Workflow-BS: an integrative workflow for RRBS and WGBS data

Gaëlle Lefort Céline Noirot

INRA

April 8, 2016

Summary

- Epigenetic introduction
- 2 Pipeline overview

3 Bioinformatics steps

- Quality control and cleaning
- Alignment
- Methylation extraction

Biostatistics steps

- Preprocessing: normalization and filter on coverage
- Identification of DMCs
- Identification of DMRs

Summary

Epigenetic introduction

2 Pipeline overview

3 Bioinformatics steps

- Quality control and cleaning
- Alignment
- Methylation extraction

Biostatistics steps

- Preprocessing: normalization and filter on coverage
- Identification of DMCs
- Identification of DMRs

5 Conclusion and perspective

Epigenetics

The term epigenetics refers to heritable changes in gene expression (active versus inactive genes) that does not involve changes to the underlying DNA sequence; a change in phenotype without a change in genotype

Morgan et al, 1999

Epigenetics

The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC).

- The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC).
- Ø Mammalian main modification is on 5'-CpG-3' dinucleotides

The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC).

- Ø Mammalian main modification is on 5'-CpG-3' dinucleotides
- In plant also occurs on CHG and CHH context (where H can be A,C or T)

https://www.epigentek.com/catalog/dna-methylation-c-75_21.html

DNA methylation analysis methods

Gupta et al, Review BioTecnique, 2010

DNA methylation analysis methods

Gupta et al, Review BioTecnique, 2010

Bisulfite treatment

What is bisulfite treatement?

https://www.promega.com/~/media/files/promega%20worldwide/north%20america/promega%20us/webinars%20and% 20events/epigeneticwebinarsept2012.pdf

Summary

D Epigenetic introduction

2 Pipeline overview

3 Bioinformatics steps

- Quality control and cleaning
- Alignment
- Methylation extraction

Biostatistics steps

- Preprocessing: normalization and filter on coverage
- Identification of DMCs
- Identification of DMRs

5 Conclusion and perspective

Purpose

Identification of differential methylated regions.

Purpose

Identification of differential methylated regions.

- Projects: Epitherm/Epibird (GenPhySE), Epinod (LIPM), FrAG-ENCODE (SelGen), Mitomics (submitted)
- Kind of data: WGBS, sequence capture, soon RRBS
- Community: France Genomic Methylation WG, FAANG
- Needs: bioinformatics and biostatistics tools

Pipeline overview

Supported data

- Fastq files from illumina sequencing
 - Bisulfite treated
 - ► For example a Hiseq 2500 run :
 - * up to 2 billion single read or 4 billion paired-end reads
 - ★ read length: from 36bp up to 150bp

```
@HWI-ST314:257:D1WGCACXX:2:1101:1130:51866 1:N:0:TCGAAG
B@@DDFFFHGHHFGHIEHIJJHIIHIJJJGBHIIIJFIJFDFHGIGIGIJJJJJJFIJFGIIIGHFHGGIGIJIIGCHHHHCED?@DFCEEEECEEEECCC
@HWI-ST314:257:D1WGCACXX:2:1101:1137:35617 1:N:0:TCGAAG
BBBDFFFFHHHGHJIJJJHHIJJJEHJJJDHHIGFHIIFCEGHIIJJFHIIIIJHHHEEEEBEDDDEDECEEEEF>CAACACDDDDDD9:?CB?ACCDEE
@HWI-ST314:257:D1WGCACXX:2:1101:1151:27741 1:N:0:TCGAAG
BBBDDEFFHHHHHGHHIJHGGIIJJJJJJJJJDB=@CGAFHGGECHHAHAHEHFB?C?CC?>CDDD:CCEC>@C>ACCCCFFEDDDD&8<0?B@C>3>@>:
@HWI-ST314:257:D1WGCACXX:2:1101:1160:46348 1:N:0:TCGAAG
0HWI-ST314:257:D1WGCACXX:2:1101:1186:63430 1:N:0:TCGAAG
CC@FFFFFHHH?FHJ4?FH@GHHIJJJJHFDD',,5?ADA;((,((30((22<A8<88>>@:3:@>C:+:4(4>A4:@C
@HWI-ST314:257:D1WGCACXX:2:1101:1224:90588 1:N:0:TCGAAG
```

Supported data

- Fastq files from illumina sequencing
- Single or paired reads

Supported data

- Fastq files from illumina sequencing
- Single or paired reads
- Protocol
 - WGBS: Whole Genome Bisulfite sequencing

