
Software Trajectory Analysis

an empirically-based method for software process discovery

Pavel Senin

University of Hawaii at Manoa

Department of Information and Computer Sciences

Collaborative Software Development Laboratory
http://csdl.ics.hawaii.edu

senin@hawaii.edu

http://csdl.ics.hawaii.edu/

Questions for today

• The programming: what is this exactly about?

• What are software processes and why do I care? Moreover,
why do I think you should care?

• What is going on in the field? Which is the best software
process?

• What I do
– Research hypothesis

– Methods

– what is the planned contribution of my thesis?

Augusta Ada King,
Countess of Lovelace
(10 December 1815 – 27 November 1852)
born Augusta Ada Byron
the daughter of a marriage between the
poet George Gordon Byron and Anne Isabelle Milbanke

. . . It may be desirable to explain, that by the word
operation, we mean any process which alters the
mutual relation of two or more things,
be this relation of what kind it may.
This is the most general definition, and would
include all subjects in the universe . . .

. . . Supposing, for instance, that the fundamental
relations of pitched sounds in the science of
harmony and of musical composition were
susceptible of such expression and adaptations,
the engine (Analytical) might compose elaborate and
scientific pieces of music of any degree
of complexity or extent . . .

Invention of the Programming

http://en.wikipedia.org/wiki/Ada_Lovelace

Painting?
…Hacking and painting have a lot in common. In fact, of all the
different types of people I've known, hackers and painters are
among the most alike. What hackers and painters have in common
is that they're both makers. Along with composers, architects, and
writers, what hackers and painters are trying to do is
make good things…

or Rock Climbing? (Alistair Cockburn)
It is Technical, Individual and Team activity, we use Tools,

do Planning and Improvising, it’s Fun, Challenging ,
Resource-limited, Dangerous…

-to reach the summit.
-to make it easier for subsequent teams to reach the summit.

Programming is...

Poetry?

Programming
• It is a creative, human-driven activity, such as

choreography (in my opinion)

• As in any other creative activity there are many
ways to get things done. With many languages,
cool tricks and all other stuff.
Look at StackOverflow – almost no questions
have a single answer. There are comments
and long discussions…

• Nevertheless, results are usually deterministic, i.e.
you one is right or wrong, since the argument – the
code works or not.

• It requires continuous education, not just training,
but continuous acquisition of new skills and everyday
practice. Like dancing and choreography.

Programmer
• Maybe, it is not a profession, since there is no license

given? (i.e. anyone can become a good programmer)
– ACM abandoned licensing
– IEEE still has some licensing for “engineers”
– Yes, in some countries it does exists (Canada, UK)

• Special education is not really needed

 look at these guys:

• As said by Ada Lovelace,
all what we do - is to orchestrate
operations over various entities
through design,
code writing, compiling, testing,
debugging, and maintaining
the detailed instructions to computers
to perform some functions

Identity
 passport, drivers license, insurance,
 health records, digital media

Safety, Transport, and life sustainability
 Security and law enforcement, surveillance,
 traffic control energy grid, water supply,
 food supply, shopping

Money and Business
 bank accounts, trading, stocks, financial records
 taxes, CB/VISA/PayPal

Communications, Social interactions,
Lifestyle, Entertainment
 Phones, email, the whole Internet thing, Google,
 Facebook, Tumblr...

Research
 We are simply unable to do research without CPUs anymore,
 … yeah, “those computers”, and Data Centers,
 NGS instruments, etc…

What depends on these people and their “instructions”?

Bottom line: unlicensed, creative, non-professionals
 control the way things work
well, while this is not completely true,
 the opposite is not completely true either....

The phenomena was well understood and acknowledged in 1968 at NATO Software
Engineering Conference: there the term Software Crisis was coined

The major cause of the software crisis is that the machines have become several orders of
magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem,
and now we have gigantic computers,
programming has become an equally
gigantic problem.

Edsger Dijkstra,
The Humble Programmer
(EWD340), ACM Communications, 1972

Obviously, programming performance
doesn’t scale as well as CPU does

http://www.codinghorror.com/blog/

By analogy to Civil Engineering, the new
discipline of Software Engineering was defined

to tame the crisis

It defines processes which programmers must follow
in order to deliver software .
There is a term ‘’process conformance’’.

