
5 years @ URGI: transcriptomics, transposable
elements and epigenetics

Matthias Zytnicki

ALIMENTATION

AGRICULTURE

ENVIRONNEMENT

Outline

Research field for the INRA competition

Impact of transposable elements in the formation of
heterochromatin, and relations with epigenetic regulation

My work

Computer
developments ←→ Bio-analysis

S–MART Transcription of
transposable elements

NC-lists
epigenetics

2 / 150

Outline

1 Biology
Impact of transposable transcription on the genome
Epigenetics

2 Computer science
S–MART
NC-lists

3 / 150

Outline

1 Biology
Impact of transposable transcription on the genome
Epigenetics

2 Computer science
S–MART
NC-lists

4 / 150

TE transposition

From Levin & Moran, Nat. Rev. Gen., 2011
5 / 150

Transposition and silencing

From Freschotte et al., Nat. Rev. Gen., 2008

6 / 150

Impact of transposition

From Slotkin & Martienssen, Nat. Rev. Gen., 2007

7 / 150

Transposition in plants

From Ragupathy, BMC Genomics, 2011

8 / 150

The project

Idea

• TEs are a driving force of genomic/genetic evolution of the
host genomes

• What about the transcriptome evolution?

Data

Id Line Tech. Norm. PE 5’-cap

1 Iso1a 454 3 7 3

2 Iso1a Illumina 7 7 3

3 Rev Illumina 7 7 7

4 IR6 Illumina 7 7 7

5 Iso1a Illumina 3 3 7

9 / 150

TEs are transcribed

Maps uniques!

10 / 150

Where are the reads

11 / 150

Classification of the influence of the TEs

TE

F 5
TE

E 5
TE

F 3E 3
TE TE

Int
TE

I

> 500 nt≤ 500 nt

TE

E
TSS TSS TSSTSS TSSTSSTSS

12 / 150

Example of TE insertion

E5

arm 3R:12,295,523..12,295,869

13 / 150

Example of TE insertion

E

arm X:11,576,152..11,576,333

14 / 150

Example of TE insertion

I

arm 2R:1,150,421..1,152,422

15 / 150

Example of TE insertion

F5

arm 3L:8,516,750..8,518,314

16 / 150

Classification of TE insertion
Count

17 / 150

Transcription at D. melanogaster
Distance between TSSs.

d d

18 / 150

Ontology associated to TEs

GO analysis

p-value

function: protein binding 3.5.10−5

process: cellular component organization 8.8.10−6

component: intracellular organelle 1.3.10−4

19 / 150

Copia

20 / 150

HMS-Beagle

21 / 150

Cryptic TSSs

Highly repeated regions

Chez HMS-Beagle:
TTATTATTTTATTATTATTATTGATATTATTATTAATACTATATTTTCAACCCAGTTCCT

AGAGATCTTCTGAAAGGAAAATTTTCCTATTTACTGTTCCTTTCTGGTACACTGTTCTCA

AAGCAAAATAACCGCGGTGAGCTAAAATTTATTGCATGCAAAAATAAAAAAAAAAAAATA

TAAAAATAAAAAATAAAAAAACAAAAACAAAAGATAAATAAGCAAACACATACACACGCA

TTCCATATTTTCTGCCCACAACTTTTGTTAAGTTCAAATTGGTTTAGGCTTGTTTTGTGC

22 / 150

Conclusions

Expression

• Many TEs are actively transcribed.

• In heterochromatin, genes and TEs are expressed, although
less than in euchromatin.

Transposable elements / genes interplay

• Many active TEs group around genes.

• Parts of TEs may have been domesticated as TSS.

• Transcribed TEs may appear at any position of a gene to form
complex interplay.

23 / 150

Outline

1 Biology
Impact of transposable transcription on the genome
Epigenetics

2 Computer science
S–MART
NC-lists

24 / 150

Epigenetic marks

The Scientist, 2011

25 / 150

Small RNAs

S Castel & R Martienssen, Nat. Rev. Gen., 2013
26 / 150

Regulation

S Castel & R Martienssen, Nat. Rev. Gen., 2013

27 / 150

RTL projects — H. Vaucheret

Idée
5 RTLs look like Dicer, what is their role?

Data
sRNA-Seq:

• Col

• rtl2 (little affected)

• 2 × 35S–RTL2 (little affected)

• 35S–RTL1 (very affected)

• dcl2/dcl3/dcl4

• 2 × dcl2/dcl3/dcl4 35S–RTL2

28 / 150

Results

29 / 150

Results

30 / 150

Results RTL1

31 / 150

Conclusions

RTL1

• RTL1 probably degrades (almost) perfect double stranded
RNAs

• RTL1 contributes to virus response

RTL2

• Few changes observed

• Still working on it

32 / 150

LHP1 project — V. Gaudin

Idea
LHP1 is a chromatin remodeler associated with H3K27me3.

