Performance analysis of stochastic networks using renormalization techniques

Florian Simatos

Inria

MIAT, Toulouse, May 19, 2014

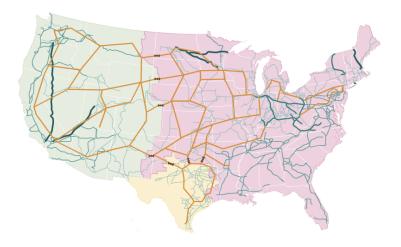
Performance analysis of stochastic networks

Renormalization techniques

Examples

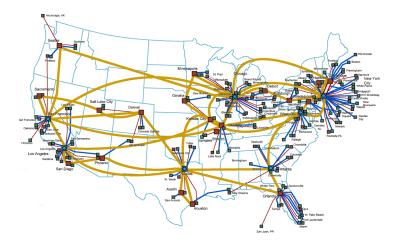
Stochastic networks

Resource sharing with uncertainty



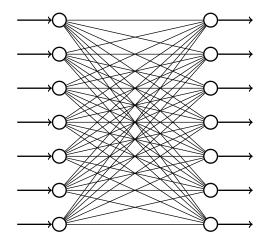
US electrical grid

European railroad network

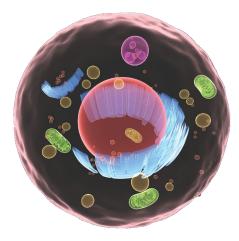


AT&T Internet backbone

Internet router



Internet router



Cell

Randomness

Several sources of randomness

- Users behavior
- Failures
- Varying environment
- Movements
- ▶ ...

Human networks

Designed and managed by humans

Room for efficient design and management

1. Dimensioning:

- Known demand
- Target quality of service
- What is the network size?

2. Management:

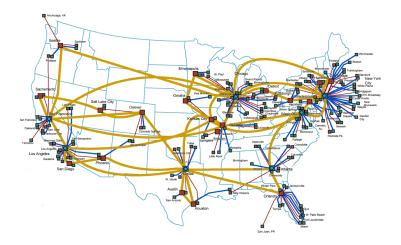
- Network structure given
- More efficient use of resources

US electrical grid

- When to turn on/off power plants?
- Where to store energy?

European railroad network

- How many trains to allocate?
- How to decide schedule?



AT&T Internet backbone

- How to share links?
- How to route packets?

Internet router

Which packets to transmit?

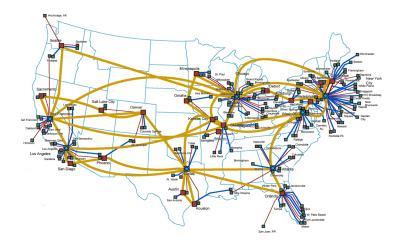
Human networks

Designed and managed by humans

- Room for efficient design and management
- 1. Dimensioning:
- Known demand
- Target quality of service
- What is the network size?

2. Management:

- Network structure given
- More efficient use of resources



AT&T Internet backbone

- ▶ 2 million customers, 100 MB per day
- Which bandwidth so that delay ≤ 10 ms?

Human networks

Designed and managed by humans

- Room for efficient design and management
- 1. Dimensioning:
- Known demand
- Target quality of service
- What is the network size?

2. Management:

- Network structure given
- More efficient use of resources

Measure of efficiency

Performance analysis

Mathematical tools to assess efficiency of resource sharing algorithm

Two steps

- 1. Modeling
- 2. Mathematical analysis

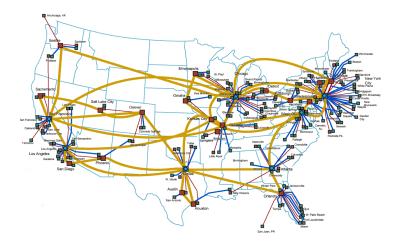
Performance metric(s)?

