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Abstract. In life science, transformation processes are some integrations of mul-
tiple interacting bio-physicochemical phenomena that occur at diffecates. It

is very difficult to elaborate mathematical models representing thesegzes
because knowledge stems from various sources of know-how aridtectavith
uncertainty. In this context, the concept of dynamic Bayesian netw@RH§)
provides a unifying practical mathematical formalism that makes it plestib
describe complex stochastic dynamical systems. However, the defioitipBN
parameters or/and network structure requires substantial knowlddge i rarely

the case in the context of food processes. In this paper, we consaerdh-

lem of parameter learning for a given network structure designed fgresxand

we present a hybrid approach for learning probabilistic represensatiom a
combination of empirical observations, human expertise and mechanistiels
etcThe idea is to be able to estimate parameters knowing that we may have one
or several sources of knowledge associated with each parametesp@wach
consists in using the framework of Dirichlet distributions initializing paranseter
by Dirichlet priors and update them by using Bayesian inference anecteg

a posteriorieach time new or additional information is available. The modelling
of the cheese ripening process, that is still ill-known and complicated tivatpn
illustrates our approach.

Keywords: Dynamic Bayesian networks, food processing modelling, Dirichlet
distribution, parameter learning.

1 Introduction

In life science, transformation processes are some irtteggaof multiple unit phe-
nomena which result in a complex system. They consist of gelaumber of inter-
acting microbiological and/or physicochemical composgwhose aggregate activities
are nonlinear and are responsible for the changes of prgdaperties. Decisions re-
lated to the management of such processes rely on predicigels that represent
the available knowledge about involved phenomena and dectalsimulate the dif-
ferent transient and equilibrium states over time. Unfoately, a lot of transformation
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processes are too complex to be modelled in one step [19] woid reodels remain
difficult and complicated to implement [6] because the chtsationships between
ingredients, physicochemical, microbiological, orgapdic characteristics, on the one
hand, and sensory, nutritional and energy properties,@ntter, depending on succes-
sive process operations remain still widely ill-known inmgaransformation process
technologies. Knowledge stems from various sources of kmow such as expert oper-
ators [1, 17], scientific theory [19, 18], experimentallsietc It is expressed in different
forms (equations, expert opinions, databases ...), diftfiormats (numeric, symbolic,
linguistic ...) and at different scales (microbiologicphysicochemical, organoleptic
...). Moreover, faced with the heterogeneous charactemofvledge, information is
tainted with stochastic and epistemic uncertainty suclaadomness, incompleteness,
imprecision, vaguenegtc[5, 7, 12]. The treatment of uncertainties has become drucia
in industrial applications and by consequence in decisiaking processes. The main
questions is how to formulate and couple human knowledde,rdaasurements, math-
ematical models into a unifying framework in order to ddserihe whole system and
provide adequate decision-making tools. With this aim inanthe concept of dynamic
Bayesian networks (DBNSs) [15] provides a unifying pradtivathematical formalism
that makes it possible to describe complex stochastic diggsystems. They are an
extension of Bayesian networks (BNs) [13, 16] and genexdlie well-known Hidden
Markov Models (HMMs) [14].However one of the limitations@fnamic Bayesian net-
works lies in the definition of parameterise( conditional probabilities tables) or/and
network structure that requires substantial knowledgeckis rarely the case in the
context of food processes. In this paper, we consider thielgmoof parameter learn-
ing for a given network structure designed by experts. Thigep presents a hybrid
approach for learning probabilistic representations frmombination of empirical
observations, human expertise and mechanistic madel©ur approach aims to (1)
combine multi-sources of knowledge to identify DBN paraenetand (2) update our
background knowledge with new or additional informatiorreine DBN parameters
with a view to improve the whole model. It consists in using ftamework of Dirichlet
distributions initializing parameters by using Dirichfgiors that may be assessed from
literature, empirical observations, experts opinionsstexg modelsetc Next, param-
eters are successively updated by using Bayesian infeamtexpected posteriori
each time new or additional information is available and barformulate into a fre-
quentist form. To illustrate our approach, we consider thenework of the food trans-
formation processes and more specifically the modellindief@amembert-type soft
mould cheese ripening that is still ill-known and compléezhto control [8].In Section
2, we introduce the basic notions about dynamic Bayesiamanks. In Section 3, we
present our approach of hybrid learning. In Section 4, wesitate the hybrid parame-
ter learning for modelling a Camembert-type cheese rigepincess.We end the paper
with some concluding remarks and open problems

2 Dynamic Bayesian Networks

DBNs are classical Bayesian networks in which nofl&s(t),i = 1...n}, represent-
ing random variables, are indexed by timdhey provide a compact representation of
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the joint probability distributiorP for a finite time intervall, 7] defined as follows:

PX(1),. HHP (1) |PaXi(t))) 1)
i=1t=1
whereX (t) = {X;1(¢),..., X, (t)}, is called a “slice” and represents the set of all vari-

ables indexed by the same timeThis joint probabilityP (X (1), ..., X (7)) represents
the beliefs about possible trajectories of the dynamic ¢gs& (). DBNs assume the
first-order Markov propertywhich means that the parents of a variable in time dlice
must occur in either slice— 1 ort :

Pa(X;(t)) C (X(t—1)UX(#)\Xi(t) (@)

Moreover, the conditional probabilities are time-invatifirst-order homogeneous Markov
property):

P(X;(t)[PaX;(t)) = P(Xi(2)[PaX;(2))) Vt € [2,7] 3)

Hence to specify a DBN, we need to define the intra-slice tupol(within a time
slice), the inter-slice topology (between two time slices) well as the parameteiise(
conditional probabilities, see Equation 3) for the first ttime slices. In our context,
the structure of a model have been explicitly built on theakexpert knowledge.

3 Hybrid parameter learning

Assume thatX;(¢) are all categorical variables given values(. .., z;.,) wherec;

is the number of values that nodecan take on and lef;;, be the probability that
X, (t) = z;, given that its parents have instantiation(corresponding itself to a vector
wherek represents the set of parentsipfi.e. 0}, = P(Xi(t) = x;|PaX;(t)) =
xr). As we assume the first-order homogeneous Markov properéyHs.3), we have:
vVt € [2,7], 0%, = 0. The idea of hybrid parameter learning is to be able to eséima
0:jk|(D1,- .., Dy) whereDy, ..., D,, may correspond to new or additional informa-
tion as expert opinions, experimental or simulated @&taOur approach consists in
using the framework of Dirichlet distributions [9] initialng variables, by Dirichlet
priors and updaté; ;,, by using Bayesian inference and expedgqubsteriorieach time
new or additional information is available and can be forated into a frequentist form.
The Dirichlet prior is the conjugate prior for the multinahivhich permits analytical
calculations. The Dirichlet prior distributiofi;;, ~ D(;1k, - - -, e, ) IS defined by

>0 aik)

g 1= aiik—1
Q; | I 0. 4
( Zkl k) H F ”k = ijk ( )

with Zj;l Oij = 1, a;, > 0@andI'(z) = f0+°° ett*~14t. If we have an available
databaseD in which event(X;(t) = z;,PaX;(t)) = x1) occursNj;, times, the
posterior variabld;, | D follows a Dirichlet distribution:

Oik|D ~ D(aitk + Y Nhjo- s ick + 3 N y) (5)
t t
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and the expected posteriori(EAP estimate) gives:

DY Niji + g
L (0, Ny + i)

(6)

In our case, the values

Q1K Qi k
C; PR Cq
D1 gk Dje1 Qijk

represent intuitively the priori probabilities for the values of the varialflg, based in
our past experience.

The quantityzj":1 a5 May represent the size of (1) a virtual sampling given by ex-
pert or (2) a simulated sampling given by mathematical medielre model parameters
would be tainted with uncertainty. This size can be thugprited as a confidence level
on experts or mathematical models compared to the datdbaBkat means that more
the size will be important more the belief in expert opiniomathematical model will

be important compared to the datab#se

3.1 Assessing Dirichlet priors

Next we give some guidelines for choosing the Dirichlet pdistribution according to
the kind of available knowledge in order to initiate hybrgining.

1. Assessing without information
In the case where we have not available knowledge over paeasneve decide to
use the Dirichlet Prior

inducing an uniform prior ovef;;, i.e.éijk = 1/¢; andl corresponds to the impor-
tance that we want to allocate to our ignorance state.

2. Assessing by means of expert opinion
Assume that expert is capable of providing a probabilityritigtion (p;;x) j=1,....c;
overd;;, according to its experience. We may then use the followingbliet prior:

Oir. ~ D(spitks - -, SPic;k) (8)

where s corresponds to the confidence level on experts or the imggsize of
database inducing;;, = p;;j. as expected values. However, it is often beyond the
experts ability to specify a full Dirichlet prior over paraters [11].

3. Assessing by means of an experimental database
When we have an experimental databasewe may use

O ~ DD N> N ©)
t t
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as Dirichlet prior inducing a prior probability distriboti on the values df;;. given
by Oije = 32, Nijiu/ 225 >4 Nij), corresponding to the maximum likelihood esti-
mation.

