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Introduction  

Context: 
•  Low-power devides 
•  Very fast response 

We cannot find the optimal 
solution, but just a good 
solution 

Approximation ratio (AR): 
    AR = UB / LB 

Bad approximation ratio: 
1.  Bad solution (LB) 
2.  Bad UB 

We propose an improved version of Bounded Max-Sum: 
1.  It improves the approximation ratio 
2.  It improves the approximate solution C
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DCOP  

 X = {x1, …, xn}: a set of variables 
 D = {D1, …, Dn}: a set of domain values 
 F = {f1, …, fe}: a set of cost functions 
 A = {a1, …, ar}: a set of agents 
 β: F  A: a mapping between cost functions to agents 

  Objective function:  
  Task: 
  Approximation ratio:  
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x* = argmax
X

F(X)
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F(X) = f (X)
f ∈F
∑
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F(x) ≤ F(x*) ≤ ρF(x)



Factor Graph  
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Max-Sum 
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q jk→ j (x jk
)
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q j1→ j (x j1
)

Max eliminates variables 
from the problem 



Max-Sum 
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MS = argmax
xi

z(xi){ }
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rj→ i(xi)

Always: 

If the factor graph is a tree: 
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F(xMS ) ≤ F(x*)
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F(xMS ) = F(x*)



Bounded Max-Sum (BMS)  
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1. Remove cycles:  

2. Solve     using Max-Sum  
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3. Bound the optimum solution 
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BMS: remove cycles  
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BMS: remove cycles  
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BMS: remove cycles  
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BMS: remove cycles  

€ 

x1

€ 

x2

€ 

f1
€ 

f2
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-  Compute a maximum spanning tree 
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BMS: bound the solution  
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Weak Improved Bounded Max-Sum 
(wIBMS)  
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wIBMS: remove cycles  

1. Select an edge to remove  2. Remove selected edge  € 
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Same procedure as BMS 



wIBMS: remove cycles  
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wIBMS: bound the solution  
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Relation BMS, wIBMS and IBMS 
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Experiments 

  Evaluate the improvement of: 
 the upper bound of IBMS. 
 the approximation ratio of IBMS. 

  Graph coloring problems from the ADOPT repository: 
 Two different cost distributions:  

 gamma (α=2,β=3) 
 uniform 

 Number of variables: [8,…,40] 
 Mean values over 25 repetitions 
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Fig. 2. First and second row, bounds obtained by algorithms IBMS and BMS varying the number
of agents; third row, lower bound detail for instances with 25 agents and gamma distribution.

reward bound (S7r) and the minimum fraction bound (S7f ) presented in [10] over the
approximation ratio of MBS �ρ (right y-axe). Since the relation between the optimal
solution of the problem F (x∗) and an approximation ratio ρ of a given solution x is
1 ≤ F (x∗)

F (x) ≤ ρ, we compute the improvement of an approximation ratio ρ over �ρ as,

(�ρ− 1)− (ρ− 1)

�ρ− 1
∗ 100

The improvement of ρ is always higher than 37%, and up to almost 50%. Its mean
improvement for the gamma and uniform distributions is higher than 40% and 45%,
respectively. The improvement of �ρ is always higher than 32%, and up to almost 46%.
Its mean improvement for the gamma and uniform distributions is higher than 35% and
37%, respectively. Therefore, both IBMS and its weaker version always significantly



Detail on the Lower Bounds 

50
100
150
200
250
300
350
400
450
500
550

10 15 20 25 30 35 40

U
ti
lit
y

Agents

GAMMA, link density = 2

F̃ (x̃) +W
F̂ (x̂)
F (x∗)

max{F (x̂), F (x̃)}
F (x̃)

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40

U
ti
lit
y

Agents

GAMMA, link density = 3

F̃ (x̃) +W
F̂ (x̂)
F (x∗)

max{F (x̂), F (x̃)}
F (x̃)

10

20

30

40

50

60

70

10 15 20 25 30 35 40

U
t
il
it
y

Agents

UNIFORM, link density = 2

F̃ (x̃) +W
F̂ (x̂)
F (x∗)

max{F (x̂), F (x̃)}
F (x̃)

10

20

30

40

50

60

70

80

90

100

110

10 15 20 25 30 35 40

U
t
il
it
y

Agents

UNIFORM, link density = 3

F̃ (x̃) +W
F̂ (x̂)
F (x∗)

max{F (x̂), F (x̃)}
F (x̃)

255
260
265
270
275
280
285
290
295
300

5 10 15 20 25

U
ti
lit
y

Instance

GAMMA, link density = 2, agents = 25

F (x∗)
F (�x)
F (�x)

360

370

380

390

400

410

420

430

5 10 15 20 25

U
ti
lit
y

Instance

GAMMA, link density = 3, agents = 25

F (x∗)
F (�x)
F (�x)

Fig. 2. First and second row, bounds obtained by algorithms IBMS and BMS varying the number
of agents; third row, lower bound detail for instances with 25 agents and gamma distribution.

reward bound (S7r) and the minimum fraction bound (S7f ) presented in [10] over the
approximation ratio of MBS �ρ (right y-axe). Since the relation between the optimal
solution of the problem F (x∗) and an approximation ratio ρ of a given solution x is
1 ≤ F (x∗)

F (x) ≤ ρ, we compute the improvement of an approximation ratio ρ over �ρ as,

(�ρ− 1)− (ρ− 1)

�ρ− 1
∗ 100

The improvement of ρ is always higher than 37%, and up to almost 50%. Its mean
improvement for the gamma and uniform distributions is higher than 40% and 45%,
respectively. The improvement of �ρ is always higher than 32%, and up to almost 46%.
Its mean improvement for the gamma and uniform distributions is higher than 35% and
37%, respectively. Therefore, both IBMS and its weaker version always significantly