Aims

• Link with LIF2 (a companion)

• Targets of LHP1

33 / 150

Distribution
Distribution of the reads log2(IP

input).

34 / 150

Distribution
Distribution of the called regions

35 / 150

Distribution of the loci

36 / 150

Distribution on the transcripts

LHP1:

37 / 150

Distribution on the transcripts

LIF2:

38 / 150

Colocalization

genes targeted by LHP1 and LIF2.

39 / 150

Marks
LHP1 — H3K27me3

40 / 150

Marks
LHP1 — H3K36me3

41 / 150

Marks
LIF2 — H3K4me3

42 / 150

Outline

1 Biology
Impact of transposable transcription on the genome
Epigenetics

2 Computer science
S–MART
NC-lists

43 / 150

Outline

1 Biology
Impact of transposable transcription on the genome
Epigenetics

2 Computer science
S–MART
NC-lists

44 / 150

S–MART

What is S–MART?

• S–MART is an RNA-Seq analysis toolbox

• S–MART is no pipe-line

• S–MART is a collection of tools

RNA-Seq?

Sequencing of the transcripts (RNA) of a tissue/organism/strain. . .

• RNA-Seq (mRNAs, long ncRNAs)

• sRNA-Seq (miARN, siARN, piARN. . .)

• 5’ capped RNA-Seq

• 3’ capped RNA-Seq

• . . .

45 / 150

Typical RNA-Seq analyses

• Transcriptome annotation

• Differential expression

• Alternative splicing

• . . .

In general, RNA-Seq data are compared with some annotation.

46 / 150

GFF3 format

Example of a GFF3 file. The last field may contain some
information.

chr1 S-MART mRNA 1050 9000 . + . ID=mRNA1;Name=myGene

chr1 S-MART exon 1050 1500 . + . ID=exon1;Parent=mRNA1

chr1 S-MART exon 3000 3902 . + . ID=exon2;Parent=mRNA1

chr1 S-MART exon 5000 5500 . + . ID=exon3;Parent=mRNA1

chr1 S-MART exon 7000 9000 . + . ID=exon4;Parent=mRNA1

47 / 150

WIG format

variableStep chrom=chr1

10 11.5

11 3

15 16

16 18

18 21

48 / 150

Compare Overlapping

• Input: 2 annotation files

• Output: 1 annotation file

• Description: Give all the elements of the first file which
overlap the elements of the second file.

• Options:
• colinear/antisense only
• overlap the n first nt. of the first file
• overlap the n upstream nt.
• within n nt. of the elements of the first file
• . . .

• Remark: Update the nbOverlaps et overlapWith tags

49 / 150

Compare Overlapping

reads

results

refSeq

50 / 150

Compare Overlapping

file A

file B

file A is the first file

file B is the first file

input

output

51 / 150

Get Difference

• Input: 2 annotation files

• Output: 1 annotation file

• Description: Subtract to the first file the nt. of the second file

• Input: 1 annotation file, 1 FASTA file

• Output: 1 annotation file

• Description: Give the intergenic regions

52 / 150

Get Difference

set 2

set 1

genome

result 1

result 2

53 / 150

Get Flanking

• Input: 2 annotation files

• Output: 1 annotation file

• Description: Get the elements of the second file which flank
the elements of the first file

• Options:
• restrict to collinear/anti-sense
• restrict to flanking element between n and n′ nt. of the

elements of the first file
• restrict to upstream elements
• . . .

• Remark: Update the flanking and flankingDistance tags

54 / 150

Get Flanking

set 2

set 1

(nothing)

result 1

result 2

result 3

result 4

result 5

result 6

500 nt.

55 / 150

Modify Genomic Coordinates

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Extend/shrink elements

• Options:
• keep the first / last n nucleotides
• extend to n nt. upstream / downstream

56 / 150

Modify Genomic Coordinates

1 2 3 4 5 876 109position

original read

shrink to 1st nt.

extend downstream by 3 nt.

extend upstream by 3 nt.

shrink to 0st nt. and
extend upstream by 3 nt.