...but, quite often, it goes wrong...

Ariane 5 (carrying 4 satellites)
A software bug caused
European Space Agency’s Ariane 5 rocket
to crash 40 seconds
into her first flight in 1996
(cost: half billion dollars) 10+ years for credibility recovery

Trustful software from the smaller rocket was used

• Greater horizontal acceleration reading caused overflow exception in conversion
from 64-bit floating point to 16-bit signed integer value

• The value was larger than 32,767 - the largest integer storable in a 16 bit signed
integer, and thus the conversion failed and an exception was raised

• When the primary computer system failed due to this problem, the secondary
system took over.

• The secondary system was running EXACTLY the same software, so it failed
EXACTLY the same way!

Therac– 25
patients were given massive overdoses of
radiation, approximately 100 times the
intended dose causing health damage and loss
of life

Interface had a glitch - due to the race condition
it allowed technicians, in most cases, bypass
the "irritating malfunctions" simply by pressing
the "p" key, for "proceed" - beaming 100 times
more of radiation. Doing so became a matter of
habit...

In the early 1980's the IRS hired Sperry to
automate tax form processing for $103M By
1985 the cost had tripled, the system could
not handle the workload, it had to be
replaced...the IRS had to pay interest and
overtime wages...

Congresseman Jim Lightfoot called the project
‘a $4-billion fiasco’

40 years later of that NATO Conference

... One of the biggest reasons bridges come in on-time, on-budget and do not fall
down is because of the extreme detail of design. The design is frozen and the
contractor has little flexibility in changing the specifications.
However, in today's fast moving business environment, a frozen design does not
accommodate changes in the business practices. Therefore a more flexible model
must be used. This could be and has been used as a rationale for development
failure...
 © The Standish Group, 1994

• More than half of software projects
are significantly late, over budget,
delivered incomplete or unusable

• About quarter of projects simply
abandoned without being completed

Engineering: state of the art. It works.

Summary on today’s software engineering landscape

• Uncertainty on “engineering” as a methodology - it might not be
the only appropriate way to handle software development complexity.

– CMMI, ISO, PRINCE2, etc. - all these are excellent products of software engineering
evolution.

– However, while assuring existence of documented processes and proving low variability
in delivered projects, they do not guarantee the development and delivery of a good-
quality product.

– The cost of obtaining and maintaining high CMMI levels is prohibitive for majority of
software companies.

– It is thought that Engineering is appropriate only for a narrow area of safety-critical
applications with clearly understood requirements which guarantee not to change.

• In reality software projects are way too different from each other. Market

is very competitive, resources are scarce, requirements and scope could
change on the fly, people leave, new ones arrive, whole teams change.
Technology can change, hardware platform can change.

– It is extremely challenging to establish and to maintain any of large standardized
processes in these conditions.

Alternatives to engineering?

http://universaluclick.com/licensing_permissions/educational_use

• Certainly, there is a problem we have identified in engineering paradigm over years
of experience – it does not accommodate the change.

• Which is a problem - it turns out that ability to change is vital for majority of
projects.

• Thus, no matter how straightforward, secure, transparent and predictable
Engineering is, we must look for more flexible, agile approaches with low up-front
expenses and controllable change management.

Alternatives: the free software model

Free software: programmer == user
Date Thu, 29 Sep 2005 12:57:05 -0700 (PDT)
From Linus Torvalds <>
Subject Re: I request inclusion of SAS Transport Layer and AIC-94xx into the kernel...

Again. A "spec" is close to useless. I have _never_ seen a spec that was both big enough to be
useful _and_ accurate. And I have seen _lots_ of total crap work that was based on specs. It's
the single worst way to write software, because it by definition means that the software was
written to match theory, not reality…

So there's two MAJOR reasons to avoid specs:
• they're dangerously wrong. Reality is different, and anybody who thinks specs
matter over reality should get out of kernel programming NOW. When reality and
specs clash, the spec has zero meaning. Zilch. Nada. None.... It's like real
science: if you have a theory that doesn't match experiments, it doesn't matter
how much you like that theory. It's wrong. You can use it as an approximation,
but you MUST keep in mind that it's an approximation....

