

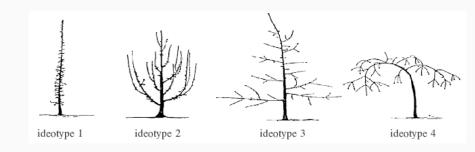
Métamodélisation et optimisation robuste

Application à la conception d'idéotypes sous incertitude climatique.

Léonard Torossian

Sous la direction de Robert Faivre, Aurélien Garivier et Victor Picheny

Présentation de l'optimisation séquentielle



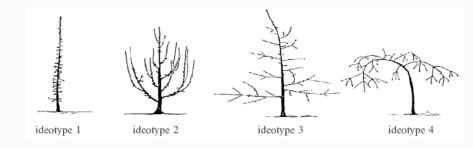
Définition

Un idéotype est une variété de plant de culture sélectionnée pour sa capacité à profiter de manière optimale d'un environnement donné.

Présentation de l'optimisation séquentielle

- Un budget initial
- Identifier la meilleure machine en un nombre minimal de parties

Présentation de l'optimisation séquentielle



Simulateur Sunflo

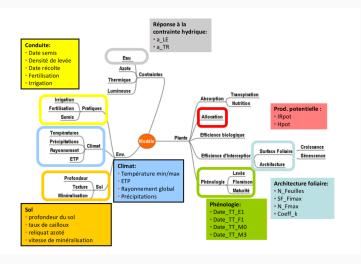
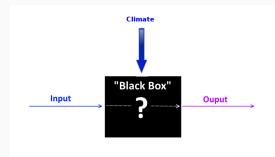


Figure 1: Modèle sunflo [Debaeke et al., 2011]

- Nous allons nous affranchir de cette complexité
- Incorporer toute la **complexité** du modèle sous la forme d'une **boîte noire stochastique**



- Une boîte noire stochastique est une fonction $f: \mathbb{X} \subset \mathbb{R}^d \times \Omega \to \mathbb{R}$
- L'entrée x ∈ X représente un paramètre fixé, il peut être déterministe ou stochastique.
- \bullet L'entrée ω représente le caractère stochastique du code.
- L'objectif est d'obtenir des informations sur la loi de

Le quantile conditionnel

Le quantile conditionnel

Définition

Soient (X,Y) une paire de variable aléatoires et $\alpha\in(0,1)$. Le quantile conditionnel de Y sachant X=x de niveau α , $q_{\alpha}(x)$ est défini par la fonction $q_{\alpha}:\mathcal{X}\to\mathbb{R}$ qui point par point, minimise en q

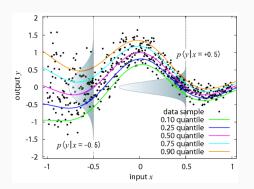
$$\mathbb{P}(Y \le q | X = x) \ge \alpha$$

Le quantile conditionnel

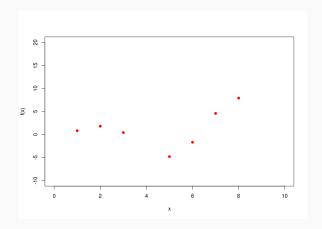
Définition

Soient (X,Y) une paire de variable aléatoires et $\alpha \in (0,1)$. Le quantile conditionnel de Y sachant X=x de niveau α , $q_{\alpha}(x)$ est défini par la fonction $q_{\alpha}: \mathcal{X} \to \mathbb{R}$ qui point par point, minimise en q

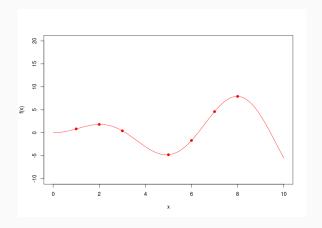
$$\mathbb{P}(Y \le q | X = x) \ge \alpha$$