57 / 150

Clusterize

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Merge overlapping elements

• Options: typical

• Remarque: Update the nbElements tag

58 / 150

Clusterize

reads

results

59 / 150

Clusterize By Sliding Windows

• Input: 1 annotation file, 1 FASTA file

• Output: 1 GFF3 file

• Description: Count the number of annotation per sliding
windows

• Options: if the GFF3 file has some tags, may compute
avg/min/max/med of the tags in a window

• Remarque: Update the nbElements tag

60 / 150

Get Letter Distribution

1 2
40

window
size of the

overlap
size of the

Distribution of the nucleotides per position

61 / 150

Collapse Reads

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Merge identical elements

• Remarque: Update nbElements

62 / 150

Collapse Reads

reads

results
nbElements=2

Merge identical reads

63 / 150

Get Exons

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Give all the exons

64 / 150

Get Introns

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Give all the introns

65 / 150

Mapper Analyzer

• Input: 1 mapping file, a FASTA/Q file

• Output: 1 annotation file

• Description: Give the mapping w.r.t./g some criteria

• Options:
• # errors
• gaps in alignment
• # occurrences

• Remark: Update nbOccurrences

66 / 150

Select By Tag

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Give all the element with a given tag

67 / 150

Get Random Subset

• Input: 1 annotation file

• Output: 1 annotation file

• Description: Select randomly some elements

68 / 150

Modify Sequence List

• Input: 1 FASTA/Q file

• Output: 1 FASTA/Q file

• Description:
• keep / remove the n first / last nucleotides of the file

69 / 150

Trim Sequences

• Input: 1 FASTA file/Q

• Output: 1 FASTA file/Q

• Description: trim the 5’ et 3’ adapters

• Options: insertions/deletions

70 / 150

Get Distance

• Input: 2 annotation files

• Output: 1 figure

• Description: get the distance between the elements of the
second file which are closest to the elements of the first file. A
point (x , y) means that y elements of the second file are
distant to x nt. of the elements of the first file.

• Options: as usual

71 / 150

Get Distance

Distance between observed and annotated TSSs

72 / 150

Get Distribution

• Input: 1 annotation file, a FASTA file

• Output: 1 figure per chromosome

• Description: count the number of element on sliding windows,
and plot the distribution

73 / 150

Get Distribution

Read density on the chromosome 2L

74 / 150

Get Sizes

• Input: 1 annotation file or a FASTA/Q file

• Output: 1 figure

• Description: draw the size distribution

75 / 150

Get Sizes

Read size distribution

76 / 150

Get Letter Distribution

• Input: 1 FASTA/Q file

• Output: 2 figures

• Description:
• draw the A%, C%, etc. for each position
• draw le A%, C%, etc. for each read

77 / 150

Get Letter Distribution

Distribution of the nucleotides per position

78 / 150

Get Letter Distribution

Distribution of the nucleotides per read

79 / 150

Plot Coverage

• Input: 2 annotation files

• Output: 2× n figures

• Description:
• draw the density of the elements of the second file w.r.t./g the

elements of the first file
• draw the elements of the second file w.r.t./g the elements of

the first file

• Remark: read the tags nbOverlaps and nbOccurrences

• Input: 1 GFF3 file with the Target tag

80 / 150

Plot Coverage

Coverage of the elements of the first file

81 / 150

Plot Coverage

Elements of the second file w.r.t./g the first elements

82 / 150

Plot

• Input: 1 annotation file

• Output: 1 figure

• Description: draw the distribution of the values of a/several
given tag(s)
• 1 tag: draw an histogramme
• 2 tags: draw a line or a cloud
• 3 tags: draw a colored cloud

83 / 150

Plot

chr1 S-MART mRNA 1000 2000 . + . ID=mRNA1;tagX=1;tagY=1

chr1 S-MART mRNA 2000 3000 . + . ID=mRNA2;tagX=3;tagY=2

chr1 S-MART mRNA 3000 4000 . + . ID=mRNA3;tagX=5;tagY=3

0 1 2 3 4 5 6
0

1

2

3

84 / 150

Get Wig Data

• Input: 1 annotation file, 1 WIG file

• Output: 1 annotation file

• Description: compute the average value for each annotation

• Remark: update a tag

85 / 150

Get Wig Distance

• Input: 1 annotation file, 1 WIG file

• Output: 1 figure

• Description: draw the average of the WIG file around the
elements of the annotation

86 / 150

Get Wig Distance

Conservation around the TSSs

87 / 150

Get Wig Profile

• Input: 1 annotation file, 1 WIG file

• Output: 1 figure

• Description: draw the average value of the WIG file in and
around the annotations

88 / 150

Get Wig Profile

Conservation on the genes

89 / 150

Convert Transcript

• Input: 1 annotation file

• Output: 1 annotation file

• Description: convert formats

90 / 150

Coordinates To Sequence

• Input: 1 annotation file, 1 FASTA file

• Output: 1 FASTA file

• Description: give the sequence corresponding to the
annotation

91 / 150

Get Random Regions

• Input: 1 FASTA file

• Output: 1 annotation file

• Description: give random annotations

• Input: 1 FASTA file, 1 annotation file

• Output: 1 annotation file

• Description: shuffle the annotation randomly in the genome

92 / 150

Compute Coverage

• Input: 2 annotation files

• Output: —

• Description: give the percentage of coverage for each element
of the second file

93 / 150

Interval

• Description: a genomic interval (chromosome, start, end,
name?)