• specs have an inevitably tendency to try to introduce abstractions levels and
wording and documentation policies that make sense for a written spec. Trying to
implement actual code off the spec leads to the code looking and working like
CRAP. The classic example of this is the OSI network model protocols. Classic
spec-design, which had absolutely _zero_ relevance for the real world.

-....So please don't bother talking about specs. Real standards grow up _despite_ specs,
not thanks to them.
-Linus

As aspiring Software Craftsmen we are raising the bar of professional software
development by practicing it and helping others learn the craft. Through this work we
have come to value:

• Not only working software, but also well-crafted software

• Not only responding to change, but also steadily adding value

• Not only individuals and interactions, but also a community of professionals

• Not only customer collaboration, but also productive partnerships

That is, in pursuit of the items on the left we have found the items on the right to be
indispensable.

© 2009, the undersigned.
this statement may be freely copied in any form,
but only in its entirety through this notice.

Alternatives: agile programming and craftsmanship

Alternatives: shift to individual processes, personal,
craftsman style, Apprenticeship.

Alternatives: Individual pace, very own, gender-specific processes
and environment

Summary on alternatives to engineering

PSP: A Self-Improvement Process for Software Engineers

Personal Software Process (PSP) provides a clear and proven
solution. Comprising precise methods developed over many
years by Watts S. Humphrey and the Software Engineering
Institute (SEI), the PSP has successfully transformed work
practices in a wide range of organizations and has already
produced some striking results.

http://www.sei.cmu.edu/library/abstracts/books/0321305493.cfm

• All the alternatives emphasize the role of motivated “caring” individuals in
creation of high quality software. Role of personal terminal values.

• There is acknowledgement of individual skills, their importance and transfer.
• Concept of continuous product improvement through personal experiences.
• Attention is given to live interactions between programmer and the customer,

where care and responsiveness seen as keys to success.

Recently “Software Engineering school” also acknowledged the same:

It is not new, however, it is well known in teaching

http://www.joelonsoftware.com/articles/HighNotes.html

Best 25% of students

It is also known among practitioners, and they still argue

“There are order-of-magnitude differences among programmers"
has been confirmed by many other studies of professional programmers
(Curtis 1981, Mills 1983, DeMarco and Lister 1985, Curtis et al. 1986,
Card 1987, Boehm and Papaccio 1988, Valett and McGarry 1989,
Boehm et al 2000).

Software Trajectory Analysis (STA)

• So, we know, that programming is a human driven activity.
• And we know that we are “products” of our habits (recurrent behaviors),

we even say, that “Habit is Second Nature”.
– We learn them by heart (from kindergarten), acquire them from others through training,

we foster good ones and fight bad ones through life.

• Also, we know, that some programmers are the way better

than others, but we don’t know why. I argue that their
behaviors is that what matters the most for performance.

• What if we would have a powerful mechanism in place which
aids the detection of recurrent behaviors, so we could
advance our knowledge? And become better.

How to study software processes?
(a.k.a. behaviors)

• One way is to invent the processes and conduct experiments
in controlled environment
– extremely expensive, needs massive resources, “spare” teams

• Need to motivate people to use “paper lions” – invented processes

– takes decades to finish the full SDLC study

http://universaluclick.com/licensing_permissions/educational_use

How to study software processes?

• Another way is to observe “good” and “bad” programmers
and teams drawing conclusions
– it is an intrusive method which brings a lot of external pressure on

people

– difficult to make unbiased judgment

http://universaluclick.com/licensing_permissions/educational_use

How to study software processes?
• Yet another way, is to study them offline – by analysis of

software process artifacts.
– It is inexpensive

– Projects could be studied anytime within SDLC, even post-mortem

• However there are problems:
– Availability of artifacts, are there any artifacts reflecting behaviors?

– Granularity of artifacts, do the available artifacts fine enough to
reconstruct behaviors?

– Informational content of artifacts, is there enough information to
properly assess generative behaviors?