US electrical grid

- Frequency of black-outs
- Energy wasted

European railroad network

- Delay
- Utilization

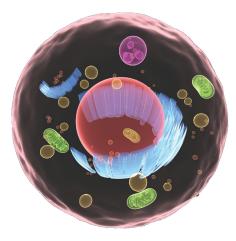


AT&T Internet backbone

- Latency/Jitter
- Throughput
- Fairness

Internet router

- Throughput
- Delay



Cell

Variability of protein expression

Renormalization techniques

LLN and CLT

 $(X_n, n \ge 1)$ sequence of i.i.d. random variables

Law of large numbers (LLN) If $\mathbb{E}|X| < +\infty$: $\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{} \mathbb{E}X$ (almost surely)

Central limit theorem (CLT) If $\mathbb{E}X = 0$ and $\mathbb{E}X^2 = 1$: $\frac{1}{\sqrt{n}} \sum_{k=1}^n X_k \underset{n \to +\infty}{\Longrightarrow} \mathcal{N}$ (in distribution)

LLN and CLT

 $(X_n, n \ge 1)$ sequence of i.i.d. random variables

Law of large numbers (LLN) If $\mathbb{E}|X| < +\infty$: $\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow[n \to +\infty]{} \mathbb{E}X$ (almost surely)

Central limit theorem (CLT) If $\mathbb{E}X = 0$ and $\mathbb{E}X^2 = 1$: $\frac{1}{\sqrt{n}} \sum_{k=1}^n X_k \underset{n \to +\infty}{\Longrightarrow} \mathcal{N}$ (in distribution)

ullet Remark that $n^{-1/2}\sum_{k=1}^n X_k \Rightarrow 0$ by LLN

Recall LLN:

• $(X_n, n \ge 1)$ sequence of i.i.d. random variables

Define new sequence $(S_n, n \ge 1)$ of random variables:

$$S_n = rac{1}{n} \left(X_1 + \dots + X_n
ight)$$

Then $S_n \to \mathbb{E}X$

Define new sequence $(\overline{S}_n, n \ge 1)$ of processes:

$$\overline{S}_n(t) = rac{1}{n}ig(X_1 + \dots + X_{\lfloor nt
floor}ig), \,\, t \geq 0$$

Speed up time by n, renormalize in space by n

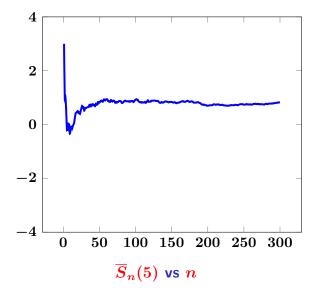
LLN: $\overline{S}_n(t)$ converges for each fixed *t*:

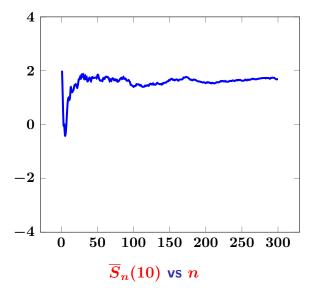
$$\overline{S}_n(t) = t imes rac{1}{nt}ig(X_1 + \dots + X_{\lfloor nt
floor}ig) o t imes \mathbb{E} X$$

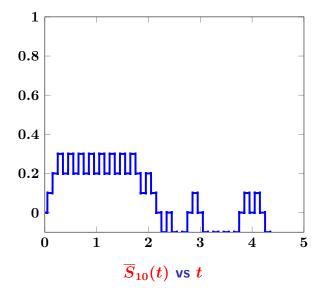
Functional LLN: $\overline{S}_n \to \overline{S}_\infty = (t \mathbb{E} X, t \ge 0)$

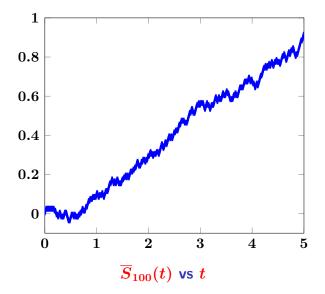
- Convergence of processes
- Uniform convergence on compact sets:

