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Introduction – Agricultural systems need to be more sustainable

Widespread use of plant protection products (PPP) in agriculture
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Introduction – Agricultural systems need to be more sustainable

Widespread use of plant protection products (PPP) in agriculture

Herbicides Insecticides

Development of public policies towards a better use and a 
reduction of PPP

Fungicides

Increased productivity and 
potential yield of crops, harvest

quality and stability

Soil, water and air pollution,
negative impact on biodiversity, 

human health, resistance build up
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Introduction – The resistance phenomenom is inescapable

Population before selection
(Gt)

ResistantSensitive

Resistance is defined as a heritable and stable trait in an organism, 
resulting in a decrease of the organism's sensitivity to a biocidal active substance
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Introduction – The resistance phenomenom is inescapable

The existence of a selection pressure will inevitably lead to the 
selection of adapted phenotypes in populations

Population before selection
(Gt)

Population during selection Population after selection
(Gt+1)

ResistantSensitive

Resistance is defined as a heritable and stable trait in an organism, 
resulting in a decrease of the organism's sensitivity to a biocidal active substance

PPP

7Darwin, C. (1859).
On the origin of species



Introduction – The resistance phenomenom is inescapable

May lead to resistance in practice 
and to an increase in PPP use

Population before selection
(Gt)

Population during selection Population after selection
(Gt+1)

ResistantSensitive

Resistance is defined as a heritable and stable trait in an organism, 
resulting in a decrease of the organism's sensitivity to a biocidal active substance

PPP
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Introduction – Anti-resistance strategies rely on the heterogeneity
of the selection
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Changes in PPP use:

Rex Consortium. (2013). Trends in ecology & evolution

Alternative control methods: Cultivar tolerance, Prophylactic measures, Biocontrol, …



Introduction – Anti-resistance strategies rely on the heterogeneity
of the selection

Alternation MixtureDose modulationMosaic

A B A B
A
+
B

A
+
B

A A

a a

A B

B A

A B
Temporal 

heterogeneity
Intensity 

heterogeneity
Spatial 

heterogeneity
Heterogeneity 
within spray

11

Changes in PPP use:

Mixing fungicides:
Most recommended and used in 

cereal crops 
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European guidelines)

Alternative control methods: Cultivar tolerance, Prophylactic measures, Biocontrol, …
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Changes in PPP use:

How effective? At which scales?
Which doses? Mixtures composition?

 Lack of study concerning empirical 
approach at large spatiotemporal scales

Alternative control methods: Cultivar tolerance, Prophylactic measures, Biocontrol, …
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• Ascomycete fungus responsible for 
septoria tritici blotch

• Main disease on wheat: 18 q/ha (25%)

• 70% of European fungicide uses

Introduction – Zymoseptoria tritici is a major pathogen

(Photos - F. Suffert - INRA)
Fones & Gurr (2015). Fungal Genetics and Biology.
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• Ascomycete fungus responsible for 
septoria tritici blotch

• Main disease on wheat: 18 q/ha (25%)

• 70% of European fungicide uses

Introduction – Zymoseptoria tritici is a major pathogen

Pycnidiospores
Asexual reproduction

Ascospores
Sexual reproduction

(Photos - F. Suffert - INRA)
Fones & Gurr (2015). Fungal Genetics and Biology.

16Suffert et al. (2011). Plant Pathology.

(ARVALIS)

Biological cycle
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Introduction – A great diversity of resistance mechanisms in Z. tritici

• 5 fungicide modes of action (MoA)

• Resistance to all unisite fungicides

19

Benzimidazoles (BenR / BenS)
QoIs or Strobilurins (StrR / StrS)
SDHIs or Carboxamides (CarR / CarS)
DMIs or Triazoles (TriR / TriS)



Introduction – A great diversity of resistance mechanisms in Z. tritici
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Leroux et al., 2007
Leroux & Walker, 2011
Dooley et al., 2016
Huf et al., 2018

Cools et al., 2013
Chassot et al., 2007

Leroux & Walker, 2011
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Omrane et al., 2017

ENHANCED EFFLUX
(MDR)

TARGET MUTATION
BenR, StrR, CarR, TriR

Benzimidazoles (BenR)
QoIs or Strobilurins (StrR)
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DMIs or Triazoles (TriR: LR → MR → HR)

TARGET OVEREXPRESSION
TriR

Quantitative R
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• 5 fungicide modes of action (MoA)

• Resistance to all unisite fungicides
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Benzimidazoles (BenR)
QoIs or Strobilurins (StrR)
SDHIs or Carboxamids (CarR)
DMIs or Triazoles (TriR: LR → MR → HR)

TARGET OVEREXPRESSION
TriR

Quantitative R

Qualitative R
• 5 fungicide modes of action (MoA)

• Resistance to all unisite fungicides

• Need for a reliable resistance monitoring



Introduction – The Performance network compiled a unique dataset

• Since 2004

• 70 locations monitored yearly

• Up to 10 different sprayed
strategies + 1 unsprayed plot

22
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 A unique dataset: time and space scales, exhaustiveness of resistances
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Questions and approaches

 How resistance evolves on large time and space scales?

