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SETTING

Nucleotidic sequences: alphabet {A, C, G, T}, finite or infinite

length, evolution by substitutions only (no insertion, no deletion)

in continuous time.

In usual models, substitution rates at a site depend on the

nucleotide at this site only. ((Or codon models.))

Hence:

– The dynamics of each site is independent on all the others.

– The evolution of a given site is ruled by a (copy of a) Markov

process on {A, C, G, T}.

– Each site converges in distribution to the stationary distribution.

– The sequence converges in distribution to the product of the

stationary distributions.



INDEPENDENT MODELS

At a given site substitution rate x → y rate(x → y) =: q(x, y).

Leaves x after an exponential time of parameter |q(x, x)|, goes to y

with probability q(x, y)/|q(x, x)|

q(x, x) := − ∑
y 6=x

q(x, y).

Q-matrix Q = (q(x, y))x,y characterizes the dynamics:

1) (X(t))t>0 Markov process with semi-group (etQ)t>0

2) Long term behaviour and ergodic behavior both described by

the stationary distribution π , solution of

πQ = 0, ∑
y

π(y)q(y, x) = 0

3) Quantitative version:

‖PX(t) − π‖ 6 e−tG(Q), G(Q) := spectral gap of Q.



First consequence: quantitative convergence of the distribution

of polynucleotides

For a box of N nucleotides (subadditivity of the TV distance),

‖PX1:N(t) − π⊗N‖ 6 Ne−tG(Q)

This is the good behaviour as the construction of the dynamics by

Poisson processes show.

Consequence: distance at most e−s at time

tN(s) = G(Q)−1(log(N) + s)



Second consequence: phylogenies

Assume sequences X′ and X′′ evolved during time t from a MRCA

(unknown) sequence X. Estimating the time t elapsed between the

ancestral sequence X and the present ones? MLE easy based on etQ

and reversibility.

For Jukes-Cantor, the (normalised) elapsed time is

tX′−X′′(D) = −
3

8
log

(

1 −
4

3
D

)

with D = proportion of non coinciding sites in X′ and X′′.



TOWARDS MODELS WITH DEPENDENCE

Back to (a tiny bit more of) reality: biologists tell us that

(a) the observed frequencies are not product ones (not nearly),

(b) the substitution rates at a site do depend on the neighbours of

the site.

One massive and well known example: CpG islands

G → A [up to] 10fold when G is in CG (in fact CG∗),

(hence) C → T [up to] 10fold when C is in CG.

General model: Substitution rate x → x′ at each site

rate(x → x′ if x in yxz).

Dependency cone: (Stationary) frequencies (x) depend on

frequencies (yxz), which depend on frequencies (uyxzv), etc.

Hence one is stuck.



Approximate solutions of models with “double” substitutions

related to CpG effects

Duret & Galtier, Molecular Biology and Evolution

Tamura model with 2 parameters + CpG → CpA and TpG at the

same rate.

Here, each (x) depends on some (xy), each (xy) depends on some

(xyz), etc.

Idea: (xyz) ≈ (xy) (yz)/(y) (Mean field)

Note:

– Called in other contexts Bethe Ansatz, Kikuchi approximation,

cluster approximation, etc.

– Exact for (spatial) Markov chains.



Assuming mean field, the 16 frequencies (xy) are solutions of an

autonomous nonlinear system.

Which can be solved, at least numerically. The solutions (xy)∗ are

close to a true distribution (all positive and summing to almost 1).

Duret & Galtier: TpA frequency also modified, no need of an

auxiliary mechanism (call this a mathematical artefact). Typically

CpGo/e ≪ TpAo/e ≪ 1.

((Mention here : Arndt, Burge, Hwa, Jensen, Pedersen, Lunter, Hein, others.))

How to check the effect of approximation mean field?

Simulations (?).

Linear finite box, or discrete finite circle: close to the behaviour of

the system on the line (or not)? For what size of the box?

((Add here: voter model.)) ((Add here: Gács & Gray.))



Summary of the results

For (a wide class of models called) RN+YpR models,

(a) the system converges to a unique stationary measure,

invariant by (spatial) translations,

(b) one can quantify the rate of convergence,

(c) one can compute exactly the marginals at equilibrium

(polynucleotidic frequencies),

(d) the equilibrium measure has some strong (unforeseen)

independence properties.



Results (cont’d)

For RN+YpR models,

(e) one can (begin to) build phylogenies.

For models in a ”neighborhood” of RN+YpR,

(a’) convergence and (b’) rate of convergence still valid,

(c’) exact marginals replaced by asymptotic expansions,

(d’) independence replaced by explicit bounds of the

decrease of the correlations.,

and properties (a’)–(d’) are based on the subcriticality of an

underlying branching process.



(A FAIRY TALE BASED ON) POISSON DYNAMICS

� = “simple” substitutions.

τ(x, y) = rate of substitution of x by y.

Caution: one authorizes simple (virtual) substitutions of x by x,

hence every τ(x, x) is a free parameter.

⋆ = “double” substitutions of CpG by CpA or TpG.

One wants to represent the evolution of a finite collection of sites.
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To decide which “double” substitutions really occur, at each ⋆ one

must read the nucleotide on the left ◭◭◭ or on the right ◮◮◮.
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As a consequence, one has to put some ”wildcards” on the first

and last columns. This yields the present sequence, modulo some

(unknown) values at the wildcards.
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R-Y quotient

R = {G, A} = purines, Y = {C, T} = pyrimidines.

In the {R, Y} alphabet, the “double” substitutions become useless.
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More on the effect of the wild cards. . .
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When our (fairy tale) construction yields the desired evolution

� and ⋆ are events of Poisson processes hence the waiting times

are exponentials.

