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Short overview on network inference with GGM

Transcriptomic data

DNA transcripted into mRNA to
produce proteins

transcriptomic data: measure
of the quantity of mRNA
corresponding to a given gene in
given cells (blood, muscle...) of a
living organism
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Short overview on network inference with GGM

Systems biology

Some genes’ expressions activate or repress other genes’ expressions
⇒ understanding the whole cascade helps to comprehend the global
functioning of living organisms1

1Picture taken from: Abdollahi A et al., PNAS 2007, 104:12890-12895. c© 2007
by National Academy of Sciences
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Short overview on network inference with GGM

Model framework

Data: large scale gene expression data

individuals
n ' 30/50

X =


. . . . . .

. . X j
i . . .

. . . . . .

︸                              ︷︷                              ︸
variables (genes expression), p'103/4

What we want to obtain: a graph/network with

• nodes: genes;

• edges: strong links between gene expressions.
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Short overview on network inference with GGM

Advantages of inferring a network from large scale
transcription data

1 over raw data: focuses on the strongest direct relationships:
irrelevant or indirect relations are removed (more robust) and the data
are easier to visualize and understand (track transcription
relations).

Expression data are analyzed all together and not by pairs
(systems model).

2 over bibliographic network: can handle interactions with yet
unknown (not annotated) genes and deal with data collected in a
particular condition.
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Short overview on network inference with GGM

Using correlations: relevance network
[Butte and Kohane, 1999, Butte and Kohane, 2000]

First (naive) approach: calculate correlations between expressions for all
pairs of genes, threshold the smallest ones and build the network.

Correlations Thresholding Graph
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Short overview on network inference with GGM

Using partial correlations

strong indirect correlation
y z

x

set.seed(2807); x <- rnorm(100)

y <- 2*x+1+rnorm(100,0,0.1); cor(x,y) [1] 0.998826

z <- 2*x+1+rnorm(100,0,0.1); cor(x,z) [1] 0.998751

cor(y,z) [1] 0.9971105

] Partial correlation

cor(lm(x∼z)$residuals,lm(y∼z)$residuals) [1] 0.7801174

cor(lm(x∼y)$residuals,lm(z∼y)$residuals) [1] 0.7639094

cor(lm(y∼x)$residuals,lm(z∼x)$residuals) [1] -0.1933699
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Short overview on network inference with GGM

Partial correlation in the Gaussian framework

(Xi)i=1,...,n are i.i.d. Gaussian random variables N(0,Σ) (gene
expression); then

j ←→ j′(genes j and j′ are linked)⇔ Cor
(
X j ,X j′ |(Xk )k,j,j′

)
> 0

If (concentration matrix) S = Σ−1,

Cor
(
X j ,X j′ |(Xk )k,j,j′

)
= −

Sjj′√
SjjSj′j′

⇒ Estimate Σ−1 to unravel the graph structure

Problem: Σ: p-dimensional matrix and n � p ⇒ (Σ̂n)−1 is a poor
estimate of S)!
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Short overview on network inference with GGM

Various approaches for inferring networks with GGM

Graphical Gaussian Model

• seminal work:
[Schäfer and Strimmer, 2005a, Schäfer and Strimmer, 2005b]
(with shrinkage and a proposal for a Bayesian test of significance)
• estimate Σ−1 by (Σ̂n + λI)−1

• use a Bayesian test to test which coefficients are significantly non zero.

• sparse approaches:
[Meinshausen and Bühlmann, 2006, Friedman et al., 2008]:

∀ j, estimate the linear model:

with ‖βj‖L1 =
∑

j′ |βjj′ |

L1 penalty yields to βjj′ = 0 for most j′ (variable selection)
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Inference with multiple samples

Motivation for multiple networks inference

Pan-European project Diogenes2 (with Nathalie Viguerie, INSERM):
gene expressions (lipid tissues) from 204 obese women before and after
a low-calorie diet (LCD).

• Assumption: A
common functioning
exists regardless the
condition;

• Which genes are linked
independently
from/depending on the
condition?

2http://www.diogenes-eu.org/; see also [Viguerie et al., 2012]
Nathalie Villa-Vialaneix (INRA, Unité MIA-T) consensus Lasso Toulouse, April 23th, 2014 12 / 30
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Inference with multiple samples

Naive approach: independent estimations

Notations: p genes measured in k samples, each corresponding to a
specific condition: (Xc

j )j=1,...,p ∼ N(0,Σc), for c = 1, . . . , k .
For c = 1, . . . , k , nc independent observations (Xc

ij )i=1,...,nc and
∑

c nc = n.

