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Introduction

I Focus of biologists shifted from the study of isolated biological
component to the study of complex biological system.

I Graphs widely used to represent bio-entities (proteins, genes, small
molecules...) as nodes and their interactions as edges.

I Special focus on bipartite networks

Reference
Pavlopoulos & al. Bipartite graphs in systems biology and medicine : a
survey of methods and applications in GigaScience (2018)
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A large variety of networks

Depending on which biological entities and interactions are at stake :
differents types of networks
I Proteins-Proteins interactions : simple undirected networks
I Gene regulation networks : simple directed networks
I Gene expression networks : weighted networks
I Multi-edged networks :

I When nodes are connected in multiple ways
I For instance : 2 proteins may interact physically and/or have a

certain degree of sequence similarity
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Bipartite networks
Definition
Bipartite networks (also refered as bigraphs) are graphs such that the
nodes (vertices) are divided into two disjoint sets (U and V ) and such
that all the edges link one node from U and one node of V .
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Examples of bipartite networks in ecology

Node = specie

By W. Dattilo

I Plant-pollinator network, (mutualistic relation)
I Plant-ant network (mutualistic relation)
I Host-Pathogen interactions (e.g. tree-fungus)

S. Donnet Bipartite networks



7/76

Introduction Bipartite graph analysis Probabilistic models for bipartite networks Towards more complicated networks

Examples of biomedical networks

I U = genes, drugs, environmental exposures
I V = diseases, symptoms, adverse drug effects
I Drug - protein target interactions, gene-drug interactions

More abstract networks
I Biomedical field now uses methods of network analysis to model

factors that influence human diseases
I Traditionally analyzed with standard methods
I But : Networks offer a way to explore not only the molecular

complexity of ONE disease but also the molecular relationships
among diseases.

I Aim : design new therapeutic strategy

S. Donnet Bipartite networks
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Examples of Biomolecular bipartite networks

I Representing interactions between biological molecules.
I In general, reconstructed networks from multi-omics data.
I Peptide / protein : edge : peptide involved in protein. Proteins may

share peptides.
I Protein/ complexes : participation of proteins in identified complexes
I Gene expression regulation network : regulatory genes and target

genes

S. Donnet Bipartite networks
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Scope of the talk

I Object : bipartite network
I Directly observed or previously inferred
I Aim : understanding the structure of the network i.e.

I we assume that all the nodes of the network do not play the same
role and

I we want to unravel these complicated structures (existence of
specialists, communities, star...) → topology

S. Donnet Bipartite networks
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Matrix Representation

I Bipartite networks can be represented by an incidence matrix or
bi-adjacency matrix

I For i ∈ U, j ∈ V ,

Yij =
{

1 if there is an interaction between i and j
0 otherwise.

I Rectangular matrix
I In most cases : Yij ∈ {0, 1}. However, sometimes Yij ∈ R, weighted

bipartite graph
I Directed bipartite graph : not classical. Proposition Yij ∈ {−1, 0, 1}

S. Donnet Bipartite networks
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Matrix Representation

S. Donnet Bipartite networks
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Projection I

Going back to simple graph
I From a bipartite network, one can define two (or more) simple graph

where each one involves one set of nodes among the two sets.
I Because tools already developed for simple graph

I First projection XU = YY ′ : network among U

XU
ii′ =

|V |∑
j=1

YijY ′ji′ =
|V |∑
j=1

YijYi′j

= number of shared connections between i and i ′.

Host - parasite : number of parasites shared by any two species.

S. Donnet Bipartite networks
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Projection II

I Second projection XV = Y ′Y : network among V

XV
jj′ =

|U|∑
i=1

Y ′jiYij′ =
|U|∑
i=1

YijYij′

= number of shared connections between j and j ′.

Host - parasite : number of common species infested by any pair of
parasites.

S. Donnet Bipartite networks
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Projection III

[PKP+18]
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Projection IV

Limitations
I Loosing a lot of information
I Meaning if Y is weighted ?
I Topology on XU / XV and Y difficult to relate ?