RRBS: Reduced Representation Bisulfite sequencing

Data from epibird project

- 4 male vs. 4 female chicken embryos
- Sequenced by HiSeq3000
- Whole Genome Bisulfite sequencing

Summary

Epigenetic introduction

2 Pipeline overview

3 Bioinformatics steps

- Quality control and cleaning
- Alignment
- Methylation extraction

Biostatistics steps

- Preprocessing: normalization and filter on coverage
- Identification of DMCs
- Identification of DMRs

5 Conclusion and perspective

Bioinformatics steps

Quality control and cleaning

- Trim adapters
- Trim bad quality
- Software: Trim_galore

Quality control and cleaning

- Trim adapters
- Trim bad quality

Software: Trim_galore

- Reads: about 40% of reads are trimmed
- Bases: about 4% of total bases

Genomic DNA sequence	C <mark>CG</mark> ATGA	тст <mark>сс</mark> сто	GA <mark>CG</mark> C	A <mark>CG</mark> A
DNA methylation level	100%	50%	50%	0%

wild-card alignment

Existing software: BSMAP, GSNAP, Last, Pash, RMAP, RRBSMAP, segemehl...

- wild-card alignment
- 3-base encoding

Existing software: Bismark, BRAT, BS-Seeker, MethylCoder...

Mapping efficiency (percent of mapped reads) depends

- read length
- single or paired end library
- genome composition and variability

Mapping efficiency (percent of mapped reads) depends

- read length
- single or paired end library
- genome composition and variability

Comparison of 2 strategies :

M2 Bioinfo 2014 - Julien Plennecassagne - Projet Epiterm

Alignment: Epibird results

Overview of mapped reads

- Bismark: 61 to 81% of mapping efficiency
- Rmdup: 73 to 93% of reads kept after rmdup

Per base methylation extraction

Per base methylation extraction

chrBase chr	base	strand	COVE	erage	freqC	freqT
chr1.913	chr1	913	R	1	100.00	0.00
chr1.417	chr1	417	R	3	100.00	0.00
chr1.258	chr1	258	F	1	100.00	0.00
chr1.699	chr1	699	F	3	100.00	0.00
chr1.589	chr1	589	R	6	83.33	16.67
chr1.718	chr1	718	R	б	0.00	100.00
chr1.573	chr1	573	F	8	87.50	12.50
chr1.832	chr1	832	R	3	100.00	0.00
chr1.755	chr1	755	R	7	85.71	14.29
chr1.233	chr1	233	F	1	100.00	0.00
chr1.403	chr1	403	R	3	100.00	0.00
chr1.608	chr1	608	F	5	40.00	60.00
chr1.684	chr1	684	R	4	100.00	0.00
chr1.700	chr1	700	R	3	100.00	0.00
chr1.831	chr1	831	F	5	100.00	0.00
chr1.931	chr1	931	F	1	100.00	0.00
chr1.739	chr1	739	F	6	83.33	16.67
chr1.252	chr1	252	F	1	100.00	0.00
chr1.633	chr1	633	R	3	33.33	66.67
chr1.717	chr1	717	F	4	0.00	100.00

Per sample extract :

- C in specific context (CpG, CHG, CHH)
- 2 choose coverage threshold

Existing software: methylKit, bismark_methylation_extraction ...

Summary

- Epigenetic introduction
- 2 Pipeline overview

3 Bioinformatics steps

- Quality control and cleaning
- Alignment
- Methylation extraction

Biostatistics steps

- Preprocessing: normalization and filter on coverage
- Identification of DMCs
- Identification of DMRs

Biostatistics steps

Steps

- In Normalization and filter on coverage
- Identification of differentially methylated cytosines (DMCs)
- Identification of differentially methylated regions (DMRs)

Step 1: Preprocessing on methylation data

- Remove known SNPs
- 2 Remove bases with a very high read coverage
- Normalize read coverage of each cytosine (5 methods: libsize, median, upper-quartile, RLE and LR)
- Remove bases with a very low read coverage (a minimum coverage of 5x is recommended)

Normalization diagnostics plots

Step 2: identification of DMCs

Used methods

• Fisher exact test: all replicates are pooled (methylKit without replicates)

O Logistic regression: the hypothesis is that all data is from the same distribution (methylKit)

Beta-binomial model: take into account of the biological variability between samples (DSS)
Converting the state of the state

Case without replicats: nearby cytosines can be used to estimate variability (DSS)

Hidden Markov model: take into account of the spatial correlation between nearby cytosines

Beta-binomial model (from DSS package)