• Functionalities:
• restrictions/extensions
• distance w.r.t./g another interval
• overlap/inclusion checks
• difference w.r.t./g another interval
• merge with another interval

94 / 150

Transcript

• Description: a set of genomic intervals

• Functionalities:
• same as Interval
• select introns

95 / 150

Sequence

• Description: a sequence

• Functionalities:
• restrictions/extensions
• represents a FASTA/FASTQ sequence

96 / 150

Sub-Mapping

• Description: a set of target/reference intervals

97 / 150

Mapping

• Description: a set of sub-mappings

• Functionalities:
• generate a Transcript element

98 / 150

Connection

• Description: an SQLite connection

• Functionalities:
• may create several executes with only one commit

99 / 150

Query

• Description: an SQLite query

• Functionalities:
• iterator on the output of a query

100 / 150

Table

• Description: an SQLite table

• Functionalities:
• iterator on the lines of the table
• format the SQLite output into Python objects

101 / 150

Transcript Table

• Description: gère une table d’annotation en SQLite

• Functionalities:
• iterator on Transcript elements
• add, remove elements
• split big executes

102 / 150

Parsers

• Description: parser annotation/sequence/mapping files

• Functionalities:
• a ParserChooser provide the right Parser for a given format
• the interface is uniform

• Formats:
• annotation: bed, gff
• mapping: axt, blast, blast, bowtie, eland, exonerate, maq,

mummer, nucmer, rmap, sam, shrimp, soap, soap2
• sequence: fasta, fastq
• other: wig

103 / 150

Writers

• Description: write annotation files

• Functionalities:
• a WriterChooser provide the right Writer for a given format
• the interface is uniform

• Formats:
• annotation: bed, gff, sam
• mapping: gbrowse, ucsc
• other: wig, SQLite

104 / 150

Transcript Lists Comparator

• Description: comparison engine
• give the overlaps
• compute distances
• clusterize

• Functionalities:
• many options

105 / 150

RPlotter

• Description: plot data

• Functionalities:
• plot histograms, lines, (colored) clouds
• read several dictionary dict(x) = y
• modular: coulors, legend, labels, title. . .

106 / 150

Progress

• Description: progression bar

• Functionalities:
• uses parameter verbosity

Reading /home/mzytni...[=================] 10275648/26088442

ETA: 41h 32m

107 / 150

Unlimited Progress

• Description: same thing, when the aim is unknown

108 / 150

Example — Conversion

parserChooser = ParserChooser(verbosity)

parserChooser.findFormat(formatIn)

parser = parserChooser.getParser(fileNameIn)

writerChooser = ParserChooser(verbosity)

writerChooser.findFormat(formatOut)

writer = writerChooser.getParser(fileNameOut)

for transcript in parser.getIterator():

writer.addTranscript(transcript)

109 / 150

Outline

1 Biology
Impact of transposable transcription on the genome
Epigenetics

2 Computer science
S–MART
NC-lists

110 / 150

Problem
Data

• input: 2 sets of genomic coordinates (query / reference).

• output: the elements of the first set which overlap with the
second set.

reads

results

refSeq

Example

• query: chr1: 100 – 500; chr2: 300 – 400

• reference: A chr1: 200 – 300; B chr3: 300 – 400

• output: chr1: 100 – 500 ov. with A

Applications

• Get the mapped reads which overlap with a given annotation.

• Get the conflicting events in 2 time schedules.

111 / 150

Problem

Data

• input: 2 sets of genomic coordinates (query / reference).

• output: the elements of the first set which overlap with the
second set.

Example

• query: chr1: 100 – 500; chr2: 300 – 400

• reference: A chr1: 200 – 300; B chr3: 300 – 400

• output: chr1: 100 – 500 ov. with A

Applications

• Get the mapped reads which overlap with a given annotation.

• Get the conflicting events in 2 time schedules.

111 / 150

Applications in genomics

With some additional tweaks, you can get:

• the mapped reads which overlap with a given annotation.

• (same as before) on the same / other strand.

• the query elements which are 1kb before the reference
elements.

• the query elements such that there exists a reference elements
1kb before.

