xAt):

x∗ =
{
x∗i
∣∣ i ∈ V, x∗i = argmax

xi∈D
P(xi | xA)

}
.

Note that the trajectory from which xA is obtained can
be determined once and for all beforehand, or adaptively
chosen on-line assuming that the spatial data don’t change
during the task; we privilege the latter approach, as more
adapted to a light logistics approach to map reconstruction.

The quality of a trajectory is measured as the expected
quality of the estimator x∗. In practice, we first define the

Figure 1: Platform simulation on MORSE. At the upper right cor-
ner, the UAV’s semantic camera framing weeds.

quality of a trajectory ((Ah, xAh
))h=1..H as a function of

(A, xA), where A = {Ah}H1 ⊆ V is the set of the explored
sites at steps h and xAh is the sample output at step h:

U
(
A, xA

)
=
∑
i∈V

[
P(x∗i | xA)

]
.

U
(
A, xA

)
can be interpreted as the expectation of the num-

ber of well-classified plots, when allocating their values to
the modes of the marginals P(xi | xA), calculated by Loopy
Belief Propagation (Murphy, Weiss, and Jordan 1999).

These values will be used to select a subset of the plots
in the field, based on the potential quality gain that an ob-
servation can provide to the final map. The planner will then
synthesise a plan, i.e. an ordering of the plots that minimises
the cost of navigating between them and sensing, which is
de facto a trajectory.

A replanning-based approach
The planning problem of reconstructing a weed abundance
map with an UAV is built and executed in a closed-loop
fashion. First, we generate a set of n plots to sample that
maximise the expected quality gain derived from the MRF
model, given a set of observations (A, xA). For each vari-
able Xi of the MRF, the expected quality gain is an opti-
mistic approximation of the increase of the updated utility
U(A ∪ {i}, xA, xi) − U(A, xA). Given a set of n plots,
a planner elaborates a trajectory that connects them while
minimising the travelled distance, and considering eventual
side effects of observing, such as the uselessness of sampling
plots close to the recently visited ones, while maximising
the map quality. Since this planning problem is too hard to
be exactly solved either off-line or on-line, we propose an
approach interleaving planning and execution: from past ob-
servations at a given time step, we compute a full plan to find
a trajectory that minimises the navigation cost while visiting
all the n sampled plots. This plan consists in a sequence of
locations and expected observations. The plan is then exe-
cuted by the UAV, and the observations collected. Those ob-
servations are then used to update the expected quality gains



values from the MRF. We monitor the execution so to stop it
and recompute a new trajectory whenever the accumulated
differences between the actual observations and the expected
ones exceed a given threshold, meaning that the observations
gathered so far do not bring enough accretion on the over-
all reconstructed map quality. In fact, the set of plots in the
trajectory is derived from a snapshot of the probability dis-
tribution before the execution of the plan; the observations
obtained during the navigation update the information about
the potential quality gains, and thus a better selection of the
plots to visit is always possible.

This interleaving planning and execution schema is
widely used in those frameworks where planning is applied
in highly dynamic domains (e.g. robotics), as it allows to
reason on a simplified version of the model, while being able
to recover from the execution whenever the initial assump-
tions do not hold any more.

This planning approach to the problem of weeds mapping
in crop field compares favourably to a greedy approach, the
only other approach that can be used on-line. The latter se-
lects the next plot to be visited by the UAV as the one car-
rying the biggest amount of uncertainty, without accounting
for the future flight duration (Peyrard et al. 2013).

We implemented the previously described replanning al-
gorithm applied to the weeds mapping problem within the
Robot Operating System (ROS) framework (Quigley et al.
2009), a robotic meta-operating system. The evaluation of
marginals in the MRF and the planner are integrated on the
same platform, taking advantage of our implementation of
the LBP algorithm, and the (re)planning loop uses a gen-
eral purpose planner with the Serialized Iterated Width al-
gorithm (Lipovetzky and Geffner 2012), that we adapted as
a ROS independent planning package. Tests have been run
in the MORSE simulator developed in academic robotics
(Echeverria et al. 2011), which enables to perform software
architecture-in-the-loop (SAIL) realistic simulations, i.e. to
test the exact same functional architecture as the one that
will be implemented on-board the real UAV, but replacing
the physical sensors and actuators by simulated data (Cf.
Fig. 1). In this environment, the planning approach leads to
results of similar quality but at a much less cost (measured as
the distance covered during the flight) (Albore et al. 2015);
this means that if the same distance is allocated to the two
approaches, the planner will sample more plots, and there-
fore provide better quality estimated maps.

Conclusions
Automated Planning, and in particular planning under un-
certainty, while efficient in finding policies to navigate to-
ward a desired goal even in domains with incomplete in-
formation or exogenous events, does not update the proba-
bilities or the rewards from acting models. Graphical mod-
els have the advantage to easily represent knowledge about
processes correlated in space or time, and to quickly up-
date information from real-world observations. Even if op-
timal solutions are difficult to obtain, automated planning
can use suboptimal information to elaborate an effective
plan to reach the desired goals while minimising resources
consumption. Such a coupling has been proven to be well

adapted in reactive platforms to adaptive sampling, while in-
terleaving planning, execution, and information update.

Further possible extensions go in the same applicative di-
rection. Adopting hierarchical MRFs would allow to con-
sider in the planning loop the cost of observing with the UAV
at different heights, reasoning on the contribution of multi-
resolution images. We expect to adopt a trade-off between
low resolution images, but that cover a larger area of the
field, and high resolution ones, more informative but more
costly in terms of distance covered.

As future work, we also consider to extend the use of
graphical models to other forms of planning under uncer-
tainty (MDPs, POMDPs, contingent and conformant plan-
ning), as they are closer to real-world applications than clas-
sical planning, and they explicitly embed in their models un-
certainty about the application domain, which is not always
easy to evaluate and update without a dedicated mathemati-
cal framework.
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