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Performance analysis of stochastic networks

Renormalization techniques

Examples



Stochastic networks

[Resource sharing with uncertaintyj
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US electrical grid
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European railroad network
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AT&T Internet backbone
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Internet router
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Internet router
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Randomness

Several sources of randomness

» Users behavior

v

Failures

v

Varying environment

v

Movements
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Human networks

Designed and managed by humans

» Room for efficient design and management



US electrical grid
» When to turn on/off power plants?

» Where to store energy?
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European railroad network
» How many trains to allocate?

» How to decide schedule?
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AT&T Internet backbone
» How to share links?

» How to route packets?
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Internet router

» Which packets to transmit?
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Human networks

Designed and managed by humans

» Room for efficient design and management

1. Dimensioning:

v

Known demand

v

Target quality of service

v

What is the network size?



AT&T Internet backbone
» 2 million customers, 100 MB per day

» Which bandwidth so that delay < 10ms?
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Human networks

Designed and managed by humans

» Room for efficient design and management

1. Dimensioning:

v

Known demand

v

Target quality of service

v

What is the network size?

2. Management:

v

Network structure given

v

More efficient use of resources



Measure of efficiency

Performance analysis
Mathematical tools to assess efficiency of resource sharing
algorithm

Two steps

1. Modeling
2. Mathematical analysis

Performance metric(s)?
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US electrical grid

» Frequency of black-outs

» Energy wasted
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European railroad network

» Delay
» Utilization
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AT&T Internet backbone
» Latency/Jitter

» Throughput

» Fairness
19/40



| |
- || e

-
| |

Internet router

» Throughput

» Delay
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Cell
» Variability of protein expression
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Renormalization techniques



LLN and CLT

(X,,n > 1) sequence of i.i.d. random variables

Law of large numbers (LLN)
If B|X| < 4o0:

— Z X — I[EX (almost surely)
k:_ n—-+oo

Central limit theorem (CLT)
If EX = 0 and IEX2 =1

\/_ Z Xk n?oo./\/' (in distribution)
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LLN and CLT

(X,,n > 1) sequence of i.i.d. random variables

Law of large numbers (LLN)
If B|X| < 4o0:
1

n
Z X — I[EX (almost surely)
n n

—>T 00
k=1 *

Central limit theorem (CLT)
IfEX =0and EX? = 1:
1 n
NG ,;Xk — N (in distribution)

n—-+oo
= Remark that n=/23"7" | X}, = 0 by LLN
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Functional LLN

Recall LLN:

» (X,,,n > 1) sequence of i.i.d. random variables

Define new sequence (S,,,n > 1) of random variables:
1
Sn = E(-X1+"'+Xn)

Then S,, - EX
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Functional LLN

Define new sequence (S,,,n > 1) of processes:

_ 1
Sn(t) = ;(Xl + e+ XLntJ), t Z 0
» Speed up time by n, renormalize in space by n

LLN: S,,(t) converges for each fixed ¢:

_ 1
Sn(t):tx—t(X1+---+XLntJ)—>t><EX
n
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Functional LLN

Functional LLN: S,, —» S, = (tEX,t > 0)

» Convergence of processes

» Uniform convergence on compact sets:

sup ’gn(s) —goo(s)| — 0,t2>0
OSSSt n—-+oo
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Functional LLN
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Functional LLN
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Functional LLN
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Functional LLN
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Functional LLN
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Functional LLN
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Functional CLT

Define new sequence (§n, n > 1) of processes:

~ 1
Sn(t) — ﬁ(Xl +"'+XLntJ)a t Z 0

» Speed up time by n, renormalize in space by /1
» CLT: S,.(t) = N

Functional CLT: §n = §oo: Brownian motion
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Functional CLT

§10(t) vs t
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Functional CLT
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Functional CLT

51000 (t) vs t
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Added value 1/5

First and second order asymptotic expansions
» S.o: mean behavior
> §oo: fluctuations around the mean
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Added value 2/5

S.. and S, more tractable

» S is deterministic

» Can do computations on §oo:

. 2 [To°
P (sup Soo(s) > ac) = \/_/ 6_92/2dy
T

s<t

whereas law of sup,; S,,(s) unknown
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Added value 3/5

Convergence of all continuous functionals:

¥(S,) - ¥(S.) and ¥(5,) = ¥(S..) |

» Interest of uniform convergence
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Added value 4/5

Invariance principle:

S = f(EX) and S. = f(EX,EX?)]