• the closest elements of the reference set w.r.t. the query set.

• the distance between the elements of the query set and the
reference set.

• the elements of the query set such that at least 100nt are
covered by the reference set.

• . . .

112 / 150

Naive algorithm

Algorithm 1: naiveSearch(Q,R)

1 foreach q ∈ Q do
2 o ← ∅
3 foreach r ∈ R do
4 if q <> r then o.add(r)

5 if o 6= ∅ then print(q with o)

Time complexity

#Q elements in the query set, #R in the reference set:
O(#Q ×#R)

113 / 150

Using a database

Algorithm 2: databaseSearch(Q,R)

1 foreach r ∈ R do
2 database (r .chr) .store(r .start, r .end , r .name)

3 foreach q ∈ Q do
4 o ← database.query(SELECT * FROM database WHERE

start ≤ q.end AND end ≥ q.start)
5 if o 6= ∅ then print(q with o)

Time complexity

???

114 / 150

Using a database

Algorithm 3: databaseSearch(Q,R)

1 foreach r ∈ R do
2 database (r .chr) .store(r .start, r .end , r .name)

3 foreach q ∈ Q do
4 o ← database.query(SELECT * FROM database WHERE

start ≤ q.end AND end ≥ q.start)
5 if o 6= ∅ then print(q with o)

Problem
Queries like

SELECT * FROM table WHERE start <= XXX AND end >= XXX

are inefficient.
Even with multiple-row indices.
Yes, I tried.

115 / 150

Binning

9998

109

0 1 2 3

100

4 5

110

0 1k 2k 3k . . .

9 10 11

101

chr.
1 100 110

Algorithm 4: binSearch(Q,R)

1 foreach r ∈ R do
2 database (r .chr) .store(r .bin, r .start, r .end , r .name)

3 foreach q ∈ Q do
4 o ← database.query(SELECT * FROM database WHERE bin

∈ bins(q) AND start ≤ q.end AND end ≥ q.start)
5 if o 6= ∅ then print(q with o)

116 / 150

Binning

9998

109

0 1 2 3

100

4 5

110

0 1k 2k 3k . . .

9 10 11

101

chr.
1 100 110

Time complexity

O(#Q ×#R) in unfortunate cases.
O(#Q) in fortunate cases.

117 / 150

In memory binning

Idea
The binning array is stored in memory. The structure is:

• a vector with #bins elements,

• each cell stores the address of the interval in the file.

Space complexity

O(#bins + #R)

118 / 150

Interval tree

0 10 20 30 40 50 60 70

A
B
C
D

E F
G H

35

10 BC

D 28 E 45 F

55 G

65 H

A

7

Definition (Segment tree)

A segment tree:

• is a balanced binary tree,

• with nodes which:
• model points,
• have one left and one right child
• store overlapping intervals.

119 / 150

Interval tree

Algorithm 5: intervalTreeSearch(q, n)

1 foreach i ∈ n.intervals do
2 if i <> q then o.add(i)

3 if q.start ≤ i then intervalTreeSearch(q, i .left)
4 if q.end ≥ i then intervalTreeSearch(q, i .right)

Whole algorithm

• Call IntervalTreeSearch(q, root) for every q ∈ Q.

• Print o for each q, if o is not empty.

120 / 150

Interval tree

Algorithm 6: intervalTreeSearch(q, n)

1 if n <> q then
2 foreach i ∈ n.intervals do
3 if i <> q then o.add(i)

4 if q.start ≤ i then intervalTreeSearch(q, i .left)
5 if q.end ≥ i then intervalTreeSearch(q, i .right)

Time complexity

O(#Q ×#R).
More interesting, using “output aware” time complexity.
O(#Q × log(#R) + #O) with O being the matches.

121 / 150

Segment tree

A

A A

B

−∞-9 10-19 20-29 30-39 40-49 50-59 60-69 70-+∞

A

A
B
C

D
E

C ED D

B C D E10–49 20–39 20–29 50–69 50–59

Definition (Segment tree)

A segment tree:

• is a balanced binary tree,

• has leaves which model intervals of consecutive end points,

• has internal nodes which model union of child node,

• has nodes which store overlapping intervals.

122 / 150

Segment tree

A

A A

B

−∞-9 10-19 20-29 30-39 40-49 50-59 60-69 70-+∞

A

A
B
C

D
E

C ED D

B C D E10–49 20–39 20–29 50–69 50–59

Algorithm 7: segmentTreeSearch(q, n)

1 if n <> q then
2 o.add(n.intervals)
3 foreach c ∈ n.children do
4 segmentTreeSearch(q, c)

123 / 150

Segment tree

A

A A

B

−∞-9 10-19 20-29 30-39 40-49 50-59 60-69 70-+∞

A

A
B
C

D
E

C ED D

B C D E10–49 20–39 20–29 50–69 50–59

Time complexity

O(#Q × log(#R) + #O).