S. Donnet Bipartite networks
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Metrics

Aim : give a short description of the network, give a hint about its
structure, look for heterogeneity in the connections
I Many metrics supplied for simple networks
I Have been extended to bipartite networks

S. Donnet Bipartite networks
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Libraries

R-packages

Name Usage
Networksis Tool to simulate bipartite networks

enaR Provides algorithms for the analysis of ecological networks
Netpredictor Prediction of missing links in any given bipartite network
biGRAPH Extension of the igraph library for bipartite graphs
bipartite Visualising Bipartite Networks and

Calculating Some (Ecological) Indices

S. Donnet Bipartite networks

https://cran.r-project.org/web/packages/networksis/index.html 
https://cran.r-project.org/web/packages/enaR/
https://github.com/abhik1368/Shiny_NetPredictor
https://cran.r-project.org/src/contrib/Archive/biGraph/
https://rdrr.io/cran/bipartite/
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Degree

deg(u) =
∑

v∈V (u ↔ v), deg(v) =
∑

u∈U(u ↔ v)
degi =

∑|V |
j=1 Yij degj =

∑|U|
i=1 Yij

I Nodes with high degree are hubs
I Nodes with null degree are isolated
I If edges are oriented : in- and out- degrees can be computed.
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Closeness centrality

Property on a node

Definition
Determine whether a node can communicate with other nodes of the
network directly or through the short paths.

C(u) = 1∑
w∈U∪V d(u,w)

where d(u,w) is the length of the shortest path between u and w
(through the network).

Note that, for bipartite networks
I A node u ∈ U can have a minimum distance of 1 with v ∈ V .
I A node u ∈ U can have a minimum distance of 2 with u′ ∈ U.
I All paths between nodes of the same set are of even length.

S. Donnet Bipartite networks
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Betweenness centrality
Property on a node

Definition
Betweenness centrality quantifies the number of times a node acts as a
bridge along the shortest path between two other nodes.

The betweenness of a vertex v is computed as follows.
I For each pair of vertices (w ,w ′), compute the shortest paths

between them. δw ,w ′ is the number of shortest paths between
(w ,w ′)

I For each pair of vertices (w ,w ′), determine the fraction of shortest
paths that pass through v : δw,w′ (v)

δw,w′

I Sum this fraction over all pairs of vertices (w ,w ′).

B(v) =
∑

w 6=w ′ 6=v

δw ,w ′(v)
δw ,w ′

S. Donnet Bipartite networks
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Nestedness

Property on the network

Definition
I Important property in ecology
I Defined as a pattern of interactions in which specialists (e.g.

pollinators that visit few plant species) interact with plants that are
visited by generalists.

I Mathematically, looking for a reordering of rows and columns such
that Y is nested

S. Donnet Bipartite networks
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Nestedness

[PKP+18]
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Modularity
Property on the network

Definition
Existence of clusters (blocks, module, communities) where nodes are
much more connected than with other clusters

[PKP+18]

S. Donnet Bipartite networks
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Bipartivity

I Consider a simple network with no prior partition of the nodes
I This network may be close to a bipartite network.
I Example : assume the nodes are men and women and edges

represent sexual relationships. The resulting network is not exactly
bipartite but not far from it.

I Measures of bipartivity exist : [PKP+18] are references there in
(quite complex).

S. Donnet Bipartite networks
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A first probabilistic model

I Context : our incidence matrix Y is the realization of a stochastic
process.

I Aim : Propose a stochastic process is able to mimic heterogeneity in
the connections.

Naive model
∀(i , j) ∈ U × V , Yij ∼ Bern(p)

I Homogeneity of the connections
I No hubs, no community, no nestedness

S. Donnet Bipartite networks
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Latent Block Model

I Aim : introduce heterogeneity in the connections
I Tool : introduce blocks of nodes gathering entities that interact

roughly similarly in the network

S. Donnet Bipartite networks
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Latent Block Model : a generative model

Pollinators (V)

Plants (U)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

S. Donnet Bipartite networks
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Latent Block Model : a generative model

Pollinators (V)

Plants (U)

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

α••

α••α•• α••
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Latent Block Model with equations : latent variables I

I Each group of nodes (U and V ) is divided into blocks / clusters
I KU number of blocks in U and KV number of blocks in V
I For any i ∈ {1, . . . , |U|}, let ZU

i be such that

ZU
i = k if entity i of group U belongs to cluster k

I For any j ∈ {1, . . . , |V |}, let ZV
j be such that

ZV
j = ` if entity j of group V belongs to cluster `

S. Donnet Bipartite networks
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Latent Block Model with equations : latent variables II

Random latent variables
(ZU

i )i=1...|U| and (ZV
j )j=1...|V | independent random variables, such that,

P(ZU
i = k) = πU

k ,

P(ZV
j = `) = πV

`

with
∑KU

k=1 π
U
k = 1 and

∑KV
`=1 π

V
` = 1

S. Donnet Bipartite networks
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Latent Block Model with equations : connection probability

Conditionally to the latent variables...
Z = {ZU

i , i = 1 . . . |U|,ZV
j , j = 1 . . . |V |} :

P(Yij = 1|ZU
i = k,ZV

j = `) = αk` .