Approximation ratios wrt BMS 
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Figure 3. Improvement of the approximation ratio of IBMS ρ and weaker

version of IBMS �ρ over the approximation ratio of BMS �ρ.

obtained by IBMS (i.e., �F (�x) and max{F (�x), F (�x)}, respectively)

and BMS (i.e., �F (�x) and F (�x), respectively), along with the opti-

mal utility (i.e., F (x∗)), for the different link densities and payoff

distributions. The behavior of both algorithms is very similar across

all link densities and payoff distributions. IBMS always computes an

upper bound tighter than the one computed by BMS. The improve-

ment is slightly better for the uniform distribution. The lower bounds

computed by both algorithms are very close, although IBMS lower

bound is slightly better.

Figure 2 (bottom row) shows a detail on the lower bounds F (�x)
and F (�x) obtained on each instance of a given parameter configu-

ration. Since the behavior across all number of agents, link densities

and payoff distributions is very similar, we only report results on in-

stances with 25 agents and gamma distribution. Both lower bounds

are very close, and none of them is consistently better than the other.

Figure 3 shows the improvement of the approximation ratio of

IBMS ρ and the weaker version of IBMS �ρ over the approximation

ratio of MBS �ρ. Since the relation between the optimal solution of

the problem F (x∗) and the approximation ratio ρ of a given solution

x is,

1 ≤ F (x∗)
F (x)

≤ ρ

we compute the improvement of an approximation ratio ρ over �ρ as,

(�ρ− 1)− (ρ− 1)
�ρ− 1

∗ 100

The improvement of ρ is always higher than 37%, and up to almost

50%. Its mean improvement for the gamma and uniform distributions

is higher than 40% and 45%, respectively. The improvement of �ρ is

always higher than 32%, and up to almost 46%. Its mean improve-

ment for the gamma and uniform distributions is higher than 35%
and 37%, respectively. Therefore, both IBMS and its weaker version

always significantly outperforms BMS. Recall that the weaker ver-

sion of IBMS has the same communication demands as BMS.

6 Related Work
There are other two incomplete algorithms that can provide guaran-

tees on the worst-case solution quality of their solutions at design

time: k-optimality [8] and t-optimality [4]. The idea of these algo-

rithms is to form coalitions of agents and to find the local optima

solutions for all agents within the coalitions. This local optima is

guaranteed to be within a predefined distance from the global opti-

mal solution. Very recently, [11] proposed a framework were differ-

ent coallition-based local optimality schemes can be described and

defined a new criteria called s-size bounded optimality. The complex-

ity of these algorithms depend on the number of coalitions and their

size. Therefore, in practice, these algorithms are used with relatively

small values of their control parameter.

In [10], it was shown that k-optimality provided significantly worst

quality guarantees than BMS for different values of k. As stated in

the following proposition, the quality guarantee provided by the 2-

size-bounded optimality for binary DCOPs is always higher than 2.

Proposition 1 Let P = (A,X,D,F) be a binary DCOP (i.e., the

arity of the functions is at most 2) such that |X| > 2. The quality

guarantee ρ satisfies:

2 ≤ ρ ≤ |F|
for all its 2-size-bounded optimal assignments.

Proof According to [11],

ρ =
|C|− nc∗

cc∗

where:

• C is a multi-set of subsets of X, where C ∈ C is a coalition;

• cc∗ = minf∈F{nc(f, C)}, where cc(f, C) = |{C ∈ C |
var(f) ⊆ C}|;

• nc∗ = minf∈F{cc(f, C)}, where nc(f, C) = |{C ∈ C |
var(f) ∩ C = ∅}|;

Let fij be a function with scope {xi, xj}. In a binary DCOP, its 2-

size-bounded region is C = {var(f) | f ∈ F} (i.e., |C| = |F|),
cc(f, C) = 1 for all f ∈ F, and nc(fij , C) = |F| − |{fik ∈ F |
j �= k}| − |{flj ∈ F | l �= i}| + 1 for all fij ∈ F. The minimum

nc∗ is when the DCOP constraint graph is a star because nc∗ = 0,

so that ρ = |C| is maximum. Note that on a star with |X| = 3,

ρ = |C| = 2. The maximum nc∗ is when the DCOP constraint graph

is a chain with |X| > 3 (note that a chain with |X| = 3 is a star),

because nc∗ = |F| − 3 so that its ρ = 3. Note that a DCOP with

two variables is trivially solved to optimality by the 2-bounded size

optimality scheme.

Note that for all instances in the empirical evaluation, the quality

guarantees of both IBMS and BMS were smaller than 1.4. We leave

as future work the comparison of our quality guarantee with that ob-

tained with higher values of the s-bounded size optimality.

7 Conclusions
In this paper we introduced a new algorithm, called Improved

Bounded Max-Sum (IBMS), based on the Bounded Max-Sum algo-

rithm. We theoretically proved that its approximation ratio is always

better than the previous one, at the only cost of doubling the com-

munication requirements. We also introduced a weaker version of

IBMS having the same communication demands as Bounded Max-

Sum. Our experiments show that the approximation ratio of both al-

gorithms is significatively tighter.



  We introduced IBMS: 
 proved its superiority wrt BMS 
 at the only cost of doubling its communication 

requirements 

  We also introduced weak IBMS: 
 proved its better UB wrt BMS 
 maintain the communication requirements 

  Future work: study other relaxation behaviour. 

Conclusions 
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