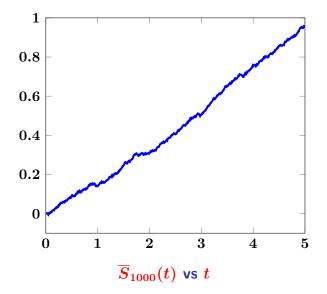
$$\sup_{0\leq s\leq t}\left|\overline{S}_n(s)-\overline{S}_\infty(s)
ight|\mathop{\longrightarrow}\limits_{n
ightarrow+\infty}0,\,\,t\geq 0$$











$$\overline{\overline{S}_n o \overline{S}_\infty}$$

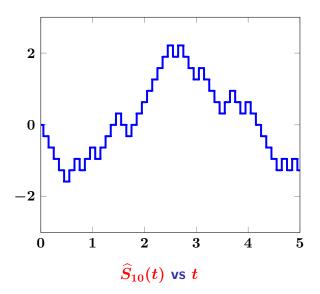
$$\mathbb{E}X = 0$$
: $\overline{S}_{\infty} = 0$

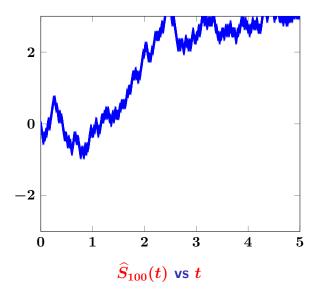
Define new sequence $(\widehat{S}_n, n \ge 1)$ of processes:

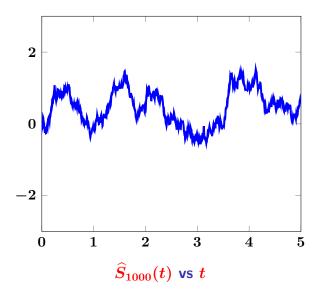
$$\widehat{S}_n(t) = rac{1}{\sqrt{n}}ig(X_1 + \dots + X_{\lfloor nt
floor}ig), \,\, t \geq 0$$

▶ Speed up time by *n*, renormalize in space by \sqrt{n} ▶ CLT: $\hat{S}_n(t) \Rightarrow \mathcal{N}$

Functional CLT: $\hat{S}_n \Rightarrow \hat{S}_\infty$: Brownian motion







Added value 1/5

First and second order asymptotic expansions

- \overline{S}_{∞} : mean behavior
- \widehat{S}_{∞} : fluctuations around the mean

Added value 2/5

 \overline{S}_{∞} and \widehat{S}_{∞} more tractable

- \overline{S}_{∞} is deterministic
- Can do computations on \widehat{S}_{∞} :

$$\mathbb{P}\left(\sup_{s\leq t}\widehat{S}_{\infty}(s)\geq x
ight)=rac{\sqrt{2}}{\sqrt{\pi}}\int_{x}^{+\infty}e^{-y^{2}/2}\mathrm{d}y$$

whereas law of $\sup_{s < t} \widehat{S}_n(s)$ unknown

Convergence of all continuous functionals:

$$\left(\Psi(\overline{S}_n) o \Psi(\overline{S}_\infty) \ \ ext{and} \ \ \Psi(\widehat{S}_n) \Rightarrow \Psi(\widehat{S}_\infty)
ight)$$

Interest of uniform convergence

Added value 4/5

Invariance principle:

$$\left[\overline{S}_{\infty}=f(\mathbb{E}X) ext{ and } \widehat{S}_{\infty}=f(\mathbb{E}X,\mathbb{E}X^2)
ight]$$

 \overline{S}_∞ and \widehat{S}_∞ the same for any other Y with $\mathbb{E}Y^{1,2}=\mathbb{E}X^{1,2}$

Get to know the "true" parameters

Dimensioning

Added value 5/5 (more technical)

Stability (positive recurrence) of Markov processes:

- Difficult issue
- Important performance metric

Added value 5/5 (more technical)

Set-up

- $(M(t), t \ge 0)$: Markov process, countable state-space
- Sequence (m_n) of initial states of size $||m_n|| = n$
- Renormalize by size of initial state (LLN scaling):

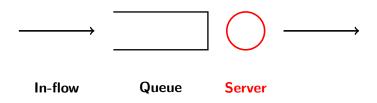
$$\overline{M}_n(t)=rac{1}{n}M(nt)$$
 when $M(0)=m_n$

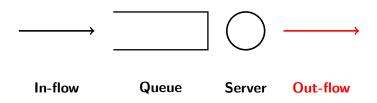
Theorem (informal)

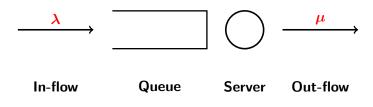
If for every sequence (m_n) as above, $\overline{M}_n \to \overline{M}_\infty$ and $\overline{M}_\infty(t) = 0$ for all t large enough, then M is stable.

Examples

In-flow

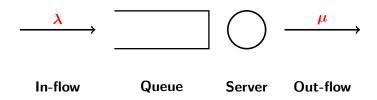






- Arrivals at rate λ
- Service capacity μ

Stability condition: $\lambda < \mu$



Q(t) = # customers in queue at time t

Exponential assumptions: Q Markov process

$$Q(t) \longrightarrow \left\{ egin{array}{ll} Q(t)+1 & ext{at rate } \lambda \ Q(t)-1 & ext{at rate } \mu & ext{if } Q(t)>0 \end{array}
ight.$$

Random walk reflected at 0

Single server queue: LLN

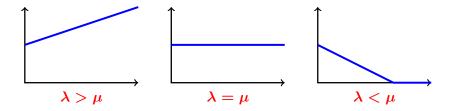
Renormalization:

$$\overline{Q}_n(t)=rac{1}{n}Q_n(nt)$$
 with $Q_n(0)=n$

Functional LLN: $\overline{Q}_n \to \overline{Q}_\infty(t) = 1 + (\lambda - \mu t)^+$

•
$$q^+ = \max(q, 0)$$
: reflection at 0

First-order behavior: increase at rate λ , decrease at rate μ



Single-server queue: CLT

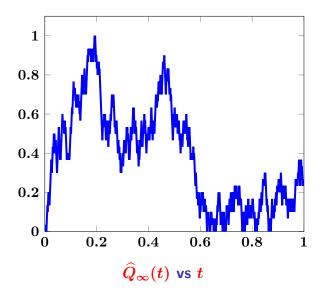
Renormalization when $\lambda = \mu$:

$$\widehat{Q}_n(t) = rac{1}{\sqrt{n}}Q(nt)$$

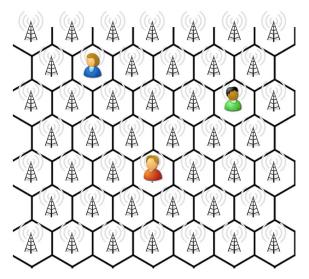
Functional CLT: $\widehat{Q}_n \Rightarrow \widehat{Q}_\infty$

• \widehat{Q}_{∞} : reflected Brownian motion

Single-server queue: CLT



Wireless network with mobile users



Bandwidth allocation?