Other emission distributions
I Previous model adapted to 0-1 network
I If Yij is a count

Yij |ZU
i = k,ZV

j = ` ∼ P(αk` )

I If Yij ∈ R
Yij |ZU

i = k,ZV
j = ` ∼ N (αk`, σk`)

[GN08]

S. Donnet Bipartite networks
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A very flexible model I

LBM able to generate communities...

α =


0.60 0.09 0.09
0.09 0.60 0.09
0.09 0.09 0.60
0.60 0.60 0.09

 α =


0.60 0.09 0.60
0.09 0.60 0.09
0.09 0.09 0.09
0.09 0.60 0.60


S. Donnet Bipartite networks
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A very flexible model II
... or nested networks

α =


0.80 0.70 0.90 0.60 0.90
0.80 0.70 0.90 0.60 0.09
0.80 0.70 0.40 0.09 0.09
0.80 0.09 0.09 0.09 0.09


S. Donnet Bipartite networks
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Inference for LBM
Aim : From an incidence matrix, discovering the clusters

⇒
Reordering of
rows and cols

Remarks
I Looking for the blocks such that, under the assumption that my

data come from the LBM model, the observed data Y is most
probable (= most likely to occur)

I No specific prior structure
I Entities gathered because they have similar behavior in the network

S. Donnet Bipartite networks
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Maximum likelihood inference

θ̂ = argmax
θ

pθ(Y )

= argmax
θ

∑
Z∈{1,...,K}n

pθ(Y ,Z )

I Complete likelihood : pθ(Y ,Z ) easy to compute
I Likelihood pθ(Y ) : integration over all the possible clusterings

(Z1, . . . ,Zn) (K n)
I Latent variables : Expectation-Maximization
I Requires to evaluate p(Z | Y )
I No independence in this distribution
I Complicated distribution

S. Donnet Bipartite networks
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Variational Inference

I Use a variational version of the Expectation-Maximization algorithm
[DPR08, BKM17, MRV10]

I Penalized criterion to select the numbers of blocks KU and KV .
I R-package blockmodels [Leg15]

S. Donnet Bipartite networks
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Variational inference
Principle [WJ08, BKM17].
I Choose a divergence measure D(q || p)
I Choose a class of distributions Q
I Maximize w.r.t. θ and q ∈ Q the lower bound

J(Y ; θ, q) = log pθ(Y )− D(q(Z ) || pθ(Z | Y )) ≤ log pθ(Y )

Popular choice for SBMs. [GN08, DPR08, Leg16, MM15]
I D = KL :

J(Y ; θ, q) = log pθ(Y )− KL(q(Z ) || pθ(Z | Y ))
= Eq (log pθ(Y ,Z ))− Eq (q(Z ))
= Eq (log pθ(Y ,Z )) +H (q(Z ))

I q factorizable : Q = {q(Z ) : q(Z ) =
∏

i qi(Zi)}

τik = Pq(Zi = k)
→ mean field approximation

S. Donnet Bipartite networks
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Variational EM

Algorithm
At iteration (t), given (θ(t−1), qτ (t−1)),
• Step 1 Maximization w.r.t. τ

τ (t) = arg max
τ∈T

J(Y ; θ(t−1), qτ )

= arg max
τ∈T

Eqτ [log pθ(t−1)(Y ,Z )] +H (qτ (Z ))

= arg min
τ∈T

KL[qτ , p(·|Y ; θ(t−1))]

• Step 2 Maximization w.r.t. θ

θ(t) = arg max
θ

J(Y ; θ, qτ (t))

= arg max
θ

Eq
τ(t) [log pθ(Y ,Z )]

S. Donnet Bipartite networks
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Model selection

I Selection of the number of blocks (KU ,KV )
I BIC : approximation of the marginal log-likelihood mc(Y ,Z ;M)

where the parameters θ have been integrated out with a prior
distribution

BIC for observed Z
LetM =MK0,K1,...,KQ , then

log m(Y ,Z ;M) ≈nQ→∞ max
θ

log pθ(Y ,Z ;M) + penM

with

penM = −1
2 {(KU − 1) log nU + (KV − 1) log nV + KUKV log (nUnV )}

S. Donnet Bipartite networks
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Penalized criterion for latent Z : ICL

I Imputation of the Z with the MAP [BCG00]

Ẑ = arg max
Z

p(Z |Y ; θ̂,M) ≈ arg max
Z
Rτ̂ (Z |Y ; θ̂,M)

I Integration of the Z [DPR08, BDLBH16]
I ICL(M) = EZ |Y ;̂θM

[
log `c(Y ,Z ; θ̂,M)

]
+ penM

I p(Z |Y ; θ̂,M) ⇒ RY ,̂τ
I ÎCL(MK0,K1,...,KQ ) = ER

Y ,̂τ
[log `c(Y ,Z ; θ,M)] + penM

S. Donnet Bipartite networks
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Results on my simulated networks
→ Used blockmodels → Less than one minute to obtain the results.