Space complexity

O(#R × log(#R)).

124 / 150

Binning + Segment tree

9998

109

0 1 2 3

100

4 5

110

9 10 11

101

Time complexity

O(#Q × log(#R))?

125 / 150

Binary Interval Search

A
B

C
E F G

D
ref

query

end sorted refs:
start sorted refs: ABCD

AEFDG

EFG

CB

Algorithm 8: BISSearch(Q,R)

1 starts ← R.sort(start)
2 ends ← R.sort(end)
3 foreach q ∈ Q do
4 b ← before(q.end , starts)
5 a← after(q.start, ends)
6 print(q with #R − (a + b))

126 / 150

Binary Interval Search

A
B

C
E F G

D
ref

query

end sorted refs:
start sorted refs: ABCD

AEFDG

EFG

CB

Time complexity

O(#Q × log(#R))

127 / 150

Interval Skip List

a:2–17, b: 17–20, c:8–12, e:−∞–17

Definition (Interval Skip List)

An Interval Skip List is a linked list where:

• each node contains:
• a value,
• several forward links labeled with intervals;

• nodes are sorted following increasing value,

• the probability that a node has k forward links is (1− p)pk−1.

128 / 150

Interval Skip List

a:2–17, b: 17–20, c:8–12, e:−∞–17

Algorithm 9: ISLSearch(q, x)

1 foreach i ∈ [maxLevel ..1] do
2 while x [i].next.key < q do x ← x [i].next
3 o.add(x [i].intervals)

4 while x [0].next.key < q do x ← x [0].next
5 while x <> q do
6 o.add(x [0].intervals)
7 x ← x [0].next

129 / 150

Interval Skip List

Time complexity

O(#Q × log(#R))

Space complexity

O(#R × log(#R))

130 / 150

FJoin

131 / 150

FJoin

Algorithm 10: FJoin(Q,R)

1 Q.sort; R.sort
2 Wq ←Wr ← ∅; q ← Q.first; r ← R.first
3 while ¬Q.isEmpty ∧ R.isEmpty do
4 if q.start < r .start then scan (q,Wq, r ,Wr); q ← Q.next
5 else scan (r ,Wr , q,Wr); r ← R.next

Function scan(x ,Wx , y ,Wy)

1 foreach y2 ∈Wy do
2 if y2 < x then Wy .remove(y2);
3 else if y2 <> x then report(y2 with x);

4 if ¬x < y then Wx .push(x);

132 / 150

FJoin

Time complexity

O(#Q + #R + #O)

Space complexity

O(#O)!

133 / 150

log comparisons

Motivation

• trees make it possible to compare a query interval with
reference intervals in O(log #R).

• In practice, it seems longer than binning.

NC–Lists

NC-Lists do it better than any other?

134 / 150

Introduction

Idea

• Log-time can be achieved using dichotomic search.

• Dichotomic search cannot be used when intervals are nested.

• Nested intervals are put in an other list.

1

2

of 2
sub-list

main
list

1

2

3 4 5

6

6

3 4 5

135 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Sequential search.

• Search in sub-lists.

136 / 150

Structures

The L array

Each line is an interval:

• start

• end

• pointer to its sublist
(in H)

The H array

Each line is a sublist:

• pointer to the first
interval (in L)

• # elements

Both arrays are binary structures.

137 / 150

Problem

Hope

Any search can be performed in time O(log(#Q) + #O).

n layers

s siblings

• #R = s × n

• #O = n

Expected: O(log(sn) + n) = O(log(s) + n)

= O(n)

Observed: O(n log(s))

= O(n log(n))
Now take s = n

138 / 150

Problem

Hope

Any search can be performed in time O(log(#Q) + #O).

n layers

s siblings

• #R = s × n

• #O = n

Expected: O(log(sn) + n) = O(log(s) + n)

= O(n)

Observed: O(n log(s))

= O(n log(n))
Now take s = n

138 / 150

Problem

Hope

Any search can be performed in time O(log(#Q) + #O).

n layers

s siblings

• #R = s × n

• #O = n

Expected: O(log(sn) + n) = O(log(s) + n) = O(n)
Observed: O(n log(s)) = O(n log(n))
Now take s = n

138 / 150

Idea

Although not optimal, NC–Lists achieve excellent results in
practice.
Would it be possible to use them for our problem?

