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TE transposition

From Levin & Moran, Nat. Rev. Gen., 2011
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Transposition and silencing

From Freschotte et al., Nat. Rev. Gen., 2008
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Impact of transposition

From Slotkin & Martienssen, Nat. Rev. Gen., 2007
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Transposition in plants

From Ragupathy, BMC Genomics, 2011
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The project

Idea

• TEs are a driving force of genomic/genetic evolution of the
host genomes

• What about the transcriptome evolution?

Data

Id Line Tech. Norm. PE 5’-cap

1 Iso1a 454 3 7 3

2 Iso1a Illumina 7 7 3

3 Rev Illumina 7 7 7

4 IR6 Illumina 7 7 7

5 Iso1a Illumina 3 3 7
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TEs are transcribed

Maps uniques!

10 / 150



Where are the reads
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Classification of the influence of the TEs

TE
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E 5
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F 3E 3
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Example of TE insertion

E5

arm 3R:12,295,523..12,295,869
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Example of TE insertion

E

arm X:11,576,152..11,576,333
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Example of TE insertion

I

arm 2R:1,150,421..1,152,422
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Example of TE insertion

F5

arm 3L:8,516,750..8,518,314
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Classification of TE insertion
Count
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Transcription at D. melanogaster
Distance between TSSs.

d d
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Ontology associated to TEs

GO analysis

p-value

function: protein binding 3.5.10−5

process: cellular component organization 8.8.10−6

component: intracellular organelle 1.3.10−4
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Copia
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HMS-Beagle
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Cryptic TSSs

Highly repeated regions

Chez HMS-Beagle:
TTATTATTTTATTATTATTATTGATATTATTATTAATACTATATTTTCAACCCAGTTCCT

AGAGATCTTCTGAAAGGAAAATTTTCCTATTTACTGTTCCTTTCTGGTACACTGTTCTCA

AAGCAAAATAACCGCGGTGAGCTAAAATTTATTGCATGCAAAAATAAAAAAAAAAAAATA

TAAAAATAAAAAATAAAAAAACAAAAACAAAAGATAAATAAGCAAACACATACACACGCA

TTCCATATTTTCTGCCCACAACTTTTGTTAAGTTCAAATTGGTTTAGGCTTGTTTTGTGC
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Conclusions

Expression

• Many TEs are actively transcribed.

• In heterochromatin, genes and TEs are expressed, although
less than in euchromatin.

Transposable elements / genes interplay

• Many active TEs group around genes.

• Parts of TEs may have been domesticated as TSS.

• Transcribed TEs may appear at any position of a gene to form
complex interplay.
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Epigenetic marks

The Scientist, 2011
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Small RNAs

S Castel & R Martienssen, Nat. Rev. Gen., 2013
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Regulation

S Castel & R Martienssen, Nat. Rev. Gen., 2013

27 / 150



RTL projects — H. Vaucheret

Idée
5 RTLs look like Dicer, what is their role?

Data
sRNA-Seq:

• Col

• rtl2 (little affected)

• 2 × 35S–RTL2 (little affected)

• 35S–RTL1 (very affected)

• dcl2/dcl3/dcl4

• 2 × dcl2/dcl3/dcl4 35S–RTL2
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Results

29 / 150



Results
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Results RTL1
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Conclusions

RTL1

• RTL1 probably degrades (almost) perfect double stranded
RNAs

• RTL1 contributes to virus response

RTL2

• Few changes observed

• Still working on it

32 / 150



LHP1 project — V. Gaudin

Idea
LHP1 is a chromatin remodeler associated with H3K27me3.

Aims

• Link with LIF2 (a companion)

• Targets of LHP1
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Distribution
Distribution of the reads log2( IP

input ).
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Distribution
Distribution of the called regions
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Distribution of the loci
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Distribution on the transcripts

LHP1:
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Distribution on the transcripts

LIF2:
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Colocalization

# genes targeted by LHP1 and LIF2.
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Marks
LHP1 — H3K27me3
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Marks
LHP1 — H3K36me3
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Marks
LIF2 — H3K4me3
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S–MART

What is S–MART?

• S–MART is an RNA-Seq analysis toolbox

• S–MART is no pipe-line

• S–MART is a collection of tools

RNA-Seq?

