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GWAS studies have successfully identified a number of
significant SNP-disease associations

Published Genome-Wide Associations through 03/2011,
1,319 published GWA at p<5x10°2 for 221 traits

2011 1st quarter
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NHGRI GWA Catalog "
www.genome.gov/GWAStudies



Limited overlap of biomarker lists

A common experience with high-throughput data
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Possible reasons of list instability (1)

= Datasets with a low number of subjects vs. high number of
variables
= Data are highly correlated (co-regulated)
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Accounting for data dimension

Bootstrap: Sample (with replacement) N subjects from the
original dataset. Run the algorithm and extract the biomarker
list. Repeat B times (e.g. B=100)

Training set
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Canberra Distance

Resampling results

Resampling improves biomarker list reproducibility and
precision.

Simulated data: 10 datasets with 2 classes, 20 subjects per class, 10000 features and

160 biomarkers
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Di Camillo B. et al., PLoS ONE, 2012

Sambo F. et al.,
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Accounting for data co-regulation

Using prior biological information to define to regularize the
discriminant functions of the classification algorithms.

Correlation between genes
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Prior-knowledge Integration Results
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Possible reasons of list instability (2)

» Diseases are heterogeneous and multicausal: each patient
may exhibit a different combination of gene alterations that
are sufficient to perturb some specific pathways.
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Using Pathways to analyze SNP data

IDEA: studying the cumulative variation of SNPs in genes
mapping on the same pathway (interacting genes)

SP-ABACUS
SNP & Pathway Analysis based on a BivAriate CUmulative Statistics

= SNPs mapped on genes and genes on pathways

= Each pathway is tested independently applying an entropy
based bivariate test of association for each pair of SNPs

v' VS. univariate, easier to detect TP _(multiple evidence)
v VS. multivariate, avoid massive optimization problems and
keep low associations

= Cumulative statistic calculated for each pathway



Performance on simulated data

SP-ABACUS Recall at FPrate=5% on single test

o MAF<0.2 MAF=0.2
—
) -=
z ————
o
™~
o
© e
o- [
10 ]
S ——
s, X? S, X*

v"More sensitive than Chi-square test, especially at low MAF



SP-ABACUS characteristics

*SNP p-values depend on the pathway being analyzed!
SNP significance increases with:
v'Strength of association
v'"Number of SNPs associated to the disease in the pathway
v'Possible epistatic interactions

=Significance does not depend on number of SNPs mapping on
genes and on the pathway

Di Camillo et al., 2013 submitted



Application to WTCCC T2D data

1924 Type 2 diabetes/2938 healthy/ 500K SNPs (Affymetrix)

SNPs mapped on genes (Affymetrix annotation files) and
genes on 860 KEGG + REACTOME pathways (MSigDB)

PATHWAYS IN CANCER: TCF7L2, PPARG, MYC, ...
TRYPTOPHAN_METABOLISM: ASMT

INSULIN SIGNALING: IRS1, PI3K

CELL CYCLE: MYC, PPM1A

REGULATION_OF INSULIN_SECRETION: ADCY8, KCNC?2

CLASS B_2 SECRETIN_FAMILY RECEPTORS: GNG2, PTH2R,WNT4
NA_INDEPENDENT GLUCOSE TRANSPORTERS: SLC2A9

Di Camillo et al., 2013 submitted
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Transcriptional response to SNP variants
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Strategy based on differential expression analysis plus quality
reasoning to disambiguate directed/undirected interactions
(SPQR, Badaloni et al., IEEE/ACM Trans Comput Biol Bioinform. 2012)

“Honorable Mention for Best Performer (fourth place) in the Systems
Genetics Challenge” in DREAM 5”



Differential wiring

*GSE18732, human muscle tissue, 45 T2D, 47 controls (no eQTL)
=14 probes (12 genes) differentially expressed at FDR 10%

Regulators: the genes annotated with SNPs associated to T2D
Targets: the differentially expressed genes in T2D vs. NORMAL

For each pair (regulator, target) we calculate:

Ar(regulator, target) =
= r(requlator, target)yorua,- F(regulator, target),p

Significant differences are hints of downstream effect of the
mutations on the targets



The inferred network
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Validation
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Insulin Signaling Pathway (ISP)




Mass Action Kinetics model of ISP
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Simulation (Normal)
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Local Sensitivity Analysis

= QOutput O: GLUT4 activation

parameter S
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Simulation (Mutated PI3K)
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Simulation (Mutated IRS)
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Simulation (Mutated PI3K and IRS)
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In Summary

= SP-ABACUS

Using SP-ABACUS allowed gaining sensitivity and
formulating new hypothesis on involvement of tryptophan
metabolism on T2D etiology

= Differential Wiring

Significant differences of inferred regulatory links (T2D vs.
Normal) revealed downstream targets of the mutations

= Quantitative model of insulin signaling

The modeling approach yielded important insights into
reciprocal relationships between insulin resistance and
mutations in IRS/PI3K/Akt pathway that might be relevant
for generating novel therapeutic approaches.



Conclusions

= The most critical aspect is to explain the data from a
clinical/biological point of view

= To this purpose, a key challenge we have to face is the
Integration of data within and across domains and levels of
granularity in a multiscale approach.
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