→ K̂U = KU , → Estimated blocks versus simulated blocks :

Nested network

S. Donnet Bipartite networks
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Results on my simulated networks
Community network

→ Numbering of blocks has no meaning. Up to label switching

S. Donnet Bipartite networks
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Application to ecological data

[VPDL08]

I 154 fungi species, 51 tree
species

I Binary fungus-tree interactions

S. Donnet Bipartite networks
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Application to ecological data : LBM inference

4 blocks of trees, 4 blocks of fungi

S. Donnet Bipartite networks
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Blocks from the projected matrix

7 clusters of trees

S. Donnet Bipartite networks
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Comparison of the cluterings

S. Donnet Bipartite networks
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About the model

I Clusters in rows and columns : Biclustering
I If weighted networks : extension of LBM to Poisson
I If overdispersed count data : see talk by Julie Aubert this afternoon
I About the blocks

I Blocks may be due to inherent properties of entities at stake
I Such properties not taken into account in the model
I Blocks can be analized as posteriori with respect to some covariates

I Taking into account covariates

S. Donnet Bipartite networks
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More complicated metabolic networks

I Two types of vertices : metabolites and metabolic reactions
I Edges joining each metabolite to the reaction in which it

participates.
I Edges are directed : some metabolites (the substrates) go into the

reaction and some (the products) come out of it.
I Enzymes incorporated : adding a third class of vertex to represent

them, with undirected edges connecting them to the reactions they
catalyze.

I Resulting graph : mixed (directed and undirected) tripartite network.

S. Donnet Bipartite networks
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Multipartite network in ecology [DLRJ+16]
Multi-interaction6network

Protective6ant-plant6network

Pollination6network

Seed-dispersal6network

Plants

Pollinators

Protective6ants

Seed-dispersing6birds

n=6746unique
interactions

n=6276unique
interactions

n=6216unique
interactions

n=6136plants
shared

n=666plants
shared

B)

A)

Page 27 of 29

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only
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Super Multipartite network in ecology

S. Donnet Bipartite networks
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Multipartite Networks

Joint work with P. Barbillon and A. Bar-Hen
I Q functional group : each functional group q of size nq

I Multipartite network : a collection of networks
I Each network involves one or two functional groups : indexed by

pairs (q, q′) (q and q′ in [[1,Q]]).
I E denotes the list of pairs of observed networks
I Each network encoded in a matrix X qq′

Y qq′
ii′ =

 1 if entity i of group q is in interaction
with entity i ′ of group q′.

0 otherwise

I Y =
{(

Y qq′
)
, (q, q′) ∈ E

}
.

S. Donnet Bipartite networks
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Example in ecology

Y 1q′
ii′ =

 1 if animal specie i ′ of functional group q′ has been observed
in interaction with plant i

0 otherwise
q′ = 2, 3, 4.

Plant 1 1 1 1 1
Plant 2 1 1 1

... X 11
ij X 12

ij X 13
ij

Plant n1 1 1 1 1 1

Ant
1

· · · Ant
n
2

Seed
dispersing

bird
1

· · · Seed
dispersing

bird
n
3

Pollinator1

· · · Pollinatorn
4

Y q
ij ∈ {0, 1} to avoid sampling issues

S. Donnet Bipartite networks
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Example in ethnobiology

I Ethnobiology : scientific study of the relations between environment
and people

I [TC16] : understand how seed exchanges relations between farmers
structure and guaranty biodiversity in the cultivated crop species.

I Functional groups : farmers and crop species
I Relations :

I Between farmers : seed exchange (oriented relation) = Simple graph
I Betwen farmers and crop species : bipartite network. Edge = farmer

grows crop specie.

S. Donnet Bipartite networks
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Block model : Mixture model on the Y qq′
ii ′

Latent variables
I Each functional group q divided into Kq blocks or clusters
I ∀q ∈ [[1,Q]],∀i ∈ [[1, nq]], Z q

i = k if individual i of functional group
q belongs to cluster k.