Sequencing of the transcripts (RNA) of a tissue/organism/strain. . .

• RNA-Seq (mRNAs, long ncRNAs)

• sRNA-Seq (miARN, siARN, piARN. . . )

• 5’ capped RNA-Seq

• 3’ capped RNA-Seq

• . . .
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Typical RNA-Seq analyses

• Transcriptome annotation

• Differential expression

• Alternative splicing

• . . .

In general, RNA-Seq data are compared with some annotation.
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GFF3 format

Example of a GFF3 file. The last field may contain some
information.

chr1 S-MART mRNA 1050 9000 . + . ID=mRNA1;Name=myGene

chr1 S-MART exon 1050 1500 . + . ID=exon1;Parent=mRNA1

chr1 S-MART exon 3000 3902 . + . ID=exon2;Parent=mRNA1

chr1 S-MART exon 5000 5500 . + . ID=exon3;Parent=mRNA1

chr1 S-MART exon 7000 9000 . + . ID=exon4;Parent=mRNA1
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WIG format

variableStep chrom=chr1

10 11.5

11 3

15 16

16 18

18 21
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Compare Overlapping

• Input: 2 annotation files

• Output: 1 annotation file

• Description: Give all the elements of the first file which
overlap the elements of the second file.

• Options:
• colinear/antisense only
• overlap the n first nt. of the first file
• overlap the n upstream nt.
• within n nt. of the elements of the first file
• . . .

• Remark: Update the nbOverlaps et overlapWith tags
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Compare Overlapping

reads

results

refSeq
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Compare Overlapping

file A

file B

file A is the first file

file B is the first file

input

output
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Get Difference

• Input: 2 annotation files

• Output: 1 annotation file

• Description: Subtract to the first file the nt. of the second file

• Input: 1 annotation file, 1 FASTA file

• Output: 1 annotation file

• Description: Give the intergenic regions
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Get Difference

set 2

set 1

genome

result 1

result 2
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Get Flanking

• Input: 2 annotation files

• Output: 1 annotation file

• Description: Get the elements of the second file which flank
the elements of the first file

• Options:
• restrict to collinear/anti-sense
• restrict to flanking element between n and n′ nt. of the

elements of the first file
• restrict to upstream elements
• . . .

• Remark: Update the flanking and flankingDistance tags
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Get Flanking

set 2

set 1

(nothing)

result 1

result 2

result 3

result 4

result 5

result 6

500 nt.
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Modify Genomic Coordinates

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Extend/shrink elements

• Options:
• keep the first / last n nucleotides
• extend to n nt. upstream / downstream
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Modify Genomic Coordinates

1 2 3 4 5 876 109position

original read

shrink to 1st nt.

extend downstream by 3 nt.

extend upstream by 3 nt.

shrink to 0st nt. and
extend upstream by 3 nt.
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Clusterize

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Merge overlapping elements

• Options: typical

• Remarque: Update the nbElements tag
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Clusterize

reads

results
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Clusterize By Sliding Windows

• Input: 1 annotation file, 1 FASTA file

• Output: 1 GFF3 file

• Description: Count the number of annotation per sliding
windows

• Options: if the GFF3 file has some tags, may compute
avg/min/max/med of the tags in a window

• Remarque: Update the nbElements tag
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Get Letter Distribution

1 2
40

window
size of the

overlap
size of the

Distribution of the nucleotides per position
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Collapse Reads

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Merge identical elements

• Remarque: Update nbElements
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Collapse Reads

reads

results
nbElements=2

Merge identical reads
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Get Exons

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Give all the exons
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Get Introns

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Give all the introns
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Mapper Analyzer

• Input: 1 mapping file, a FASTA/Q file

• Output: 1 annotation file

• Description: Give the mapping w.r.t./g some criteria

• Options:
• # errors
• gaps in alignment
• # occurrences

• Remark: Update nbOccurrences
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Select By Tag

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Give all the element with a given tag
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Get Random Subset

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Select randomly some elements
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Modify Sequence List

• Input: 1 FASTA/Q file

• Output: 1 FASTA/Q file

• Description:
• keep / remove the n first / last nucleotides of the file
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Trim Sequences

• Input: 1 FASTA file/Q

• Output: 1 FASTA file/Q

• Description: trim the 5’ et 3’ adapters

• Options: insertions/deletions
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Get Distance

• Input: 2 annotation files

• Output: 1 figure

• Description: get the distance between the elements of the
second file which are closest to the elements of the first file. A
point (x , y) means that y elements of the second file are
distant to x nt. of the elements of the first file.