Markovian model

Network with K nodes labelled $k = 1, \ldots, K$

Node k:

- Arrival rate λ_k
- Service capacity μ_k

Customers:

- Require i.i.d. exp(1) service requirements
- Move independently: common kernel $R = (r_{k\ell})$

 $r_{k\ell}$ = rate at which each user moves from k to ℓ

Markovian model

 $N_k(t) = \#$ users at node k at time t

 $N(t) = (N_1(t), \ldots, N_K(t))$:

- K-dimensional Markov process
- Transition rates:

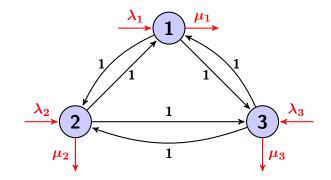
$$n \longrightarrow \left\{egin{array}{ll} n+e_k & ext{at rate } \lambda_k & (ext{arrival}) \ n-e_k & ext{at rate } \mu_k \mathbbm{1}_{\{n_k>0\}} & (ext{departure}) \ n-e_k+e_\ell & ext{at rate } n_k imes r_{k\ell} & (ext{movement}) \end{array}
ight.$$

 $e_k = k$ th unit vector (0, ..., 0, 1, 0, ..., 0)

• $Q(t) = N_1(t) + \cdots + N_K(t)$: total # customers

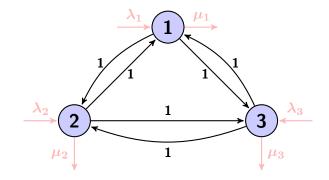
Symmetric example

Consider the case K = 3 and $r_{k\ell} = 1$



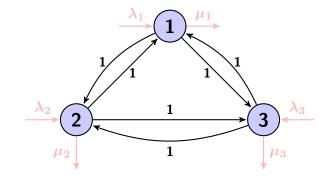
Symmetric example

Focus on movements



Symmetric example

Focus on movements



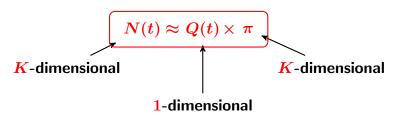
Each customer in cell k with probability 1/3LLN: $N_k(t) \approx rac{1}{3}Q(t)$ when $Q(t) \gg 1$

Dimension reduction

Assume **R** irreducible, stationary distribution π

• π_k : probability of being at node k

When $Q(t) \gg 1$: $N_k(t) \approx Q(t) \times \pi_k$ for each k

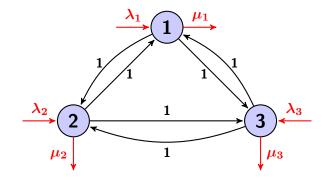


Reduces the problem to the study of Q(t)

1-dimensional problem!

Single-server queue analogy

Focus on arrivals/departures



Single-server queue analogy

 $\mathbb{1}_{\{N_k(t)>0\}}
ightarrow \mathsf{non-Markovian}$

Single-server queue analogy

No empty node \rightarrow departure rate = $\sum \mu_k$

Whole system behaves as single-server queue

- Arrival rate $\lambda = \sum \lambda_k$
- Service capacity $\mu = \sum \mu_k$

 $ig \left[\mathbb{P}(\mathsf{no} \; \mathsf{empty} \; \mathsf{node}) pprox 1 \; \mathsf{when} \; Q(t) \gg 1 ig
ight]$

Functional LLN

Theorem (with D. Tibi, Annals of Applied Probability 2010) Let $\overline{N}_n(t) = N^n(nt)/n$ with $|N^n(0)| = n$: then $(\overline{N}_n(t), t \ge 0) \underset{n \to +\infty}{\Longrightarrow} \overline{Q}_\infty \times \pi$

•
$$\overline{Q}_{\infty}(t) = 1 + (\lambda - \mu)^+ t$$
: limit of single-server queue

Consequence

• Stability condition: $\sum \lambda_k \leq \sum \mu_k$

Theorem (with S. Borst, Queueing Systems 2013) Assume that $\sum \lambda_k = \sum \mu_k$ and let $\overline{N}_n(t) = N(n^2t)/n$: then

$$(\widehat{N}_n(t),t\geq 0) \mathop{\Longrightarrow}\limits_{n
ightarrow +\infty} \widehat{Q}_\infty imes \pi$$

▶ \hat{Q}_{∞} : reflected Brownian motion, limit of single-server queue

Bandwidth-sharing

Extensions

• Multiclass, α -fair bandwidth-sharing