Section 1 - Historical review and quantification of resistance
dynamics to fungicides in the French Z. tritici populations
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Section 3 - Quantification of the effect of mixing fungicides

 How anti-resistance strategies modulate resistance
evolution at the plot scale?
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Section 1 – Explored data

Resistance frequencies observed in unsprayed fields

“Biological spore traps”: resistance frequency before any selection

29
Garnault et al. (2019). Pest management science.
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Section 1 – Explored data
Variable to be

explained
Resistance frequencies observed in unsprayed fields

31
Garnault et al. (2019). Pest management science.

Year and RegionExplanatory variables

“Biological spore traps”: resistance frequency before any selection



Section 1 – A spatial analysis highlighting contrasted dynamics

Mapping of the annual resistance status: 
Are spatial structures stable over time?

32

Spatial kriging
(variogram estimation)

Garnault et al. (2019). Pest management science.



Section 1 – A spatial analysis highlighting contrasted dynamics

33

Mapping of the annual resistance status: 
Which are the geographical zones with higher frequencies?

Spatial kriging
(variogram estimation)

Spatial partitioning
(decision trees)+

Garnault et al. (2019). Pest management science.



Section 1 – A spatial analysis highlighting contrasted dynamics

Spatial kriging
(variogram estimation)

34

Spatial partitioning
(decision trees)+ +

0-1 inflated GLM
(Year x Region)

Mapping of the annual resistance status: 
Which are the years/regions with higher/lower frequencies 

compared to the average?

Garnault et al. (2019). Pest management science.



Section 1 – Dynamic spatial structure for the StrR phenotype

35

(2006)

Initially found in Northern regions

Progression front structure

Dispersal capacity: 150 km/year

Garnault et al. (2019). Pest management science.

QoI resistance



(2013)

Section 1 – Stable spatial structures for the TriR6 and TriR7-R8 
phenotypes

36

Higher frequencies of TriR6 in 
Northern / North-Eastern regions

Garnault et al. (2019). Pest management science.

DMI resistance, TriMR



(2013)

Section 1 – Stable spatial structures for the TriR6 and TriR7-R8 
phenotypes

37

Higher frequencies of TriR6 in 
Northern / North-Eastern regions

(2013)

Higher frequencies of TriR7-TriR8 in 
Southern / South-Western regions

Garnault et al. (2019). Pest management science.

DMI resistance, TriMR



Section 1 – Modelling resistance growth

Selection

Represents the counting protocol and 
the three main evolution stages of resistance

38
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Section 1 – Modelling resistance growth

Emergence

Selection

Represents the counting protocol and 
the three main evolution stages of resistance
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Section 1 – Modelling resistance growth

Emergence

Selection

Generalization

Represents the counting protocol and 
the three main evolution stages of resistance

40
Garnault et al. (2019). Pest management science.



Section 1 – A dynamic approach to study relative fitness

Population dynamics approach: Hartl & Clark, 1997

Resistant phenotype 𝑅 𝑡 = 𝑅0ω𝑅
𝑡

S 𝑡 = 𝑆0ω𝑆
𝑡Sensitive phenotype (wild type)

ω =
ω𝑅

ω𝑆

the relative fitness

How many times faster resistant
individuals grow compared to others

41
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Resistant phenotype 𝑅 𝑡 = 𝑅0ω𝑅
𝑡

S 𝑡 = 𝑆0ω𝑆
𝑡Sensitive phenotype (wild type)

𝑝𝑅(𝑡) =
𝑅(𝑡)

𝑅 𝑡 + 𝑆(𝑡)

𝑙𝑜𝑔𝑖𝑡(𝑝𝑅(𝑡)) = ln
𝑝𝑅 𝑡

1 − 𝑝𝑅 𝑡
= ln

𝑅 𝑡

𝑆 𝑡
= ln

𝑅0ω𝑅
𝑡

𝑆0ω𝑆
𝑡

= ln
𝑅0
𝑆0

+ ln
ω𝑅
𝑡

ω𝑆
𝑡 = ln

𝑅0
𝑆0

+ ln
ω𝑅

ω𝑆

𝑡

= ln
𝑅0
𝑆0

+ 𝑡 ∗ ln(
ω𝑅

ω𝑆
)