• Options: as usual
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Get Distance

Distance between observed and annotated TSSs
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Get Distribution

• Input: 1 annotation file, a FASTA file

• Output: 1 figure per chromosome

• Description: count the number of element on sliding windows,
and plot the distribution
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Get Distribution

Read density on the chromosome 2L
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Get Sizes

• Input: 1 annotation file or a FASTA/Q file

• Output: 1 figure

• Description: draw the size distribution
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Get Sizes

Read size distribution
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Get Letter Distribution

• Input: 1 FASTA/Q file

• Output: 2 figures

• Description:
• draw the A%, C%, etc. for each position
• draw le A%, C%, etc. for each read
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Get Letter Distribution

Distribution of the nucleotides per position

78 / 150



Get Letter Distribution

Distribution of the nucleotides per read
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Plot Coverage

• Input: 2 annotation files

• Output: 2× n figures

• Description:
• draw the density of the elements of the second file w.r.t./g the

elements of the first file
• draw the elements of the second file w.r.t./g the elements of

the first file

• Remark: read the tags nbOverlaps and nbOccurrences

• Input: 1 GFF3 file with the Target tag
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Plot Coverage

Coverage of the elements of the first file
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Plot Coverage

Elements of the second file w.r.t./g the first elements
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Plot

• Input: 1 annotation file

• Output: 1 figure

• Description: draw the distribution of the values of a/several
given tag(s)
• 1 tag: draw an histogramme
• 2 tags: draw a line or a cloud
• 3 tags: draw a colored cloud
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Plot

chr1 S-MART mRNA 1000 2000 . + . ID=mRNA1;tagX=1;tagY=1

chr1 S-MART mRNA 2000 3000 . + . ID=mRNA2;tagX=3;tagY=2

chr1 S-MART mRNA 3000 4000 . + . ID=mRNA3;tagX=5;tagY=3

0 1 2 3 4 5 6
0

1

2

3
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Get Wig Data

• Input: 1 annotation file, 1 WIG file

• Output: 1 annotation file

• Description: compute the average value for each annotation

• Remark: update a tag
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Get Wig Distance

• Input: 1 annotation file, 1 WIG file

• Output: 1 figure

• Description: draw the average of the WIG file around the
elements of the annotation
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Get Wig Distance

Conservation around the TSSs
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Get Wig Profile

• Input: 1 annotation file, 1 WIG file

• Output: 1 figure

• Description: draw the average value of the WIG file in and
around the annotations
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Get Wig Profile

Conservation on the genes
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Convert Transcript

• Input: 1 annotation file

• Output: 1 annotation file

• Description: convert formats
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Coordinates To Sequence

• Input: 1 annotation file, 1 FASTA file

• Output: 1 FASTA file

• Description: give the sequence corresponding to the
annotation
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Get Random Regions

• Input: 1 FASTA file

• Output: 1 annotation file

• Description: give random annotations

• Input: 1 FASTA file, 1 annotation file

• Output: 1 annotation file

• Description: shuffle the annotation randomly in the genome
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Compute Coverage

• Input: 2 annotation files

• Output: —

• Description: give the percentage of coverage for each element
of the second file
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Interval

• Description: a genomic interval (chromosome, start, end,
name?)

• Functionalities:
• restrictions/extensions
• distance w.r.t./g another interval
• overlap/inclusion checks
• difference w.r.t./g another interval
• merge with another interval
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Transcript

• Description: a set of genomic intervals

• Functionalities:
• same as Interval
• select introns
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Sequence

• Description: a sequence

• Functionalities:
• restrictions/extensions
• represents a FASTA/FASTQ sequence
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Sub-Mapping

• Description: a set of target/reference intervals
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Mapping

• Description: a set of sub-mappings

• Functionalities:
• generate a Transcript element

98 / 150



Connection

• Description: an SQLite connection

• Functionalities:
• may create several executes with only one commit
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Query

• Description: an SQLite query

• Functionalities:
• iterator on the output of a query
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Table

