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Stochastic networks

�� ��Resource sharing with uncertainty
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US electrical grid
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European railroad network
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AT&T Internet backbone
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Internet router
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Internet router
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Cellp

6 / 40



Randomness

Several sources of randomness

I Users behavior

I Failures

I Varying environment

I Movements

I . . .
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Human networks

Designed and managed by humans

I Room for efficient design and management

1. Dimensioning:

I Known demand

I Target quality of service

I What is the network size?

2. Management:

I Network structure given

I More efficient use of resources



US electrical grid
I When to turn on/off power plants?

I Where to store energy?
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European railroad network
I How many trains to allocate?

I How to decide schedule?
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AT&T Internet backbonep
I How to share links?

I How to route packets?

11 / 40



Internet routerp
I Which packets to transmit?
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Human networks

Designed and managed by humans

I Room for efficient design and management

1. Dimensioning:

I Known demand

I Target quality of service

I What is the network size?

2. Management:

I Network structure given

I More efficient use of resources



AT&T Internet backbone
I 2 million customers, 100 MB per day

I Which bandwidth so that delay ≤ 10ms?
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Human networks

Designed and managed by humans

I Room for efficient design and management

1. Dimensioning:

I Known demand

I Target quality of service

I What is the network size?

2. Management:

I Network structure given

I More efficient use of resources



Measure of efficiency

Performance analysis

Mathematical tools to assess efficiency of resource sharing
algorithm

Two steps

1. Modeling
2. Mathematical analysis

Performance metric(s)?
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US electrical grid
I Frequency of black-outs

I Energy wasted
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European railroad network
I Delay

I Utilization
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AT&T Internet backbonep
I Latency/Jitter

I Throughput

I Fairness
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Internet routerp
I Throughput

I Delay

20 / 40



Cellp
I Variability of protein expression
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Renormalization techniques



LLN and CLT

(Xn, n ≥ 1) sequence of i.i.d. random variables

Law of large numbers (LLN)

If E|X| < +∞:

1

n

n∑
k=1

Xk −→
n→+∞

EX (almost surely)

Central limit theorem (CLT)

If EX = 0 and EX2 = 1:

1
√
n

n∑
k=1

Xk =⇒
n→+∞

N (in distribution)
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LLN and CLT

(Xn, n ≥ 1) sequence of i.i.d. random variables

Law of large numbers (LLN)

If E|X| < +∞:

1

n

n∑
k=1

Xk −→
n→+∞

EX (almost surely)

Central limit theorem (CLT)

If EX = 0 and EX2 = 1:

1
√
n

n∑
k=1

Xk =⇒
n→+∞

N (in distribution)

2 Remark that n−1/2
∑n

k=1Xk ⇒ 0 by LLN
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Functional LLN

Recall LLN:

I (Xn, n ≥ 1) sequence of i.i.d. random variables

Define new sequence (Sn, n ≥ 1) of random variables:

Sn =
1

n
(X1 + · · ·+Xn)

Then Sn → EX
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Functional LLN

Define new sequence (Sn, n ≥ 1) of processes:

Sn(t) =
1

n

(
X1 + · · ·+Xbntc

)
, t ≥ 0

I Speed up time by n, renormalize in space by n

LLN: Sn(t) converges for each fixed t:

Sn(t) = t×
1

nt

(
X1 + · · ·+Xbntc

)
→ t× EX
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Functional LLN

Functional LLN: Sn → S∞ = (tEX, t ≥ 0)

I Convergence of processes

I Uniform convergence on compact sets:

sup
0≤s≤t

∣∣Sn(s)− S∞(s)
∣∣ −→
n→+∞

0, t ≥ 0
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Functional LLN
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Sn(5) vs n
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Functional LLN
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Functional LLN
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Functional LLN
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Functional LLN

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

S1000(t) vs t

23 / 40



Functional LLN

�
�

�
�Sn → S∞

EX = 0: S∞ = 0
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Functional CLT

Define new sequence (Ŝn, n ≥ 1) of processes:

Ŝn(t) =
1
√
n

(
X1 + · · ·+Xbntc

)
, t ≥ 0

I Speed up time by n, renormalize in space by
√
n

I CLT: Ŝn(t)⇒ N

Functional CLT: Ŝn ⇒ Ŝ∞: Brownian motion
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Functional CLT
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Functional CLT
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Functional CLT
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Added value 1/5

First and second order asymptotic expansions

I S∞: mean behavior

I Ŝ∞: fluctuations around the mean
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Added value 2/5

S∞ and Ŝ∞ more tractable

I S∞ is deterministic

I Can do computations on Ŝ∞:

P

(
sup
s≤t

Ŝ∞(s) ≥ x
)

=

√
2
√
π

∫ +∞

x
e−y2/2dy

whereas law of sups≤t Ŝn(s) unknown
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Added value 3/5

Convergence of all continuous functionals:�
�

�
�Ψ(Sn)→ Ψ(S∞) and Ψ(Ŝn)⇒ Ψ(Ŝ∞)

I Interest of uniform convergence
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Added value 4/5

Invariance principle:�
�

�
�S∞ = f(EX) and Ŝ∞ = f(EX,EX2)

