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Link to the previous session

Goal of multivariate (exploratory) statistics: understanding
high-dimensional data sets, reducing their 'useful’ dimensions, representing
them, seeking hidden or latent factors . ..

Today we will:

» review PCA needed 7
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Link to the previous session

Goal of multivariate (exploratory) statistics: understanding
high-dimensional data sets, reducing their 'useful’ dimensions, representing
them, seeking hidden or latent factors . ..

Today we will:

review PCA needed ?

» introduce Multidimensional scaling (MDS) as a factor analysis of a
distance matrix

v

» introduce Canonical correlation analysis (CCA): for p quantitative
variables and ¢ quantitative variables)

» introduce Correspondence analysis (CA): for 2 qualitative variables
with several (many) levels.

» introduce clustering methods like hierarchical clustering or
Kmeans-like algorithms.
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Multidimensional scaling (MDS)

» now only an index between individual is known, variables are not
observed anymore: n x n matrix (think of distances).
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Multidimensional scaling (MDS)

» now only an index between individual is known, variables are not
observed anymore: n x n matrix (think of distances).

» Goal: represent the cloud of points in a low-dimensional subspace.
» MDS = PCA on distance matrix !

Easy example

Road distances
between 47 French
cities. Is it
Euclidian ?
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Canonical correlation analysis (CCA)

» Uses techniques close to PCA to achieve a kind of multiple output
multivariate regression
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Canonical correlation analysis (CCA)

» Uses techniques close to PCA to achieve a kind of multiple output
multivariate regression

» Goal: Linking 2 groups of variables (X and Y') measured on the
same individuals

» Example from yesterday on the study of fatty acids and gene levels on
mice: are some acids more present when some genes are
over-expressed ? Or conversely 7 — Practical session !

» Consists in looking for a couple of vectors, one related to X (gene
expressions) and one to Y (metabolite levels) which are maximally
conected. And iteratively (without correlation between iterations).

» Variables can be represented in either basis, it does not change the
interpretation.
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CCA (cont'd)

Need to have p,q < n. We kept 10 genes and 11 fatty acids.
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More interpretation ? — Practical session
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Correspondence analysis (CA)

» Becomes AFC in French

» similar concept to PCA: represent the distribution of the 2 variables
and plots the individuals. but applies to qualitative rather than
quantitative data — contingency table (n; ;)

» This is double PCA (line and column profiles) on (X;;) = (foZJZJ —1),
with f; ; = nij/n

» Note that x* writes n )", > fija? i
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CA: an example

Cultivated area in the Midi-Pyrénées region

Simultaneous representation of département and farm size (in 6 bins).
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Today

» " Clustering: unsupervised classification”. Distance, hierarchical
clustering (divisive or agglomerative).

» Keep in mind that this is still exploratory statistics so the best
clustering (including method, options, criterion, etc.) is the most
useful ?!

» End of practical session on mice data set.

» And a new guided session on multivariate stats: CA on presidential

elections, PCA and clustering (k-means and AHC) on hotel data set
and multiple CA on 2 multiple factor data sets.
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Clustering: grouping into classes

Ever heard of that in your background 77
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Cluster analysis or clustering

» Task of grouping objects so that objects belonging to the same
group are 'more similar’ to each other than to those in any other
group — multiobjective optimisation task.
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Cluster analysis or clustering

» Task of grouping objects so that objects belonging to the same
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group — multiobjective optimisation task.

hierarchical agglomerative clustering
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» Several algorithms can do the job, their differences mainly being
about used distance.
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Cluster analysis or clustering

» Task of grouping objects so that objects belonging to the same
group are 'more similar’ to each other than to those in any other
group — multiobjective optimisation task.

hierarchical agglomerative clustering
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» Several algorithms can do the job, their differences mainly being
about used distance.
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» Possibly, different parameters (initialisation, distance used, ending
criterion ...) lead to different representations.
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Challenge: build your own clustering algorithm ?!
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Clustering algorithms

Challenge: build your own clustering algorithm 7!

Let's quote only few of widespread clustering algorithms:

» hierarchical clustering with dissimilarity min — single, max —
complete or mean — average linkages)

v

centroid models (e.g. K-means clustering)

\4

distribution models (statistical definition e.g. multivariate Gaussian
distribution)

graph or density models (e.g. clique)

v
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Clustering: some formalism

» Define a similarity (symetry, self-similarity, bounded) — dissimilarity

» Distance need additional properties: d(i,j) =0 =i = j and
triangular inequality (Euclidian dist. from scalar product)
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Clustering: some formalism

» Define a similarity (symetry, self-similarity, bounded) — dissimilarity

» Distance need additional properties: d(i,j) =0 =i = j and
triangular inequality (Euclidian dist. from scalar product)

A goodness-of-fit of partitions can be defined: (i) external: TP, FP ... —
precision, sensitivity or Rand/Jaccard index or (ii) internal: Dunn index
d(i,j)

D = min; mlnj?éi m
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Homework

What do students choose after French baccalauréat ?

First describe and then represent this (simple) data set in some

informative way.

Hint: CA...
origin counselling
université prep. clas. other | Total
bac lit. 13 2 5 20
bac éco. 20 2 8 30
bac scient. 10 5 5 20
bac tech. 7 1 22 30
Total 50 10 40 100
E. Rachelson & M. Vignes (ISAE) SAD 2013
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Next time: tests
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Finished

Next time: tests

But before that: practice with R 7!
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