Métamodélisation

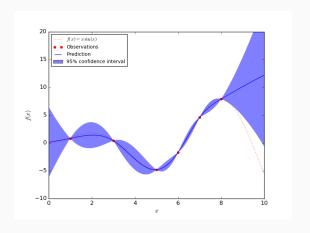


On se donne un échantillon $(x_i, y_i)_{1 \le i \le n}$



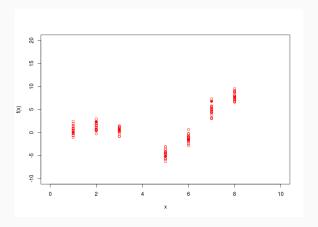
Nous souhaitons trouver une fonction g telle que :

$$y_i = g(x_i), \forall i, 1 \leq i \leq n$$

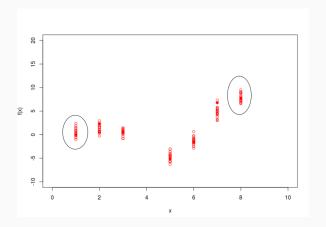


• A priori gaussien sur la fonction visée.

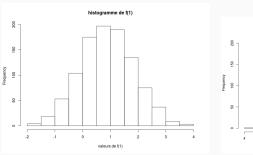
Homoscédasticité : La variance est la même pour chaque observation



Homoscédasticité : La variance est la même pour chaque observation



Homoscédasticité



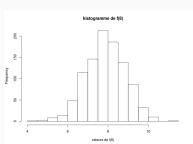
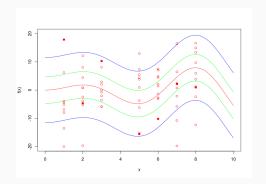


Figure 3: Histogramme de la sortie f en x = 1 et x = 8.

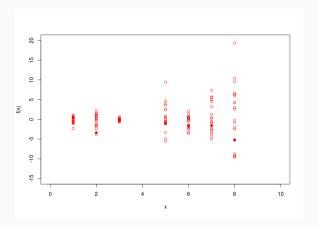
Homoscédasticité



Si on connaît:

- La moyenne
- La variance du bruit en un seul point
- → On peut reconstruire la distribution de probabilité en tout point

Hétéroscédasticité : La variance est différente pour chaque observation



Sunflo est Hétéroscédastique!

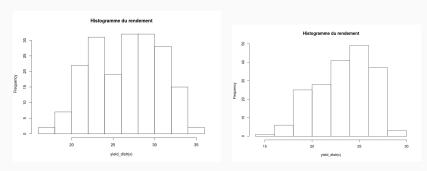


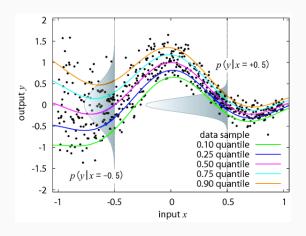
Figure 4: Deux distribution associées à deux phénotypes différents

Nous supposons que le code est structuré en espace.

- Les méthodes à noyau permettent de travailler avec cette hypothèse. [Steinwart and Christmann, 2008]
- Un noyau $k: \mathbb{X} \times \mathbb{X} \to \mathbb{R}$ peut être vu comme une mesure de dépendance entre deux éléments de l'espace \mathbb{X} .

Nous allons privilégier deux approches non paramétriques :

- Une approche bayésienne utilisant les processus gaussiens.[Plumlee and Tuo, 2014][Rasmussen, 2006]
- Une approche fréquentiste de type machine à support de vecteur (SVM). [Takeuchi et al., 2006]



Définition

Soit *L* une fonction de perte, le risque associé à *L* s'écrit :

$$\mathcal{R}[f] := \mathbb{E}_{p(x,y)}[L(y - f(x))]$$

Le risque empirique associé est :

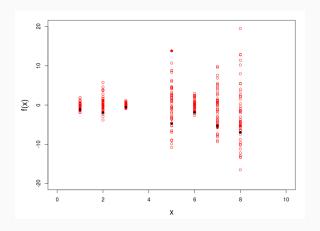
$$\mathcal{R}_{emp}[f] := \frac{1}{m} \sum_{i=1}^{m} L(y_i - f(x_i))$$