– Well, we can study all this: my research hypothesis states that it is
possible to infer recurrent behaviors from software process artifacts.

• It use to be that many things were kept on paper.
• Space-time constraints use to limit our access to network and

computers, we had to travel for meetings; codebase and processes
were not public at all. (builds, tests, issues, changes, etc.)

• All changed now. Distance is dead. There is no distance in
Cyberspace, we can code, chat, compute - anytime and anywhere,
all at the same time - my smartphone does it all.
Code and all the documents can be easily public. (SCM, CI, WiKi, QA
sites)

• Along this phenomena, another one arose – collaboration. It drives
Linux - #1 computing platform. It drives Android - #1 mobile
platform*, Mozilla, Google Chrome, MySQL, Postgre, R, Octave …
you name it
– Source code is public. Documents are public. Discussions/Issues, etc.
– Commit often, Release early, Use it, Be responsive to users…

Why is it possible?

*http://edition.cnn.com/2012/12/13/tech/mobile/google-schmidt-android-ios

STA Approach: behaviors dictionary
• Fortunately, with the use of software change management and with

current publicly open repositories, there is a lot of data around to explore
the hypothesis

– Source code repositories

– Bug/Issue tracking systems

– Programmers forums, QA sites

• STA takes approach of building programmers “activity dictionaries”
following natural time intervals and using software metrics

– Daily intervals (also nights, mornings, working day, evening, late night)

– Weekly intervals

– Monthly intervals

– SDLC cycle intervals (release, migration, update)

• Once dictionaries built and indexed, KDD tools applied in order to find
significant activities.

– Recurrent activities (time-series motifs)

– Individual (or group) specific recurrent activities (time-series motifs)

– Rare behaviors (time-series discords)

• Yes, it is similar to Hackystat, in fact - it is built for Hackystat,
and yes, STA wants to quantify one’s effort (very personal data).

• No, it is different from Sonar, Moose, Ohloh, DevCreek etc. I am not
particularly interested in product quality, rather in metrics as effort
derivative.

Hey! We seen that before!

STA

Maybe one would say:
« …Hey, when we put consistent effort into
API refactoring (high frequency of refactoring
behaviors among many people) –
our tests seem to fail less (high frequency of
good success/failure behaviors)

“Looking under the lamppost for useful software analytics” Philip Johnson,
https://csdl-techreports.googlecode.com/svn/trunk/techreports/2012/12-11/12-11.pdf

STA pre-processing: Timeseries => strings
Piecewise Aggregate Approximation
(using mean interval values)

Symbolic Aggregate Approximation:
mean value to letter, using a lookup table

• PAA takes care about lost values
averaging extremes

• Strings:
• easy to handle
• easy to index
• Search? RegEx!
• Edit/Levenshtein distance

• It is lower bounding to Euclidean

• So many String algorithms
• Bioinformatics tools

timeseries => bag of words => vector space model

As subseries extracted, they are
converted into SAX words. All these
words together compose a “bag of
words” – quite specific to the series.

Multiple real-valued data streams are
converted into “bags of words” – a very
convenient representation which allows
to “re-use” the wealth of information
retrieval research field.

While converting timeseries to bag of words, two tricks are applied:
• the first one is that every sliding window is Z-normalized, i.e. “normalized by

energy”. This trick allows STA “focus” only on changes in the event flow, rather
than on the amplitude.

• the second is that not all the words are accepted into the bag, if consecutive word
is the same as the previous, STA rejects that word from the bag. Thus, for
example, continuous growth segment would be represented by only one (first)
word.

• Third trick in the ToDo stack is to use sets of window/paa/ alphabet of different
sizes when building the same bag – so I can catch variety of “frequencies”

Vector space model, TF*IDF
Timeseries

Bags of SAX
words

tfidf weights
vector

," "
, . .