139 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Execution

reference

query

Algorithm

• Find first overlap.

• Mark first overlap.

• Go down. Mark lowest
first overlap.

• Sequential search.

• Stop when ref. interval >
query interval.

• Next query, start from
lowest first overlap.

• Check parents.

• Sequential search.

140 / 150

Results for the new algorithm

Modifications

• We now need to go up in the tree.

⇒ We added a parent column in the L array, which points to
the parent interval.

• Create a single file with the L, H arrays, and the interval file
(in a compact format).

• Transcripts are sets of intervals, not intervals.

⇒ The smallest interval overlapping all the exons is stored. If
there is a match, exons are extracted from the original file and
compared.

Time complexity

Time complexity is O(#Q + #R + #O).

141 / 150

Real data set

Description

data set # reads # transc. # ov.

yeast 10M 9k 20M
fly 3M 183k 10M
cress 20M 245k 58M

Run time

data set bin has seg fj nc new

yeast 5.1 3.2 4.3 — 4.8 3.4
fly 2.5 1.3 1.9 1.1 2.1 1.4
cress 17 9.2 13 — 14 9.1

142 / 150

Real data set

Pre-processing time

data set bin has seg fj nc new

yeast 2 1 1 — 2× 103 7× 103

fly 44 29 23 33 1× 103 7× 103

cress 68 44 50 — 7× 103 2× 104

RAM consumption

data set bin has seg fj nc new

yeast 12 8 8 — 32 376
fly 12 40 12 4× 104 292 236
cress 12 56 12 — 236 176

143 / 150

Simulated data — run time

 1000, 10000 1000, 100000 1000, 1000000 5000, 50000

 5000, 500000 5000, 5000000 10000, 100000 10000, 1000000

 10000, 10000000 50000, 500000 50000, 5000000 100000, 1000000

100000, 10000000

1

2

10

20

100

200

400

5

10

20

50

100

200

1000

2000

20

50

100

200

400

1000

2000

4000

50

100

200

1000

2000

200

400

1000

2000

4000

bin seg has nc new bin seg has fj nc new bin seg has fj nc new bin seg has fj nc new

bin seg has fj nc new bin seg has nc new bin seg has nc new bin seg has nc new

bin seg has nc new bin seg has fj nc new bin seg has nc new bin seg has nc new

bin seg has nc new

ru
n
 t
im

e
 (

in
 s

.)

Size of the chrom. / # references

100

200

144 / 150

Simulated data — pre-processing time

●●●●●

●●●●●
●●●●●●●●●●

●●●●●

●●●●●

●●●●● ●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●● ●●●●●●●●●●

●●●● ●●●●●

●●●●●

●●●●●
●●●●●●●●●●

●●●●● ●●●●●

●●●●●

●●●●● ●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●● ●●●●●●●●
●
●

●●●●●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●●●●●●

●●●●●

●●●●●

●● ●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●●●●●●

●●●●●

 1000, 10000 1000, 100000 1000, 1000000 5000, 50000

 5000, 500000 5000, 5000000 10000, 100000 10000, 1000000

 10000, 10000000 50000, 500000 50000, 5000000 100000, 1000000

100000, 10000000

0.1

1.0

0.1

1.0

10.0

1

100

1

10

1

10

100

10

1000

1

10

1

10

100

10

1000

10

100

10

100

1000

100

10

100

1000

bin seg has nc new bin seg has fj nc new bin seg has fj nc new bin seg has fj nc new

bin seg has fj nc new bin seg has nc new bin seg has nc new bin seg has nc new

bin seg has nc new bin seg has fj nc new bin seg has nc new bin seg has nc new

bin seg has nc new

bu
ild

 ti
m

e
(in

 s
.)

Size of the chrom. / # references
● 100

200

145 / 150

Simulated data — RAM consumption

●●●●
●

●●●●● ●●●●●●●●●● ●●●●●

●●●●●

●●●●● ●●●●●●●●●● ●●●●● ●●●●●

●●●●●

●●●●● ●●●●●●●●●● ●●●● ●●●●●

●●●●●

●

●●●● ●●●●●●●●●● ●

●

●●● ●●●●●

●●●●●

●
●●●● ●●●●●●●●●● ●●●●

●

●●●

●

●

●●●●●

●

●● ●●●●●●●●●● ●●●●●

●●●●●

●

●●●● ●●●●●●●●●● ●●

●

●

●
●●●●●

●

●●●● ●●●●●●●●●● ●●●

●

●

●●●●●

●●

●●●●●●●●● ●

●

●●●

●●●●●

●●●●● ●●●●
●

●●●●● ●●●●●

●

●

●

●●

●●●●●

●●●

●

●●●●●●●●● ●●●●●

●●●●●

●●●●●

●

●●●

●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

 1000, 10000 1000, 100000 1000, 1000000 5000, 50000

 5000, 500000 5000, 5000000 10000, 100000 10000, 1000000

 10000, 10000000 50000, 500000 50000, 5000000 100000, 1000000

100000, 10000000

10

20

10

20

50

100

10
20
50

100

1000

10

20

50

100

10
20
50

100

1000

10

20

10

20

10

20

10

20

10
20

50
100

1000

20

50

20

50

100

20

50

bin seg has nc new bin seg has fj nc new bin seg has fj nc new bin seg has fj nc new