Independent inference

Estimation ∀ c = 1, . . . , k and ∀ j = 1, . . . , p,

Xc
j = Xc

\j β
c
j + εc

j

are estimated (independently) by maximizing pseudo-likelihood:

L(S |X) =
k∑

c=1

p∑
j=1

nc∑
i=1

logP
(
Xc

ij |X
c
i,\j , Sc

j

)
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Inference with multiple samples

Related papers
Problem: previous estimation does not use the fact that the different
networks should be somehow alike!
Previous proposals
• [Chiquet et al., 2011] replace Σc by Σ̃c = 1

2 Σc + 1
2 Σ and add a

sparse penalty;

• [Chiquet et al., 2011] LASSO and Group-LASSO type penalties to
force identical or sign-coherent edges between conditions

• [Danaher et al., 2013] add the penalty
∑

c,c′ ‖Sc − Sc′‖L1 ⇒ very
strong consistency between conditions (sparse penalty over the
inferred networks identical values for concentration matrix entries);

• [Mohan et al., 2012] add a group-LASSO like penalty∑
c,c′

∑
j ‖Sc

j − Sc′
j ‖L2 that focuses on differences due to a few number

of nodes only.
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−
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Inference with multiple samples

Consensus LASSO
Proposal

Infer multiple networks by forcing them toward a consensual network: i.e.,
explicitly keeping the differences between conditions under control but
with a L2 penalty (allow for more differences than Group-LASSO type
penalties).

Original optimization:

max
(βc

jk )k,j,c=1,...,C

∑
c

log MLc
j − λ

∑
k,j

|βc
jk |

 .

Add a constraint to force inference toward a “consensus” βcons

1
2
βT

j Σ̂\j\jβj + βT
j Σ̂j\j + λ‖βj‖L1 + µ

∑
c

wc‖β
c
j − β

cons
j ‖2L2

with:
• wc : real number used to weight the conditions (wc = 1 or wc = 1√

nc
);

• µ regularization parameter;
• βcons

j whatever you want...?
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[Ambroise et al., 2009, Chiquet et al., 2011]: is equivalent to minimize p
problems having dimension k(p − 1):

1
2
βT
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j , . . . , β
k
j )
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Σ̂1
\j\j , . . . , Σ̂

k
\j\j

)
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Inference with multiple samples

Choice of a consensus: set one...
Typical case:
• a prior network is known (e.g., from bibliography);
• with no prior information, use a fixed prior corresponding to (e.g.)

global inference
⇒ given (and fixed) βcons

Proposition

Using a fixed βcons
j , the optimization problem is equivalent to minimizing

the p following standard quadratic problem in Rk(p−1) with L1-penalty:

1
2
βT

j B1(µ)βj + βT
j B2(µ) + λ‖βj‖L1 ,

where
• B1(µ) = Σ̂\j\j + 2µIk(p−1), with Ik(p−1) the k(p − 1)-identity matrix

• B2(µ) = Σ̂j\j − 2µIk(p−1)β
cons with βcons =

(
(βcons

j )T , . . . , (βcons
j )T

)T
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Inference with multiple samples

Choice of a consensus: adapt one during training...

Derive the consensus from the condition-specific estimates:

βcons
j =

∑
c

nc

n
βc

j

Proposition

Using βcons
j =

∑k
c=1

nc
n β

c
j , the optimization problem is equivalent to

minimizing the following standard quadratic problem with L1-penalty:

1
2
βT

j Sj(µ)βj + βT
j Σ̂j\j + λ‖βj‖L1

where Sj(µ) = Σ̂\j\j + 2µAT (µ)A(µ) where A(µ) is a
[k(p − 1) × k(p − 1)]-matrix that does not depend on j.
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Inference with multiple samples

Computational aspects: optimization
Common framework

Objective function can be decomposed into:

convex part C(βj) = 1
2β

T
j Q

1
j (µ) + βT

j Q
2
j (µ)

L1-norm penalty P(βj) = ‖βj‖L1

optimization by “active set” [Osborne et al., 2000, Chiquet et al., 2011]

1: repeat(λ given)
2: Given A and βjj′ st: βjj′ , 0, ∀ j′ ∈ A, solve (over h) the smooth

minimization problem restricted to A

C(βj + h) + λP(βj + h) ⇒ βj ← βj + h

3: Update A by adding most violating variables, i.e., variables st:

abs
∣∣∣∂C(βj) + λ∂P(βj)

∣∣∣ > 0

with [∂P(βj)]j′ ∈ [−1, 1] if j′ < A

4: until

all conditions satisfied i.e. abs
∣∣∣∂C(βj) + λ∂P(βj)

∣∣∣ > 0

Repeat:

large λ

↓

small λ
using previous β
as prior
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Inference with multiple samples
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Common framework
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Inference with multiple samples

Bootstrap estimation ' BOLASSO [Bach, 2008]

x x

x
x

x

x

x

x

subsample n observations with replacement

cLasso estimation
−−−−−−−−−−−−−→ for varying λ, (βλ,bjj′ )jj′

↓ threshold

keep the first T1 largest coefficients

B×

Frequency table
(1, 2) (1, 3) ... (j, j′) ...
130 25 ... 120 ...