S∞ and Ŝ∞ the same for any other Y with EY 1,2 = EX1,2

Get to know the “true” parameters

I Dimensioning
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Added value 5/5 (more technical)

Stability (positive recurrence) of Markov processes:

I Difficult issue

I Important performance metric
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Added value 5/5 (more technical)

Set-up

I (M(t), t ≥ 0): Markov process, countable state-space

I Sequence (mn) of initial states of size ‖mn‖ = n

I Renormalize by size of initial state (LLN scaling):

Mn(t) =
1

n
M(nt) when M(0) = mn

Theorem (informal)

If for every sequence (mn) as above, Mn →M∞ and
M∞(t) = 0 for all t large enough, then M is stable.
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Examples



Single server queue
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Single server queue

In-flow
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Single server queue

In-flow Queue
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Single server queue

In-flow Queue Server

30 / 40



Single server queue

In-flow Queue Server Out-flow
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Single server queue

λ µ

In-flow Queue Server Out-flow

I Arrivals at rate λ

I Service capacity µ

Stability condition: λ < µ
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Single server queue

λ µ

In-flow Queue Server Out-flow

Q(t) = # customers in queue at time t

I Exponential assumptions: Q Markov process

Q(t) −→
{
Q(t) + 1 at rate λ
Q(t)− 1 at rate µ if Q(t) > 0

I Random walk reflected at 0
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Single server queue: LLN

Renormalization:

Qn(t) =
1

n
Qn(nt) with Qn(0) = n

Functional LLN: Qn → Q∞(t) = 1 + (λ− µt)+

I q+ = max(q, 0): reflection at 0

I First-order behavior: increase at rate λ, decrease at rate µ

λ > µ λ = µ λ < µ
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Single-server queue: CLT

Renormalization when λ = µ:

Q̂n(t) =
1
√
n
Q(nt)

Functional CLT: Q̂n ⇒ Q̂∞

I Q̂∞: reflected Brownian motion
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Single-server queue: CLT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Q̂∞(t) vs t

32 / 40



Wireless network with mobile users

Bandwidth allocation?
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Markovian model

Network with K nodes labelled k = 1, . . . ,K

Node k:

I Arrival rate λk

I Service capacity µk

Customers:

I Require i.i.d. exp(1) service requirements

I Move independently: common kernel R = (rk`)�� ��rk` = rate at which each user moves from k to `
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Markovian model

Nk(t) = # users at node k at time t

N(t) = (N1(t), . . . , NK(t)):

I K-dimensional Markov process

I Transition rates:

n −→


n+ ek at rate λk (arrival)
n− ek at rate µk1{nk>0} (departure)
n− ek + e` at rate nk × rk` (movement)

ek = kth unit vector (0, . . . , 0, 1, 0, . . . , 0)

I Q(t) = N1(t) + · · ·+NK(t): total # customers
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Symmetric example

Consider the case K = 3 and rk` = 1

1

2 3

1
1

1

1

1

1

λ1 µ1

λ2

µ2

λ3

µ3

35 / 40



Symmetric example

Focus on movements

1

2 3

1
1

1

1

1

1

λ1 µ1

λ2

µ2

λ3

µ3
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Symmetric example

Focus on movements

1

2 3

1
1

1

1

1

1

λ1 µ1

λ2

µ2

λ3

µ3

Each customer in cell k with probability 1/3

LLN: Nk(t) ≈
1

3
Q(t) when Q(t)� 1
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Dimension reduction

Assume R irreducible, stationary distribution π

I πk: probability of being at node k

When Q(t)� 1: Nk(t) ≈ Q(t)× πk for each k

N(t) ≈ Q(t)× π

K-dimensional

1-dimensional

K-dimensional

Reduces the problem to the study of Q(t)

I 1-dimensional problem!
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Single-server queue analogy

Focus on arrivals/departures
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1
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1

1
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Single-server queue analogy

Q(t)
∑
λk

∑
µk1{Nk(t)>0}

1{Nk(t)>0} → non-Markovian
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Single-server queue analogy

Q(t)
∑
λk

∑
µk

No empty node → departure rate =
∑
µk

Whole system behaves as single-server queue

I Arrival rate λ =
∑
λk

I Service capacity µ =
∑
µk�� ��P(no empty node) ≈ 1 when Q(t)� 1
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Functional LLN

Theorem (with D. Tibi, Annals of Applied Probability 2010)

Let Nn(t) = Nn(nt)/n with |Nn(0)| = n: then

(Nn(t), t ≥ 0) =⇒
n→+∞

Q∞ × π

I Q∞(t) = 1 + (λ− µ)+t: limit of single-server queue

Consequence

I Stability condition:
∑
λk ≤

∑
µk
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Functional CLT

Theorem (with S. Borst, Queueing Systems 2013)

Assume that
∑
λk =

∑
µk and let Nn(t) = N(n2t)/n:

then
(N̂n(t), t ≥ 0) =⇒

n→+∞
Q̂∞ × π

I Q̂∞: reflected Brownian motion, limit of single-server
queue
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Bandwidth-sharing

Extensions

I Multiclass, α-fair bandwidth-sharing

40 / 40


	Performance analysis of stochastic networks
	Renormalization techniques
	Examples