(,)(,)
max{ (,) : }

(,)

| |(,) log
|{ : } |

* (, ,) (,)* (,)

D document corpus
d a document bag of SAX words
t a term i e a SAX word

f t dTF t d
f w d w D

where f t d is a frequency of the term

DIDF t D
d D t d

TF IDF t d D TF t d IDF t D

−
−
−

=
∈

=
∈ ∈

=

Vector space model, Cosine similarity

1

2 2

1 1

cos()
|| |||| ||

*

n

i i
i

n n

i i
i i

a b
A Bsimilarity

A B
a b

θ =

= =

∗
= = =

∑

∑ ∑

By using cosine similarity, it is possible to find an angle between two tfidf vectors.

So, it boils down to the fact, that SAX and Vector space model allow us to find an angle
between two timeseries – this is the distance.

But how good this metrics is? How does it work, and why it works?

STA relies on Jmotif – a java/R implementation of all above

STA performance, CBF domain

[,]

[,]

[,]

[,]

() (6)* () ()
() (6)* ()*() / () ()
() (6)* ()*() / () ()

0,
1,
0,

where and () are drawn from (0,1)
and is integer uniformly drawn from [16

a b

a b

a b

a b

c t t t
b t t t a b a t
f t t b t b a t

t a
a t b
t b

t N
a

η ε

η ε

η ε

η ε

= + Χ +

= + Χ − − +

= + Χ − − +

<
Χ = ≤ ≤
 >

,32]
and is uniformly drawn from [32,96]b a−

STA performance, CBF domain

STA performance, CBF domain, Classification

STA performance, CBF domain, Clustering
k-means, updating/normalizing centroids after each iteration

“spherical k-means”

Random centroids
assignment made two clusters
of the same class

Nevertheless,
clustering recovered

Currently I employ
further first strategy
and restarting
It works better…

There are online learners
to put into, they are well
studied and work much better.

STA performance, CBF domain, Gun/No gun

Knn NB C4_5 MLP RandForest LMT SVM

Gun_Point 8,00% 21,33% 22,67% 6,67% 10,67% 20,67% 20,00%

best classifier:
"1-NN DTW, no Warping Window"
0.7% error rate

STA is the same, while for a number
of parameters it is 0%

http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.data.html

However, STA performance is relatively poor with many classes
but it is designed with different purpose - to simplify indexing and mining

The good parameters valley is very narrow
(but performance is equal to the best classifier)

http://kdd.ics.uci.edu/databases/synthetic_control/synthetic_control.data.html

STA Application: Release cycle in Android

Slow weeks and sharp rizes (bug fixes?) in post-release,
 «hot» Mondays and busy weekends in pre-release

https://csdl-techreports.googlecode.com/svn/trunk/techreports/2012/12-11/12-11.pdf

https://csdl-techreports.googlecode.com/svn/trunk/techreports/2012/12-11/12-11.pdf

John Skeet phenomena
• Jon Skeet IS the traveling salesman. Only he knows the shortest route

• When Jon Skeet points to null, null quakes in fear

• When Jon Skeet's code fails to compile the compiler apologizes

• When Jon gives a method an argument, the method loses

• When invoking one of Jon's callbacks, the runtime adds "please”

• Drivers think twice before they dare interrupt Jon's code

So, what do I need to do to get in proximity of #1 user of StackOverflow?

“…Often two answers may look quite similar, but one just about has an edge on the other -
either it's explained just that bit better, or has one more piece of information, or a code sample.
I'd like to hope that I have that sort of edge, and that that's why my answer would get more
votes in that situation. But hey, I could easily be wrong...”

This is right, but how much time/effort it will cost to me?

J.Skeet M.Gravell G.Hewgill D.Dimitrov
1 aabbbccb 36 3 0 0
2 aaccbbbb 30 13 3 0
3 aabbccbb 30 2 5 0
4 aabccbbb 29 19 6 6
5 aacbbcbb 29 0 3 0
6 aabbbcbb 27 5 7 0
7 aaccbcbb 24 1 0 0
8 aabcbcbb 23 5 8 2
9 aacbbccb 23 0 1 0

