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Abstract.
Networks have been widely used in many scientific fields, and in particular in social sciences, in order to

represent interactions between objects of interest. Since the earlier work of Moreno in 1934, many random
graph models have been proposed to extract knowledge from these structured data sets. For instance,
the stochastic block model (SBM) allows the search of groups of vertices sharing homogeneous connection
profiles. In this work, we consider the W -graph model which is known to generalize many random graph
models but for which very few methods exist to perform inference on real data. First, we recall that the
SBM model can be represented as a W -graph with a block-constant graphon function. Using a variational
Bayes expectation maximization algorithm, we then approximate the posterior distribution over the model
parameters of a SBM model and we show how this variational approximation can be integrated in order to
estimate the posterior distribution of W -graph graph function. In this Bayesian framework, we also derive
the occurrence probability of a motif. In practice, this allows to test if a motif is over-represented in a given
network. All the results presented here are tested on simulated data and the French political blogosphere
network.

Graphon function estimation

Stochastic block model. The stochastic block model (SBM) assumes that the n nodes of a network
are spread in Q latent classes with proportions α = (α1, . . . , αQ). The association of nodes to classes is
described through binary vectors sampled from a multinomial distribution M(1;α). Knowing the classes,
the connections between the nodes are then drawn Xij |Zi, Zj ∼ B(πZi,Zj ) from Bernoulli distributions
whose parameters are characterized by a Q × Q matrix of connection probabilities π = [πq`], where πq` is
the probability that a node from class q connects to a node of class l. In the following, we denote Z = {Zi}
the set of all membership vectors, X = {Xij} the binary adjacency matrix describing the connections, and
θ = (α,π) the set of all model parameters.

W -graph model. The W -graph is a generic heterogeneous random graph based on a so-called graphon
function W : [0, 1]2 7→ [0, 1]. It is defined as follows: independent uniform variates Ui ∼ U [0, 1] are
associated with each node; edges between nodes are independent conditional on the Ui’s and drawn as
Xij |Ui, Uj ∼ B[W (Ui, Uj)]

Link between SBM and the W -graph model. SBM corresponds to the case where the graphon
function of a W -graph model is block-wise constant, with rectangular blocks of size αk ×α` and height πq`.
More precisely, denoting the cumulative proportion σq =

∑q
j=1 αj , if we define the binning function

Cα(u) = 1 +

Q∑
q=1

I{σq ≤ u}
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(the distribution of which depends on α), and if we take

W (u, v) = πC(u),C(v), (1)

the resulting W -graph model corresponds to the SBM model with parameters (α,π). Our purpose is to
approximate any graphon function W with a block-wise constant version issued from an SBM.

Variational Bayesian inference for SBM

We consider the variational Bayes expectation maximisation (vbem) algorithm which is capable of handling
large networks and which builds an estimation of the posterior distribution of the model parameters and
latent variables Z (denoted by p̃θ(θ), p̃Z(Z)) given the data. Considering conjugate prior distributions
(i.e. Dirichlet for α and Beta for πq`) for the model parameters, the algorithm approximates the posterior
distribution with:

α|X ∼ Dir(a) where a = (a1, . . . , aQ),

πq,`|X ∼ Beta(ηq,`, ζq,`). (2)

We now propose an approximation of the posterior distribution of the W -graph model graphon function
at the coordinates (u, v). Thus, (Eq 1) is integrated over the (approximate) posterior distributions of π and
α.

Proposition. For any (u, v) ∈ [0, 1]2, u ≤ v, using a SBM model with Q classes, the variational Bayes
approximation of W (u, v) is p̃(w|X, Q) =∑

q≤`

b(w; ηq,`, ζq,`) [Fq−1,`−1(u, v;a)− Fq,`−1(u, v;a)− Fq−1,`(u, v;a) + Fq,`(u, v;a)]

where

• a, η and ζ are the hyperparameters obtained with the VBEM algorithm;

• b(·; η, ζ) is the density of the Beta distribution Beta(η, ζ);

• Fq,`(u, v;a) is the cumulative distribution function of (σq, σ`) where α follows a Dirichlet distribution
Dir(a).

Through the talk, we will give the proof of this result and use the method on both toy data sets and real
data. One of the key aspect of the approach we propose is that the cumulative distribution function Fq,` can
be computed efficiently with a recursive algorithm. The estimator of the posterior distribution expectation
is then given by: Ẽ[W (u, v)|X] =∑

q≤`

ηq,`
ηq,` + ζq,`

[Fq−1,`−1(u, v;a)− Fq,`−1(u, v;a)− Fq−1,`(u, v;a) + Fq,`(u, v;a)] .

Similarly, the standard deviation can be computed analytically.
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