Soo and S, the same for any other Y with EY 12 = EX1:2

Get to know the “true” parameters

» Dimensioning
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Added value 5/5 (more technical)

Stability (positive recurrence) of Markov processes:

» Difficult issue

» Important performance metric
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Added value 5/5 (more technical)

Set-up

» (M(t),t > 0): Markov process, countable state-space
» Sequence (m,,) of initial states of size ||m, | = n
» Renormalize by size of initial state (LLN scaling):

M, (t) = 'rle(nt) when M (0) = m,

Theorem (informal)

If for every sequence (m,,) as above, M,, — M, and
M o (t) = 0 for all t large enough, then M is stable.
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Examples



Single server queue
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Single server queue

In-flow
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Single server queue

In-flow Queue

30/40



Single server queue

_>—©_>

In-flow Queue Server
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Single server queue

_>—O_,

In-flow Queue Server Out-flow
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Single server queue

A Q I
s s

In-flow Queue Server Out-flow

» Arrivals at rate )\

» Service capacity p

Stability condition: A < p
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Single server queue

A O I
s s

In-flow Queue Server Out-flow

Q(t) = # customers in queue at time ¢
» Exponential assumptions: Q Markov process

Q(t) +1 atrate A

Q) — { Q(t) —1 atrate p if Q(t) >0

» Random walk reflected at 0
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Single server queue: LLN

Renormalization:
Q,t) = iQn(nt) with Q,(0) =n

Functional LLN: Q,, — Q_(t) =1+ (A — ut)™"

» gT = max(q,0): reflection at 0

» First-order behavior: increase at rate )\, decrease at rate

A>pu A=p A< p
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Single-server queue: CLT

Renormalization when A = u:

Qult) = ;ﬁth)

Functional CLT: @n = @oo

» (): reflected Brownian motion
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Single-server queue: CLT

Qoo(t) vs t



Wireless network with mobile users
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Bandwidth allocation?



Markovian model

Network with K nodes labelled £ = 1,..., K

Node k:

» Arrival rate )\

» Service capacity p

Customers:

» Require i.i.d. exp(1) service requirements
» Move independently: common kernel R = (ryy)

[rkz = rate at which each user moves from k to Ej
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Markovian model

Ni(t) = # users at node k at time ¢

N(t) = (N1(t),..., Ng(t)):

» K-dimensional Markov process

» Transition rates:

n + eg at rate )\, (arrival)
n—< n—eg at rate p;ly,, -0} (departure)
n —ep + e, atrate ng X rip (movement)

ey, = kth unit vector (0,...,0,1,0,...,0)
> Q(t) = N1(t) + -+ + Nk (t): total # customers
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Symmetric example

Consider the case K =3 and rp = 1

A1
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Symmetric example

Focus on movements

35 /40



Symmetric example

Focus on movements

Each customer in cell k£ with probability 1/3

LLN: N, (t) ~ ;Q(t) when Q(t) > 1
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Dimension reduction

Assume R irreducible, stationary distribution 7

» 73: probability of being at node k

When Q(t) > 1: Ni(t) = Q(t) X m for each k

N(t) ~ Q(t) x = J\

K -dimensional ‘|\ K -dimensional

1-dimensional
Reduces the problem to the study of Q(t)

» 1-dimensional problem!
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Single-server queue analogy

Focus on arrivals/departures
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Single-server queue analogy

Z Hk]l{Nk(t)>0}

1{n, >0y — non-Markovian
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Single-server queue analogy

Zuk

No empty node — departure rate = >

Whole system behaves as single-server queue

> Arrival rate A = >\,
» Service capacity = > g

LIP(no empty node) =~ 1 when Q(t) > 1}
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Functional LLN

Theorem (with D. Tibi, Annals of Applied Probability 2010)
Let N, (t) = N™(nt)/n with [N™(0)| = n: then

- - _
(Nn(t),t > 0) n_?oo Qo X7
» Qo (t) =1+ (X — p)Tt: limit of single-server queue

Consequence

» Stability condition: > A\ < > g
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Functional CLT

Theorem (with S. Borst, Queueing Systems 2013)
Assume that > A\, = > i and let N, (t) = N (n?t)/n:
then N
(Nn(t),t > 0) = @oo X T
n—-+oo

> (Qoo: reflected Brownian motion, limit of single-server
queue
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Bandwidth-sharing

Extensions

» Multiclass, a-fair bandwidth-sharing
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