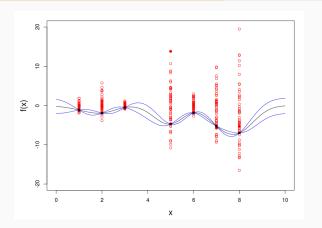
- Typiquement la perte quadratique est utilisée pour estimer la moyenne conditionnelle.
- Il nous faut une autre fonction de perte pour estimer un quantile.

On suppose que chaque quantile suit un processus gaussien, de moyenne $m_{\alpha}(.)$ et de variance $k_{\alpha}(.,.)$. Nous noterons :

$$q_{\alpha}(x) \sim \mathbb{GP}(m_{\alpha}(x), k_{\alpha}(x, x'))$$

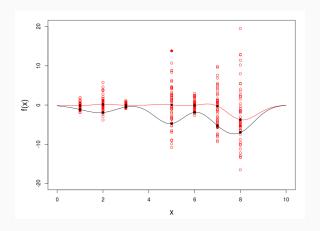
Comment faire passer le processus gaussien au bon endroit ?



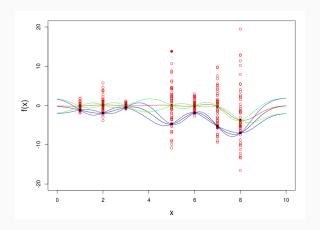


Définition de l'estimateur

$$m_{q_{\alpha}}(x^{*}) = k(x^{*}, x)^{T} (K + \sigma_{n}^{2} I)^{-1} Y_{\alpha}$$
$$\mathbb{V}_{q_{\alpha}}(x^{*}) = k(x^{*}, x^{*}) - k^{T} (x^{*}, x) (K + \sigma_{n}^{2} I)^{-1} k(x^{*}, x)$$



ightarrow Nous pouvons itérer cette méthode

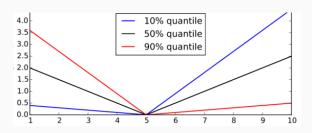


Les intervalles de confiance se croisent!

Définition

Soit $\xi \in \mathbb{R}$ et $\alpha \in (0,1)$, la fonction pinball est définie comme :

$$I_{\alpha}(\xi) = (\alpha - \mathbb{1}_{(\xi < 0)})\xi$$



Proposition

Soient Y une variable aléatoire de fonction de répartition F et $\alpha \in (0,1)$ alors,

$$\arg\min_{q\in\mathbb{R}}\mathbb{E}[I_{lpha}(Y-q)]$$

est le quantile d'ordre α .

Définition

Le risque régularisé que nous souhaitons minimiser s'écrit :

$$\mathcal{R}_{reg}[f] := \mathbb{E}_{p(x,y)}[I_{\alpha}(y - f(x))] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^{2}$$

Et le critère empirique associé à notre échantillon :

$$\mathcal{R}_{reg,emp}[f] := rac{1}{m} \sum_{i=1}^{m} I_{lpha}(y_i - f(x_i)) + rac{\lambda}{2} \left\| f
ight\|_{\mathcal{H}}^2$$

Théroème [Takeuchi et al., 2006]

Le minimiseur de $\mathcal{R}_{reg,emp}$ est un estimateur de q_{α} .

Minimisation du risque empirique :

$$\mathcal{R}_{reg,emp}[f] := rac{1}{n} \sum_{i=1}^{n} I_{lpha}(y_i - f(x_i)) + rac{\lambda}{2} \left\| f
ight\|_{\mathcal{H}}^2$$

Le minimiseur existe et est unique.