• Description: an SQLite table

• Functionalities:
• iterator on the lines of the table
• format the SQLite output into Python objects
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Transcript Table

• Description: gère une table d’annotation en SQLite

• Functionalities:
• iterator on Transcript elements
• add, remove elements
• split big executes
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Parsers

• Description: parser annotation/sequence/mapping files

• Functionalities:
• a ParserChooser provide the right Parser for a given format
• the interface is uniform

• Formats:
• annotation: bed, gff
• mapping: axt, blast, blast, bowtie, eland, exonerate, maq,

mummer, nucmer, rmap, sam, shrimp, soap, soap2
• sequence: fasta, fastq
• other: wig
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Writers

• Description: write annotation files

• Functionalities:
• a WriterChooser provide the right Writer for a given format
• the interface is uniform

• Formats:
• annotation: bed, gff, sam
• mapping: gbrowse, ucsc
• other: wig, SQLite
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Transcript Lists Comparator

• Description: comparison engine
• give the overlaps
• compute distances
• clusterize

• Functionalities:
• many options
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RPlotter

• Description: plot data

• Functionalities:
• plot histograms, lines, (colored) clouds
• read several dictionary dict(x) = y
• modular: coulors, legend, labels, title. . .
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Progress

• Description: progression bar

• Functionalities:
• uses parameter verbosity

Reading /home/mzytni...[================= ] 10275648/26088442

ETA: 41h 32m
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Unlimited Progress

• Description: same thing, when the aim is unknown
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Example — Conversion

parserChooser = ParserChooser(verbosity)

parserChooser.findFormat(formatIn)

parser = parserChooser.getParser(fileNameIn)

writerChooser = ParserChooser(verbosity)

writerChooser.findFormat(formatOut)

writer = writerChooser.getParser(fileNameOut)

for transcript in parser.getIterator():

writer.addTranscript(transcript)
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Problem
Data

• input: 2 sets of genomic coordinates (query / reference).

• output: the elements of the first set which overlap with the
second set.

reads

results

refSeq

Example

• query: chr1: 100 – 500; chr2: 300 – 400

• reference: A chr1: 200 – 300; B chr3: 300 – 400

• output: chr1: 100 – 500 ov. with A

Applications

• Get the mapped reads which overlap with a given annotation.

• Get the conflicting events in 2 time schedules.
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Applications in genomics

With some additional tweaks, you can get:

• the mapped reads which overlap with a given annotation.

• (same as before) on the same / other strand.

• the query elements which are 1kb before the reference
elements.

• the query elements such that there exists a reference elements
1kb before.

• the closest elements of the reference set w.r.t. the query set.

• the distance between the elements of the query set and the
reference set.

• the elements of the query set such that at least 100nt are
covered by the reference set.

• . . .
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Naive algorithm

Algorithm 1: naiveSearch(Q,R)

1 foreach q ∈ Q do
2 o ← ∅
3 foreach r ∈ R do
4 if q <> r then o.add(r)

5 if o 6= ∅ then print(q with o)

Time complexity

#Q elements in the query set, #R in the reference set:
O(#Q ×#R)
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Using a database

Algorithm 2: databaseSearch(Q,R)

1 foreach r ∈ R do
2 database (r .chr) .store(r .start, r .end , r .name)

3 foreach q ∈ Q do
4 o ← database.query(SELECT * FROM database WHERE

start ≤ q.end AND end ≥ q.start)
5 if o 6= ∅ then print(q with o)

Time complexity

???
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Using a database

Algorithm 3: databaseSearch(Q,R)

1 foreach r ∈ R do
2 database (r .chr) .store(r .start, r .end , r .name)

3 foreach q ∈ Q do
4 o ← database.query(SELECT * FROM database WHERE

start ≤ q.end AND end ≥ q.start)
5 if o 6= ∅ then print(q with o)

Problem
Queries like

SELECT * FROM table WHERE start <= XXX AND end >= XXX

are inefficient.
Even with multiple-row indices.
Yes, I tried.
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Binning

9998

109

0 1 2 3

100

4 5

110

0 1k 2k 3k . . .