ω =
ω𝑅

ω𝑆

the relative fitness

How many times faster resistant
individuals grow compared to others

𝑙𝑜𝑔𝑖𝑡(𝑝𝑅(𝑡)) = μ + β ∗ 𝑡 𝑤𝑖𝑡ℎ μ = ln
𝑅0
𝑆0

𝑎𝑛𝑑 β = ln(ω)

42
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Section 1 – A model to estimate apparent relative fitness

Initial frequencies (l=1): global + regional

Growth rates: global + regional

43
Garnault et al. (2019). Pest management science.



Sampling date effect

Overdispersion

Section 1 – A model to estimate apparent relative fitness
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Initial frequencies (l=1): global + regional

Growth rates: global + regional
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Sampling date effect

Overdispersion

Section 1 – A model to estimate apparent relative fitness
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Initial frequencies (l=1): global + regional

Growth rates: global + regional

𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙, · = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙−1, · + (β + η𝑖)

A model that can estimate relative fitness of resistance
phenotypes from their frequency evolutions

 Bayesian framework, MCMC algorithms, non-informative priors

Garnault et al. (2019). Pest management science.



Section 1 – A method to test variance parameters

46

𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙, · = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙−1, · + (β + η𝑖)

We define for region parameters as                            , which is equivalent to the 
contrasts « sum = 0 » in frequentist models

η𝑖 ~𝒩(0, ση
2)

 How to test significance of variance parameters (variance 
hyperparameters or random effects) ?



Section 1 – A method to test variance parameters

47
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Pvalues are computed using credible intervals of parameters posterior densities
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Model convergence
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Section 1 – A method to test variance parameters
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Section 1 – Apparent fitness estimated from the dynamic model
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Evolution speeds differ among resistance phenotypes

Garnault et al. (2019). Pest management science.
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𝒆𝜷+𝜼𝒊

Evolution speeds differ among resistance phenotypes

Evolution speeds differ among regions for a given resistance phenotype

Section 1 – Apparent fitness estimated from the dynamic model

56
Garnault et al. (2019). Pest management science.



 Progression front structure (QoI resistance, previously described
on a West-to-East gradient by Torriani et al., 2009)

 Stable and strong regionalization of resistance (DMI resistance)

 Constrated growth speeds among phenotypes

 Contrasted growth speeds among regions for a given phenotype

 Significant difference between spring and summer samples
highlight intra-annual evolution

Section 1 – Key points
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Section 1 – Key points
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 Regional scale is interesting for resistance management

 Which factors modulate the selection at the regional scale?



• Section 2 - The regional drivers of resistance dynamics

Section 2 – Adressed question

 Can regional fungicides uses explain resistance frequencies?

60

MigrationSelection pressure Genetic drift 



Section 2 – Explored data

Resistance frequencies observed
in unsprayed plots

61

Variable to be explained

Garnault et al. (2020). New Phytologist.



Section 2 – Explored data

Explanatory variables

Selection pressure intensity:
use of anti-septoria fungicides

Variable to be explained
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Resistance frequencies observed
in unsprayed plots

Garnault et al. (2020). New Phytologist.



Section 2 – Explored data

Selection pressure heterogeneity:
surfaces under organic wheat

63

Selection pressure intensity:
use of anti-septoria fungicides

Variable to be explained

Explanatory variables

Resistance frequencies observed
in unsprayed plots

Garnault et al. (2020). New Phytologist.



Section 2 – Explored data

Population size proxy:
Potential yield losses

64

Selection pressure heterogeneity:
surfaces under organic wheat

Selection pressure intensity:
use of anti-septoria fungicides

Variable to be explained

Explanatory variables

Resistance frequencies observed
in unsprayed plots

Garnault et al. (2020). New Phytologist.



Section 2 – Adding explanatory factors to the dynamic model

65

𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙, · = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙−1, · + (β + η𝑖)

+ 

𝑚=1

𝑀

ν𝑚 ∗ 𝐹𝑚, 𝑖, 𝑗, 𝑙−1, ·

β

Selection pressure

Constant growth

• Associated MoA
• 𝜈𝑚 > 0 (StrR, TriMR)

Garnault et al. (2020). New Phytologist.