Model

$$X_{ijk}|p_{ijk},N_{ijk}\sim \mathsf{Binomial}(N_{ijk},p_{ijk})$$

with

$$p_{ijk} \sim \mathsf{Beta}(\mu_{ij}, \phi_{ij})$$

and

$$\phi_{ij} \sim Log - Normal(m_{0j}, r_{0j}^2)$$

Estimation Empirical Bayes approach

Test Wald test on mean methylation levels μ_{ij}

Comparison of normalization methods

 $Figure: \mathsf{DMCs}$ identified with DSS depending on the normalization method

 $Figure:\mbox{DMCs}$ identified with methylKit and DSS without normalization

 $\label{eq:Figure:DMCs} Figure: DMCs \ identified \ with \ methylKit \ depending \ on \ the \ normalization \ method$

 $Figure: \mathsf{DMCs}$ identified with methylKit and DSS with median normalization

Step 3: identification of DMRs

Used methods

- Sliding windows or predefined regions (MethylKit, DMRcaller...)
- From results on DMCs (DSS, eDMR...)
- With a hidden Markov model (Bisulfighter)

Differential analysis results and other plots

Summary

Epigenetic introduction

2 Pipeline overview

3 Bioinformatics steps

- Quality control and cleaning
- Alignment
- Methylation extraction

Biostatistics steps

- Preprocessing: normalization and filter on coverage
- Identification of DMCs
- Identification of DMRs

5 Conclusion and perspective

Pipeline conclusion

- based on Jlow: error recovery, use most HPC (SGE, Condor, ...), extensible
- configuration with one config file
- include all steps (bioinfo and biostats) within a single command line
- re-runable after main step : alignment and methylation extraction Available :
 - github FAANG consortium
 - mulcyber: https://mulcyber.toulouse.inra.fr/plugins/ mediawiki/wiki/jflow-toolshed/index.php/Accueil

Coming soon ...

- Normalization and DSS
- New aligners
- A web server

Coming soon ...

- Normalization and DSS
- New aligners
- A web server

Next step :

• Link methylation regions with transcriptomics data ...

Acknowledgement

- Nathalie Villa-Vialaneix (MIAT)
- Frédérique Pitel, Gérald Salin, Sylvain Foissac, Marjorie Merch, Julien Plennecassagne, Diane Esquerre (GenPhySE)
- Erika Sallet, Pascal Gamas (LIPM)
- Monique Falières (Genotoul)

Thank you for your attention

Questions ?

Bismark

Config file

#Input files

--reference-genome workflows/methylseq/data/Gallus_gallus.Galgal4.dna.chromosome.7.fa

#--control-genome #/path/to/control.fa

--snp-reference workflows/methylseq/data/snp.vcf

#Sample description

-.saple samle-name-saple1 read-workflows/methylseq/data/sample1.R1.fastq.gz read-workflows/methylseq/data/sample1.R2.fastq.gz #bam-roszwe/cnoirot/work/methylseq/4000083/8ismark_paired/7127emb20.bam methylkit=

--sample sample-name=sample2 readl=workflows/methylseq/data/sample2.Rl.fastq.gz read2=workflows/methylseq/data/sample2.R2.fastq.gz

Protocol parameters : IF DAW PROVIDED Set true if you provide alignment of single-end library --is-single Type of methylation context to extract and analyze : --rrfs To set if the libraries are non directional (Default : False) --on-directional

Config file

#Bismark alignment parameters #Sets the number of mismatches to allowed in a seed alignment during multi-seed alignment #--alignment-mismatch 410 . #The maximum insert size for valid paired-end alignments. #--max-insert-size #000 Wise bowtiel instead of bowtiel (longer, better for reads < 50bp) - default False #--bowtiel #Force to not perform indup : #--no-rndsp . # Comment following lines if you do not want to perform statistical analysis Methylation extraction parameters (methylkit) #For extraction of C define min coverage ···coverage #Type of methylation context to extract and analyze [CpG|CHG|CHH] #specifie several times if you want to analyze several contect --context CpG #--context **KOHI** #GMC parameters will be perform on each context (you can specify several --test) --test test-name+sex pool1-sample1.sample4.sample5.sample8 pool2=sample2, sample3, sample6, sample7 #perform methylKit logical normalization 0/1 #filter position with coverage less than 5 and with coverage above 99% quantile. filter-1 #method to adjust p-values for multiple testing [BH]bonferroni] correct-88 #significance level of the tests (i.e. acceptable rate of false-positive in the list of DMC) almba-0.45