9 10 11

101

chr.
1 100 110

Algorithm 4: binSearch(Q,R)

1 foreach r ∈ R do
2 database (r .chr) .store(r .bin, r .start, r .end , r .name)

3 foreach q ∈ Q do
4 o ← database.query(SELECT * FROM database WHERE bin

∈ bins(q) AND start ≤ q.end AND end ≥ q.start)
5 if o 6= ∅ then print(q with o)
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Binning

9998

109

0 1 2 3

100

4 5

110

0 1k 2k 3k . . .

9 10 11

101

chr.
1 100 110

Time complexity

O(#Q ×#R) in unfortunate cases.
O(#Q) in fortunate cases.
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In memory binning

Idea
The binning array is stored in memory. The structure is:

• a vector with #bins elements,

• each cell stores the address of the interval in the file.

Space complexity

O(#bins + #R)
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Interval tree

0 10 20 30 40 50 60 70

A
B
C
D

E F
G H

35

10 BC

D 28 E 45 F

55 G

65 H

A

7

Definition (Segment tree)

A segment tree:

• is a balanced binary tree,

• with nodes which:
• model points,
• have one left and one right child
• store overlapping intervals.
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Interval tree

Algorithm 5: intervalTreeSearch(q, n)

1 foreach i ∈ n.intervals do
2 if i <> q then o.add(i)

3 if q.start ≤ i then intervalTreeSearch(q, i .left)
4 if q.end ≥ i then intervalTreeSearch(q, i .right)

Whole algorithm

• Call IntervalTreeSearch(q, root) for every q ∈ Q.

• Print o for each q, if o is not empty.
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Interval tree

Algorithm 6: intervalTreeSearch(q, n)

1 if n <> q then
2 foreach i ∈ n.intervals do
3 if i <> q then o.add(i)

4 if q.start ≤ i then intervalTreeSearch(q, i .left)
5 if q.end ≥ i then intervalTreeSearch(q, i .right)

Time complexity

O(#Q ×#R).
More interesting, using “output aware” time complexity.
O(#Q × log(#R) + #O) with O being the matches.
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Segment tree

A

A A

B

−∞-9 10-19 20-29 30-39 40-49 50-59 60-69 70-+∞

A

A
B
C

D
E

C ED D

B C D E10–49 20–39 20–29 50–69 50–59

Definition (Segment tree)

A segment tree:

• is a balanced binary tree,

• has leaves which model intervals of consecutive end points,

• has internal nodes which model union of child node,

• has nodes which store overlapping intervals.
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Segment tree

A

A A

B

−∞-9 10-19 20-29 30-39 40-49 50-59 60-69 70-+∞

A

A
B
C

D
E

C ED D

B C D E10–49 20–39 20–29 50–69 50–59

Algorithm 7: segmentTreeSearch(q, n)

1 if n <> q then
2 o.add(n.intervals)
3 foreach c ∈ n.children do
4 segmentTreeSearch(q, c)
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Segment tree

A

A A

B

−∞-9 10-19 20-29 30-39 40-49 50-59 60-69 70-+∞

A

A
B
C

D
E

C ED D

B C D E10–49 20–39 20–29 50–69 50–59

Time complexity

O(#Q × log(#R) + #O).

Space complexity

O(#R × log(#R)).
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Binning + Segment tree

9998

109

0 1 2 3

100

4 5

110

9 10 11

101

Time complexity

O(#Q × log(#R))?
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Binary Interval Search

A
B

C
E F G

D
ref

query

end sorted refs:
start sorted refs: ABCD

AEFDG

EFG

CB

Algorithm 8: BISSearch(Q,R)

1 starts ← R.sort(start)
2 ends ← R.sort(end)
3 foreach q ∈ Q do
4 b ← before(q.end , starts)
5 a← after(q.start, ends)
6 print(q with #R − (a + b))
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Binary Interval Search

A
B

C
E F G

D
ref

query

end sorted refs:
start sorted refs: ABCD

AEFDG

EFG

CB

Time complexity

O(#Q × log(#R))
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Interval Skip List

a:2–17, b: 17–20, c:8–12, e:−∞–17

Definition (Interval Skip List)

An Interval Skip List is a linked list where:

• each node contains:
• a value,
• several forward links labeled with intervals;