I Independant random variables :

P(Z q
i = k) = πq

k , (1)

with
∑Kq

k=1 π
q
k = 1 for any q = 1, . . .Q.

I Z = (Z q
i )i∈[[1,nq ]],q∈[[1,Q]] .

Conditionally to the latent variables
∀(i , i ′, q, q′), entries of the matrices independant and

P(Y qq′
ii′ = 1|Z q

i = k,Z q′
i′ = k ′) = αqq′

kk′ (2)

S. Donnet Bipartite networks



58/76

Introduction Bipartite graph analysis Probabilistic models for bipartite networks Towards more complicated networks

Generative model illustration

Pollinators Birds Ants

Plants

1 2 3 5 6 1 2 3 1 2 3 3

1 2 3 4 5 6 7 8 9

S. Donnet Bipartite networks
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Generative model illustration

Pollinators Birds Ants

Plants

1 2 3 5 6 1 2 3 1 2 3 4

1 2 3 4 5 6 7 8 9

α14
••

α12
••

α12
••

α13
••
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Statistical Inference

I Parameters π, α for given numbers of clusters K1, . . . ,KQ .
I Clustering of the agents
I Numbers of blocks K1, . . . ,KQ .

S. Donnet Bipartite networks
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Likelihood function

Complete likelihood of (Y , Z )

p(Y ,Z ; θ) = p(Y |Z ; α)p(Z ; π)

=
∏

q,q′∈E

nq∏
i=1

nq′∏
j=1

(αqq′

Zq
i ,Z

q′
j

)Xqq′
ij (1− αq

Zq
i ,Z

q′
j

)1−Xqq′
ij (3)

×
Q∏

q=1

nq∏
i=1

πq
Zq

i
. (4)

Observed likelihood (Y )

log p(Y ; θ) = log
∑
Z∈Z

p(Y ,Z ; θ) . (5)

Maximisation using variational EM

S. Donnet Bipartite networks
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Model selection : penalized likelihood criteria

I Selection of the numbers of blocks K1, . . . ,KQ

I ICL : Integrated Completed Likelihood
I BIC computed on the complete log-likelihood
I Integration of the latent variables

I ICL(M) = EZ |Y ;θ̂M

[
log p(Y ,Z ; θ̂,M)

]
+ penM

penM = −1
2


Q∑

q=1
(Kq − 1) log(nq) +

 ∑
(q,q′)∈E

Kqq′

 log

 ∑
(q,q′)∈E

nqq′


[DPR08, BDLBH16]

I In practice ĨCL(M) = ERτ̂,Z

[
log p(Y ,Z ; θ̂,M)

]
+ penM

I Stepwize algorithm to select the better model
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The dataset

I Weasley Dattilo, Inecol, Jalapa, Mexique [DLRJ+16]
I I n0 = 141 plants species

I n1 = 30 ants species
I n2 = 46 bird species
I n3 = 173 pollinators species
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Data
Multi-interaction6network

Protective6ant-plant6network

Pollination6network

Seed-dispersal6network

Plants

Pollinators

Protective6ants

Seed-dispersing6birds

n=6746unique
interactions

n=6276unique
interactions

n=6216unique
interactions

n=6136plants
shared

n=666plants
shared

B)

A)
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Results : a mesoscopic view of the network
With our model and model selection (a few minutes)
I 7 blocks of plants
I 2 blocks of pollinators
I 1 block of birds
I 2 blocks of ants
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Comparison with existing methods
I Studying each matrix separately by LBM.
• 1 clustering of ants • 1 clustering of birds
• 1 clustering of pollinators • 3 clusterings of plants

I Creating an artificial clustering of plants taking in account the three
matrices by intersection

I Comparing the clusterings by Adjusted Rand Index (= 1 if
clusterings are equal, up to label switching)

Full/Poll. Full/Ants Full/Birds Full/Inter

Plants (7/3) (7/3) (7/3) (7/12)
0.118 0.415 0.163 0.617

Poll. (2/3)
0.997

Ants (2/2)
1.000

Birds (1/1)
1.000
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Comparison with a classical LBM
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Ethnobiology data : results
2 blocks or clutivated species and 3 blocks of individuals
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Comparison with the blocks obtained with a
individuals-species or a individual-individual network
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Comparison of the clusterings for plants
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Comparison of individual classifications
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Conclusions and perspectives

I Package R : GREMLIN (github) able to handle any type of
multipartite networks (binary or counting interactions)

I Bipartite networks : a lot of examples. Require a specific treatment
but with known tools
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