Section 2 – Adding explanatory factors to the dynamic model
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𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙, · = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖, 𝑗, 𝑙−1, · + (β + η𝑖)

+ 

𝑚=1

𝑀

ν𝑚 ∗ 𝐹𝑚, 𝑖, 𝑗, 𝑙−1, ·

+ ρ ∗ 𝑃𝑖, 𝑗, 𝑙−1, ·

β

Selection pressure

Population size

Constant growth

Garnault et al. (2020). New Phytologist.



Section 2 – Adding explanatory factors to the dynamic model
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Section 2 – Adding explanatory factors to the dynamic model

β is an integrative parameter: fitness cost (migration?, …)
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Section 2 – Regional fungicide use is the most important factor

Yield losses effect was never selected

Regional fungicide use is the major factor in models: 42% to 88%

The loss of explained variance induced by removing the factor from the model.
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StrR TriMR (<2011)
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Section 2 – Frequency change induced by active substances

Parameter StrR
TriMR
<2011

Constant growth (β) - 3.71 * - 4.12 ·

Selection pressure (𝝂𝒎)

QoIs Kresoxym-methyl 4.23 ***

Pyraclostrobin 3.28 **

DMIs Cyproconazole x

Epoxiconazole 4.94 **

Prochloraz x

Tebuconazole x

Refuges (𝜿) 3.26 ***
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Selected actives substances are pioneers and most used fungicides

Constant growth are negative  resistance cost ?
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Section 2 – Link between resistance factors and fungicide effects

Parameter TriR6 TriR7-TriR8

Constant growth (β) 4.96 *** 1.52 ·

Selection pressure (𝝂𝒎)

DMIs Cyproconazole x 2.46 **

Epoxiconazole x x

Prochloraz 3.7 *** -3.95 ***

Tebuconazole -11.35 *** 2.6 *
72

TriR6 TriR7-TriR8

Leroux & Walker (2011). Pest management science.
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Section 2 – Prediction quality for the StrR phenotype

StrR
predicted

frequencies
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2004 2006 2009

The model can estimate the average regional frequencies of resistances
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Section 2 – Prediction quality for the StrR phenotype

StrR
predicted

frequencies
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2004 2006 2009

StrR
observed

frequencies

 The model is able to recreate the North-South progression front

The model can estimate the average regional frequencies of resistances
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Section 2 – Prediction quality for the TriR6-7-8 phenotypes
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Observed
frequencies

Predicted
frequencies

2006 2010 2013

TriR7-TriR8 TriR6

 The model is also able to represent the constant regionalization of 
TriR6 and TriR7-TriR8 phenotypes

2006 2010 2013

Garnault et al. (2020). New Phytologist.



 Regional fungicide use is the most important driver of resistance
evolutions

 Estimated fungicide effects at the regional scale can in general be
linked to resistance factors of phenotypes determined at the
laboratory scale

 Model predictions are consistent with field observations

 Yield losses/Population size is not a constraining factor

Section 2 – Key points
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Section 2 – Key points
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 The use of fungicides at the regional scale can be modulated to 
manage resistance evolution

 Regional fungicide use is the most important driver of resistance
evolutions

 Estimated fungicide effects at the regional scale can in general be
linked to resistance factors of phenotypes determined at the
laboratory scale

 Model predictions are consistent with field observations

 Yield losses/Population size is not a constraining factor
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• National monitoring data at large scales, a original approach:
 Phenotype frequency
 Time (>10 years)
 Space (France)



Conclusions
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• National monitoring data at large scales, a original approach:
 Phenotype frequency
 Time (>10 years)
 Space (France)

• Large scale monitoring is an asset for:
 The short-term recommandation
 The long-term comprehension of resistance dynamics
 The implementation of reliable and sustainable strategy of 

resistance management on large scales



Outlooks
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Outlooks
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Thank you for your attention
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(Photo – G. Couleaud - ARVALIS)







Deployed hectares

Expected frequency change

𝐸𝐹𝐶θ = 100 ∗ (𝑝𝑒 − ҧ𝑝)

𝑙𝑜𝑔𝑖𝑡 𝑝𝑒 = 𝑙𝑜𝑔𝑖𝑡−1 ҧ𝑝 + θ ∗ 𝑋θ ҧ𝑝 =
ത𝑌

100

100ha

70ha
sprayed

twice

A + B

𝑎𝒙 + 𝑏𝒚 + (𝑐𝒚 + 𝑑𝒛) 𝑑𝒛

HAD𝒙 = 70ha
HAD𝒚 = 70x2 = 140ha
HAD𝒛 = 70x2 = 140ha

C
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