• nodes are sorted following increasing value,

• the probability that a node has k forward links is (1− p)pk−1.
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Interval Skip List

a:2–17, b: 17–20, c:8–12, e:−∞–17

Algorithm 9: ISLSearch(q, x)

1 foreach i ∈ [maxLevel ..1] do
2 while x [i ].next.key < q do x ← x [i ].next
3 o.add(x [i ].intervals)

4 while x [0].next.key < q do x ← x [0].next
5 while x <> q do
6 o.add(x [0].intervals)
7 x ← x [0].next
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Interval Skip List

Time complexity

O(#Q × log(#R))

Space complexity

O(#R × log(#R))
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FJoin
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FJoin

Algorithm 10: FJoin(Q,R)

1 Q.sort; R.sort
2 Wq ←Wr ← ∅; q ← Q.first; r ← R.first
3 while ¬Q.isEmpty ∧ R.isEmpty do
4 if q.start < r .start then scan (q,Wq, r ,Wr); q ← Q.next
5 else scan (r ,Wr , q,Wr); r ← R.next

Function scan(x ,Wx , y ,Wy)

1 foreach y2 ∈Wy do
2 if y2 < x then Wy .remove(y2);
3 else if y2 <> x then report(y2 with x);

4 if ¬x < y then Wx .push(x);
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FJoin

Time complexity

O(#Q + #R + #O)

Space complexity

O(#O)!
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log comparisons

Motivation

• trees make it possible to compare a query interval with
reference intervals in O(log #R).

• In practice, it seems longer than binning.

NC–Lists

NC-Lists do it better than any other?

134 / 150



Introduction

Idea

• Log-time can be achieved using dichotomic search.

• Dichotomic search cannot be used when intervals are nested.

• Nested intervals are put in an other list.

1

2

of 2
sub-list

main
list

1

2

3 4 5

6

6

3 4 5
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Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150



Structures

The L array

Each line is an interval:

• start

• end

• pointer to its sublist
(in H)

The H array

Each line is a sublist:

• pointer to the first
interval (in L)

• # elements

Both arrays are binary structures.
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Problem

Hope

Any search can be performed in time O(log(#Q) + #O).

n layers

s siblings

• #R = s × n

• #O = n

Expected: O(log(sn) + n) = O(log(s) + n)

= O(n)

Observed: O(n log(s))

= O(n log(n))
Now take s = n
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Idea

Although not optimal, NC–Lists achieve excellent results in
practice.
Would it be possible to use them for our problem?
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Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150



Results for the new algorithm

Modifications

• We now need to go up in the tree.

⇒ We added a parent column in the L array, which points to
the parent interval.

• Create a single file with the L, H arrays, and the interval file
(in a compact format).

• Transcripts are sets of intervals, not intervals.

⇒ The smallest interval overlapping all the exons is stored. If
there is a match, exons are extracted from the original file and
compared.

Time complexity

Time complexity is O(#Q + #R + #O).
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Real data set

Description

data set # reads # transc. # ov.

yeast 10M 9k 20M
fly 3M 183k 10M
cress 20M 245k 58M

Run time

data set bin has seg fj nc new

yeast 5.1 3.2 4.3 — 4.8 3.4
fly 2.5 1.3 1.9 1.1 2.1 1.4
cress 17 9.2 13 — 14 9.1
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Real data set

Pre-processing time

data set bin has seg fj nc new

yeast 2 1 1 — 2× 103 7× 103

fly 44 29 23 33 1× 103 7× 103

cress 68 44 50 — 7× 103 2× 104

RAM consumption

data set bin has seg fj nc new

yeast 12 8 8 — 32 376
fly 12 40 12 4× 104 292 236
cress 12 56 12 — 236 176
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Simulated data — run time
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Simulated data — pre-processing time
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Simulated data — RAM consumption
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Simulated data — pre-p. + run time
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Simulated data — pre-p. + 3 run time
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S–MART

Used in:

• FindOverlaps: the previous fast implementation.

• CompareOverlapping: the previous implementation, with
several options (extend 5’/3’ of query/reference sets, get
anti-sense hits only, etc.).

• Clusterize: uses the sorting procedure.

• RestrictsFromCoverage: uses the sorting procedure.

• ...

Not used in:

• CompareOverlappingSmallQuery/

CompareOverlappingSmallRef: uses binning.
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The end

That’s all!
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