−→ Keep the T2 most frequent pairs
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Simulations

Outline

1 Short overview on network inference with GGM

2 Inference with multiple samples

3 Simulations
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Simulations

Simulated data
Expression data with known co-expression network

• original network (scale free) taken from
http://www.comp-sys-bio.org/AGN/data.html (100 nodes,
∼ 200 edges, loops removed);

• rewire a ratio r of the edges to generate k “children” networks
(sharing approximately 100(1 − 2r)% of their edges);

• generate “expression data” with a random Gaussian process from
each chid:
• use the Laplacian of the graph to generate a putative concentration

matrix;
• use edge colors in the original network to set the edge sign;
• correct the obtained matrix to make it positive;
• invert to obtain a covariance matrix...;
• ... which is used in a random Gaussian process to generate expression

data (with noise).
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Simulations

An example with k = 2, r = 5%

mother network3 first child second child

3actually the parent network. My co-author wisely noted that the mistake was
unforgivable for a feminist...
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Simulations

Choice for T2
Data: r = 0.05, k = 2 and n1 = n2 = 20
100 bootstrap samples, µ = 1, T1 = 250 or 500

●● 30 selections at least
30 selections at least

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75
precision

re
ca

ll

●
●

40 selections at least
43 selections at least

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
precision

re
ca

ll

Dots correspond to best F = 2 × precision×recall
precision+recall

⇒ Best F corresponds to selecting a number of edges approximately
equal to the number of edges in the original network.
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Simulations

Choice for T1 and µ
µ T1 % of improvement

0.1/1 {250, 300, 500} of bootstrapping
network sizes rewired edges: 5%
20-20 1 500 30.69
20-30 0.1 500 11.87
30-30 1 300 20.15
50-50 1 300 14.36
20-20-20-20-20 1 500 86.04
30-30-30-30 0.1 500 42.67
network sizes rewired edges: 20%
20-20 0.1 300 -17.86
20-30 0.1 300 -18.35
30-30 1 500 -7.97
50-50 0.1 300 -7.83
20-20-20-20-20 0.1 500 10.27
30-30-30-30 1 500 13.48
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Simulations

Comparison with other approaches

Method compared (direct and bootstrap approaches)

• independant Graphical LASSO estimation gLasso
• methods implementated in the R package simone and described in

[Chiquet et al., 2011]: intertwinned LASSO iLasso, cooperative
LASSO coopLasso and group LASSO groupLasso

• fused graphical LASSO as described in [Danaher et al., 2013] as
implemented in the R package fgLasso

• consensus Lasso with
• fixed prior (the mother network) cLasso(p)
• fixed prior (average over the conditions of independant estimations)

cLasso(2)
• adaptative estimation of the prior cLasso(m)

Parameters set to: T1 = 500, B = 100, µ = 1
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Simulations

Selected results (best F)
rewired edges: 5% - conditions: 2 - sample size: 2 × 30

direct version
Method gLasso iLasso groupLasso coopLasso

0.28 0.35 0.32 0.35
Method fgLasso cLasso(m) cLasso(p) cLasso(2)

0.32 0.31 0.86 0.30

bootstrap version
Method gLasso iLasso groupLasso coopLasso

0.31 0.34 0.36 0.34
Method fgLasso cLasso(m) cLasso(p) cLasso(2)

0.36 0.37 0.86 0.35

Conclusions
• bootstraping improves results (except for iLasso and for large r)

• joint inference improves results

• using a good prior is (as expected) very efficient

• adaptive approch for cLasso is better than naive approach
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Simulations

Real data
204 obese women ; expression of 221 genes before and after a LCD
µ = 1 ; T1 = 1000 (target density: 4%)

Distribution of the number of times an edge is selected over 100
bootstrap samples

0

500

1000

1500

0 25 50 75 100
Counts

F
re

qu
en

cy

(70% of the pairs of nodes are never selected)⇒ T2 = 80
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Simulations

Networks

Before diet
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densities about 1.3% - some interactions (both shared and specific) make
sense to the biologist
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Simulations

Thank you for your attention...

Programs available in the R package therese (on R-Forge)4. Joint work
with

Magali SanCristobal Matthieu Vignes
(GenPhySe, INRA Toulouse) (MIAT, INRA Toulouse)

Nathalie Viguerie
(I2MC, INSERM Toulouse)

4https://r-forge.r-project.org/projects/therese-pkg
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Simulations

Questions?
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