With no ⋆:

One “leaves” x by a substitution of type � after an exponential

time of parameter

τ(x) := ∑
y

τ(x, y),

and the distribution of the “successor” of x is

σx(·) :=
τ(x, ·)

τ(x)
.



With the ⋆ :

One replaces (or not) C by T (idem for G and A). For what effect?

(1) The remaining time before leaving C is exponential again, with

parameter τ(C) [bus stop paradox], instead of exponential with

parameter τ(T).

(2) The distribution of the successor is still σC(·), instead of σT(·).

This does not matter if

τ(C) = τ(T), σC(·) = σT(·),

and

τ(G) = τ(A), σG(·) = σA(·).

Finally the (fairy tale) construction works fine if

τ(C, ·) = τ(T, ·), τ(A, ·) = τ(G, ·).



Suitable substitution rates

“Simple” substitutions: RN class (Rzhetsky-Nei)

A

T

C

G

A T C G














− vT vC wG

vA − wC vG

vA wT − vG

wA vT vC −















“Double” substitutions

Every rate between CpG, CpA, TpG and TpA, that is, in the class

YpR.



Consequences

R-Y quotient The evolution of each site encoded by {R, Y} is

autonomous and Markov hence the distribution of the sequence of

purines/pyrimidines converges to a product of Bernoulli

distributions.

Independence At stationarity, boxes at distance 3 are independent

since there exists i.i.d. objects (Ci)i such that Xi at site i depends on

(Ci−1, Ci, Ci+1) only.

Finer quotient For a box of width n + 2 autonomous evolution of

the quotient state in

{R, C, T} × {A, C, G, T}n × {Y, G, A}.

Hence stationary distribution of the polynucleotides of length n is

a marginal of the stationary distribution of a Markov chain on

9 × 4n states, hence one can compute it and simulate it.



Simulation and convergence rate

Coupling time Tn for n sites such that P(Tn > t) 6 exp(−s) with

t = α · (log(n) + 1 + s),

and α explicit function of the “simple” rates vx and wx.

Total variation distance between the distribution at time t and the

stationary distribution: at most exp(−s).

To sum up Dependent model but many things work as in the

independent case, for instance the number of substitutions to

perform to simulate an n box at stationarity like

Constant × n × log(n).

And using this one can compute evolutionary distances and

construct phylogenies based on RN+YpR dynamics



Trying to go out of Paradise (but not too far)

What about the behaviour of models not in the RN+YpR (measure

zero) submanifold?

Take-home message In a neighborhood of RN+YpR, one can use

(and modify) coupling-from-the-past ideas to prove ergodicity of

the perturbed model, provided a branching process representing

ambiguities of the dynamics dies out; additional information about

the stationary measure and the dynamics then comes for free.



PERTURBED MODELS

Ergodic model M + perturbations P : ergodic?

((Remember: Gács/Gray.)) ((Critical 2D Ising.))

Ingredients based on CFTP ideas (coupling from the past):

The existence of a coupling time allows to forget the starting configuration; being

less ambitious, one defines a kind of “weak” coupling time: defects of the coupling

are due to some ambiguities, which are structured as a tree, if the tree is almost

surely finite everything will work fine.

Control by a Galton-Watson process with mean m 6 C(M)D(P),

where C(M) depends on the non perturbed model only and D(P)

describes the overall size of the perturbations

D(P) = ∑
A∈P

rate(A) |context(A)|.



INTERACTING PARTICLE SYSTEMS AS SETS OF ACTIONS

State space S finite, configuration η ∈ SZ.

Action A: rate r & context (B, ℓ, s) with r > 0, B ⊂ Z finite box,

ℓ ⊂ SB and state s ∈ S.

Configuration η compatible with action A at site x: η(x + B) ∈ ℓ.

Configuration ηx,s: ηx,s(y) = η(y) if y 6= x, ηx,s(x) = s.

Finite collection A of actions, Poisson process Ψ on A×R×Z with

intensity

∑
A∈A

∑
x∈Z

r(A)δA ⊗ dt ⊗ δx.

For each (A, t, x) in Ψ, ηt = η
x,s
t− iff ηt− is compatible with A at x.

For T < 0, η0 is measurable with respect to ηT and the collection

ΨT of proposals made at times between T and 0.

((Exercise: Encode Ising by a collection of such actions.))



Ambiguities

A proposal (A, t, x) in ΨT is ambiguous if there exists two initial

conditions at time T such that A is compatible with ηt− for one

initial condition and not for the other.

Coupling time with ambiguities: (T, H) with T 6 0 almost surely

finite, H ⊂ ΨT, H has the stopping property and η0−(0) coincide for

every pair of initial configurations compatible with (T, H).

Stopping property: H ∩ Ψt measurable for Ψt.

Compatibility: each proposal in H is applied either for

both initial configurations or for none.

Growth: gH = E



 ∑
(A,t,x)∈H

#B(A)



.



RESULTS

If there exists a coupling time with ambiguities (T, H) with growth

gH < 1 (subcritical), then:

– Ergodicity (call π the stationary distribution),

– Explicit control of the distance in total variation between

the marginals of ηt and π ,

– Exponential convergence in distribution if T is

exponentially integrable,

– Decay of correlations bounded by an explicit power of

the mean m < 1 of the underlying branching process.



“Numerical” application

Perturbed JC & CpG: simple rates 1 +ε(x, y) for x → y and rates r

for CpG → CpA and for CpG → TpG.

Size of the perturbation : |ε| = sum of |ε(x, y)|.

Sub-critical branching process as soon as |ε| < ε∗ ≈ .3143.

Decay in (|ε|/ε∗)|x−y|/4.
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