bin seg has fj nc new bin seg has nc new bin seg has nc new bin seg has nc new

bin seg has nc new bin seg has fj nc new bin seg has nc new bin seg has nc new

bin seg has nc new

us
ed

 R
A

M
 (

in
 k

B
)

Size of the chrom. / # references
● 100

200

146 / 150

Simulated data — pre-p. + run time

●●●●●

●●●
●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●
●
●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●
●●

●●●●●

●●●●
●

●●●● ●●●●●

●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●
●

●●●●●

●●●●●
●●●●●

●●●●●

●●●●●
●●
●

●●●●●

●●●●●
●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●
●●
●●

●●●●●

●●
●
●●

●●●●●

●●●●●
●●

●●●●●

●●●●
●●●●●

●●●●●●
●●●●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●

●●●●●

●●●●● ●●●●●
●●●●●

●
●●●●

●●●●●

●●●●●
●●●●●

●●●●●
●●●
●●

●●●●●

●●●●●
●●●●●

 1000, 10000 1000, 100000 1000, 1000000 5000, 50000

 5000, 500000 5000, 5000000 10000, 100000 10000, 1000000

 10000, 10000000 50000, 500000 50000, 5000000 100000, 1000000

100000, 10000000

2

5

20

50

200

500

10

20

100

200

1000

2000

20

50

200

500

2000

5000

100

200

1000

2000

200

500

2000

5000

bin seg has nc new bin seg has fj nc new bin seg has fj nc new bin seg has fj nc new

bin seg has fj nc new bin seg has nc new bin seg has nc new bin seg has nc new

bin seg has nc new bin seg has fj nc new bin seg has nc new bin seg has nc new

bin seg has nc new

ov
er

al
l t

im
e

(in
 s

.)

Size of the chrom. / # references
● 100

200

147 / 150

Simulated data — pre-p. + 3 run time

●●●●●

●●●
●●

●
●●
●
●

●●●●●
●●●●●

●●●●●

●●●
●
●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●●
●
●

●●●●
●

●●●●
●

●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●
●

●●●●●

●●●●●

●●●●●

●●●●●
●●●●●

●●
●

●●●●●

●●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●
●●
●●

●●●●●

●●
●
●● ●●●●●

●●●●●

●●

●●●●●

●●●● ●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●

●●●●●

●●●●●
●●●●●

●●●●●

●
●●●●

●●●●●

●●●●● ●●●●●

●●●●●

●●●
●●

●●●●●

●●●●● ●●●●●

 1000, 10000 1000, 100000 1000, 1000000 5000, 50000

 5000, 500000 5000, 5000000 10000, 100000 10000, 1000000

 10000, 10000000 50000, 500000 50000, 5000000 100000, 1000000

100000, 10000000

5

10

50

100

500

1000

20

50

200

500

2000

5000

50

100

500

1000

5000

10000

200

500

2000

5000

500

1000

5000

10000

bin seg has nc new bin seg has fj nc new bin seg has fj nc new bin seg has fj nc new

bin seg has fj nc new bin seg has nc new bin seg has nc new bin seg has nc new

bin seg has nc new bin seg has fj nc new bin seg has nc new bin seg has nc new

bin seg has nc new

tim
e

fo
r

3
co

m
pa

ris
on

s
(in

 s
.)

Size of the chrom. / # references
● 100

200

148 / 150

S–MART

Used in:

• FindOverlaps: the previous fast implementation.

• CompareOverlapping: the previous implementation, with
several options (extend 5’/3’ of query/reference sets, get
anti-sense hits only, etc.).

• Clusterize: uses the sorting procedure.

• RestrictsFromCoverage: uses the sorting procedure.

• ...

Not used in:

• CompareOverlappingSmallQuery/

CompareOverlappingSmallRef: uses binning.

149 / 150

The end

That’s all!

150 / 150

	Biology
	Impact of transposable transcription on the genome
	Epigenetics

	Computer science
	S–MART
	NC-lists