Il s'écrit :

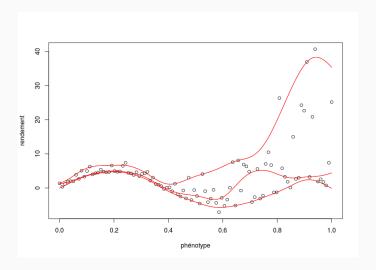
$$f(x) = \sum_{i=1}^{n} \gamma_i k(x_i, x)$$

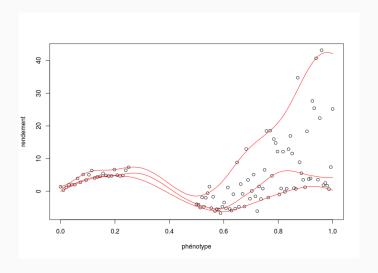
- Avantage : On se place dans un espace où f est combinaison linéaire de $k(x_i,.)$
- Le problème se réécrit :

$$\underset{\gamma}{\operatorname{minimize}} \frac{1}{2} \gamma^{\mathsf{T}} K \gamma - \gamma^{\mathsf{T}} y \quad \text{avec } K \in \mathbb{M}_n, \ \ \gamma \in \mathbb{R}^n$$

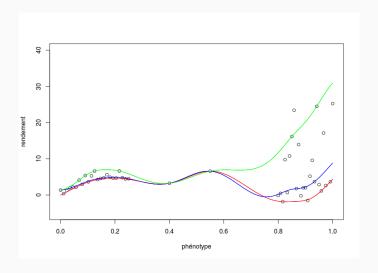
Sous les contraintes

$$\frac{1}{\lambda n}(\alpha - 1) \le \gamma_i \le \frac{1}{\lambda n}\alpha \quad \forall \quad 1 \le i \le n \quad \text{et} \quad \sum_{i=1}^n \gamma_i = 0$$





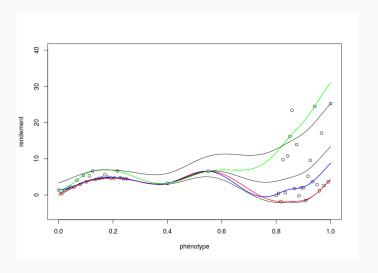
- Avantage principal: Nous n'avons pas besoin de concentrer l'information.
- Inconvénient principal : Nous n'avons pas d'indications sur l'incertitude locale.



 Méthode tirée de [Sangnier et al., 2016][Alvarez et al., 2012] pour l'estimation multitaches.

$$f: \mathbb{X} \to \mathbb{R}^D$$
 et non $g: \mathbb{X} \to \mathbb{R}$

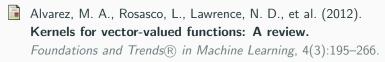
avec D le nombre de quantiles à estimer.



Différentes pistes de recherche

- Donner du sens aux intervalles de confiance dans le cas d'une régression multiquantile gaussienne.
- Trouver une manière de quantifier l'incertitude locale pour les méthodes de types SVM.
- Reconstruire les distributions à l'aide des quantiles pour avoir un autre point de comparaison.

References I



Debaeke, P., Casadebaig, P., Mestries, E., Palleau, J.-P., Salvi, F., Bertoux, V., and Uyttewaal, V. (2011).

Simulation dynamique des interactions génotype x environnement x conduite de culture: application à l'évaluation variétale en tournesol.

http://www.inra.fr/ciag/revue.

Plumlee, M. and Tuo, R. (2014). **Building accurate emulators for stochastic simulations via quantile kriging.**

Technometrics, 56(4):466-473.

References II

Rasmussen, C. E. (2006).

Gaussian processes for machine learning.

Sangnier, M., Fercoq, O., and d'Alché Buc, F. (2016).

Joint quantile regression in vector-valued rkhss.

In Advances in Neural Information Processing Systems, pages 3693–3701.

Steinwart, I. and Christmann, A. (2008).

Support vector machines.

Springer Science & Business Media.

Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. (2006). **Nonparametric quantile estimation.**Journal of Machine Learning Research, 7(Jul):1231–1264.

Questions?