10 aacbbcba 22 2 3 0
11 aabcbbbb 18 27 19 1
12 bbbcbbbb 1 27 52 29
13 aabccbbb 29 19 6 6
14 aaccbabb 8 16 3 0
15 aaccbbba 21 15 5 0
16 aabccabb 5 15 2 0
17 aabccbab 1 15 7 2
18 aabccbba 20 14 9 6
19 aacccbaa 6 14 6 0
20 aabcbabb 3 14 3 0
21 bbcbbbbb 4 9 57 1
22 bbbcbbbb 1 27 52 29
23 bbbbcbbb 0 6 26 17
24 bbbccbbb 1 9 24 14
25 aabcbbbb 18 27 19 1
26 bbbbbbcb 4 10 18 53
27 bbccbbbb 2 10 18 1
28 bbbbbcbb 2 7 18 20
29 aabccbaa 3 7 16 3
30 bbbbbbbc 3 8 15 35
31 bbbbbbcb 4 10 18 53
32 bbbbbbbc 3 8 15 35
33 aaaccbbb 5 9 3 30
34 bbbcbbbb 1 27 52 29
35 bbbbbcbb 2 7 18 20
36 aaaccbba 0 5 3 20
37 bbbbcbbb 0 6 26 17
38 aaacccba 0 1 2 17
39 aaacbcbb 4 4 1 16
40 bbbbbbcc 3 3 12 15

Daily Answers counts for
four StackOverflow Rock-stars
Sliding window=24hrs
PAA=8 (bin=3 hrs), Alphabet=3

J.Skeet M.Gravell D.Dimitrov G.Hewgill
J.Skeet 0 0 0 0
M.Gravell 0,1699 0 0 0
D.Dimitrov 0,0096 0,04568 0 0
G.Hewgill 0,13533 0,18094 0,1533 0

STA tells us, that Skeet is almost orthogonal
to other folks, and… he sleeps at night!!!
But:
• 5 bins of ‘’C’’ s
• peaks before and after working day

http://weblogo.berkeley.edu/logo.cgi

John Skeet phenomena
Five C bins and peaks before and after working day:

• Stays active throughout a day
• Answers a lot before/after work

“…I have a longish commute both ways each day: a 3G data dongle lets me answer
questions during that time. I spend a fair amount of time in the evening on my
computer for whatever reason (coding, writing talks or articles, etc) - I pop onto SO
every so often.
(this is a green C on top row!)
While at work, I tend to check SO while I have tests running, a deploy, or a build. I
hope my colleagues wouldn't regard me as a slacker though…” (five green Cs)

So, want to be a number one? – take a train to work, and continuously work through
evenings, plus – keep an eye on SrtackOverflow during your day…

But also, “my answers … explained just that bit better, or has one more piece of
information, or a code sample…”

Well, this is what we already seen – be passionate about what you do + develop a
habit, and keep it for life. (take away points)

Importance of good habit:
…Turning something into a ritual eliminates the
question:

Why am I doing this?

“…by the time I give a taxi driver directions, it’s too late
to wonder why I am going to the gym and not snoozing
under warmth of my bed. The cab is moving. I am
committed. Like it or not, I am going to gym…”

“…All methodology is based on fears…"

“…A methodology's principles are not arrived at
through an emotionally neutral algorithm but come
from the author's personal background…
One can almost guess at a methodology author's
past experiences by looking at the methodology….”

View on methodologies:

STA contribution and future directions

• Novel methodology for recurrent behaviors discovery

• Novel timeseries mining method and its implementation
• Well, technically speaking, it was known before, there are

published research work _mentioning_ its application.
I seen at least two papers.
«A Dimensionality Reduction Technique for Efficient Time Series Similarity Analysis»
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2390719/

• Case studies partially confirming the research hypothesis – it is possible

to recover recurrent behaviors from software process artifacts.

• Methodology and the algorithm could be extanded further –
multidimentional series converted into bags of words easily.

• Letter for the prefix, «Z» - test coverage, «Y» - DevTime

• More case studies, maybe industrial studies, classroom experiments.

Thank you!

My adviser

And my department

Backup slides,
Additional info

data,
and all the stuff which I

think could be useful

Programmer, Developer, Engineer
• programmer = we do not have many technical employees and need someone to

"program" something; for example a law firm, i.e. "a person who knows how to
write code

• developer = we are a tech-savvy product or services company and need someone
to work on internal or back-end tools; for example a bank or consulting company

• engineer = we are a software company and need someone to work on one of our
products; for example Adobe or Microsoft… i.e. "a person who has studied
software engineering or computer science“, (usually +$20K to programmer’s
average)

• Among all the opinions and positions, majority agrees (I am citing StackOverflow
again) that the title is mostly defined to one’s ability not only being able to write
the code, but to be comfortable with a large codebase and to deliver and support
a product.

http://stackoverflow.com/questions/27516/whats-the-difference-between-programmer-and-software-engineer

Recent shift in
education:

…Researchers (Bloom (1985), Bryan & Harter (1899), Hayes (1989), Simmon & Chase (1973),
have shown it takes about ten years to develop expertise in any of a wide variety of areas,
including chess playing, music composition, telegraph operation, painting, piano playing,
swimming, tennis, and research in neuropsychology and topology...

Programming:

• Get interested.

• Program. The best kind of learning is learning by doing.

• Talk with other programmers; read other programs.

• If you want, put in four years at a college.

• Work on projects with other programmers.

• Work on projects after other programmers.

• Learn at least a half dozen programming languages....

Teach Yourself Programming
in Ten Years
by Peter Norvig…

• Ballistic Missile Early Warning System, moonrise caused enough worries
to modify system

• Mars Climate Orbiter 23 September 1999 Orbiter crash landed on surface
due to metric-imperial mix-up

• Great Britain, the NHS National Programme for IT ~30 billion USD

• Canadian Firearms Registry

– in 2004 overall program cost: ~2B, fees collected: ~140M

– estimated running cost $2 million per year, ~$70M in 2011

• Finnish Vehicle Administration ~70 million USD overrun, 8 years late

• Bank of America, MasterNet: 23M for system development, 600M make it
run = cancelled, lost customers and profit?

• Netscape 6

• Duke Nukem Forever

Other known cost overruns

	Software Trajectory Analysis� �an empirically-based method for software process discovery�
	Questions for today
	Invention of the Programming
	Programming is...
	Programming
	Programmer
	What depends on these people and their “instructions”?
	Bottom line: unlicensed, creative, non-professionals � control the way things work �well, while this is not completely true, � the opposite is not completely true either....
	By analogy to Civil Engineering, the new �discipline of Software Engineering was defined�to tame the crisis
	...but, quite often, it goes wrong...
	Diapositive numéro 11
	40 years later of that NATO Conference
	Engineering: state of the art. It works.
	Summary on today’s software engineering landscape
	Alternatives to engineering?
	Alternatives: the free software model
	Free software: programmer == user
	Diapositive numéro 18
	Alternatives: shift to individual processes, personal,�craftsman style, Apprenticeship.
	Alternatives: Individual pace, very own, gender-specific processes and environment
	Summary on alternatives to engineering
	It is not new, however, it is well known in teaching
	Diapositive numéro 23
	Software Trajectory Analysis (STA)
	How to study software processes?�(a.k.a. behaviors)
	How to study software processes?
	How to study software processes?
	Why is it possible?
	STA Approach: behaviors dictionary
	Diapositive numéro 30
	STA pre-processing: Timeseries => strings
	timeseries => bag of words => vector space model
	Vector space model, TF*IDF
	Vector space model, Cosine similarity
	Diapositive numéro 35
	STA performance, CBF domain
	STA performance, CBF domain
	STA performance, CBF domain, Classification
	STA performance, CBF domain, Clustering�k-means, updating/normalizing centroids after each iteration�“spherical k-means”
	STA performance, CBF domain, Gun/No gun
	However, STA performance is relatively poor with many classes�but it is designed with different purpose - to simplify indexing and mining
	STA Application: Release cycle in Android
	John Skeet phenomena
	Diapositive numéro 44
	John Skeet phenomena
	Importance of good habit:
	STA contribution and future directions
	Thank you!
	Diapositive numéro 49
	Backup slides,�Additional info�data,�and all the stuff which I think could be useful
	Programmer, Developer, Engineer
	Recent shift in �education:
	Other known cost overruns