4. Assessing by means of a simulated dataliase

Certain physical or/and biological phenomena, nak&dcan be well-known and
modelled by mathematical model§ = £, (X, T) providing a richer information
than an experimental database wh&rea andT" represent a vector of state vari-
ables, model parameters and control variables respectidelvever, certain pa-
rameters and/or variables are tainted with uncertaintytaltiee intrinsic variability
of phenomena or/and the lack of knowledge about the preaises of parameters.
Under such a situation, the traditional attitude is to repr¢ each and every ill-
known parameters or inputs by means of probability distiims and to perform
a random sampling by using a Monte-Carlo method [10] in otdegstimate the
uncertainty about model outputs. In this case, we build aiksitad databasé®,

and we use
t t

as Dirichlet prior wherel/;, corresponds to the number of timex;(t) = z;
,Pa(X;(t)) = z) occurs inDg and Zj"':l . M}, corresponds to the size of
databaseD, which may be interpreted as the confidence level on matheahati
model. We can image to be able to extend this approach by asidgombining

other mathematical models as stochastic expert systensrameiral networkstc

3.2 Incremental Bayesian updating

Based on our initial knowledge abo#it, represented by Dirichlet prior distributions,
we attempt to update parametéss, with new or additional informatiotDy, . .., D,

by using Bayesian inference and the expeetpdsteriori Based on the same reasoning
leading to Eq. 5, we have

m

Oik|(D1,..., D) ~ Dl + Y Njp(p)) (11)
p=1 t

where we assum®,,, L (D1, ... D,,—1)|0;x and eaclD,, is formulated into a frequen-
tist form, that isD,, corresponds to a set of virtual or experimental or calcdlal@ta
with countsN/, (p). To summarize, we obtain

- Z;nzl PN Nitjk(p) + ik
K Z?:l(z;nzl Zt Nz‘tjk(p) + Oéuk)

where}", N/, (p) may be corresponds to:

) (12)

1. 0 when we have no additional information.
2. the probabilitysp;;;, given by expert withzj pijr = 1 ands corresponds to the
virtual size of database.
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3. the counts in an experimental database.

4. the counts in a simulated database.

We illustrate our approach by given two examples.

Time slice ¢ Time slice +1

Fig. 1. Dynamic Bayesian network repre-
senting the coupled dynamics of micro-
organism growth with their substrate con-
sumptions influenced by temperature and in-
volving the sensory changes of cheese dur-
ing the ripening process. Grey nodes repre-

sent expert constraints

R

O Measured Km
— Simulated Km

6.5¢

K. marxianus Iogm(fcu/g)

P

5.

M 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ripening day

O Measured lactose
—— Simulated lactose

Lactose g/Kg FC

9“2 3 4 5 6 T 11 12 13 14 1
Ripening day

Fig. 2. A random sampling of eleven (resp.
eight) possible dynamics oK.marxianus
(resp. lactose) concentrations resulting form
Monte-Carlo simulations at TZ using the
microbial growth model described by Eq. 13.

— Assume that we are faced with none background knowledget @8hquve then use
a Dirichlet prior distributioriD(1, ..., 1). If we do not have additional information,
Dirichlet prior distribution becomea posterioriwhich corresponds to a uniform

distribution overd;;,.

— Assume that we have a simulated datab&keassociated withd;,., we define
a Dirichlet prior distributionD(}=, Mjy, ..., >3, M;, ;) wh_erer;:_l > M,
corresponds to the size éf,. Next, we have two additional information abalt
namely a probability distributiop;, given by expert and an experimental data
We deduce that;;| D., "expert” follows the Dirichlet distributiorD(}", M}, +

>t Nig + spitks -

C

ooy MY 4370, NE. . + spic,i) Wheres corresponds to the
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confidence level on expert a@;’;l Do N{/jk corresponds to the confidence level
on the databasP..

4  Application to the food process modelling: cheese ripenm

To illustrate our approach, we have focused on the modedifrthe Camembert-type
soft mould cheese ripening that is still ill-known and coiogied to control [8]. Dur-
ing the ripening process, cheese represents an ecosystem l@oreactor where re-
lationships exist between microbiological, physicocheahand organoleptic changes
which depend on environmental conditions. From operatiana scientific knowl-
edge, baudrit eal. [2] defined the structure of a dynamic Bayesian network provi

Y 14 —
ol o ° ’;‘Iemaj;:g }z \earning from data 4 _».Simulated lo,learning from data
N o - iithout constramnt nodes G, Cy 12| without constraint nodes C,, C,
1l o Seierle et rom dataand. o Measured lo
o N Simulated lo, learning from data 0 10 Simulated lo, learning from data
@ Ny~ with constraint node ¢, C, iy ~+ with constraint nodes C, C,
2 8- ENGY 2 .
B N 8 Simulated lo, learning from data and model
@ S\ ° > without constraint nodes C, C,
S ef N\ TR A A A AR 2 A
] ‘. 3 NEal
= NG g . DDA AA A A AA
ab “ = 4 \
AN
2r XN 2
X
o : o s 2 T8 0 @ + o 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ripening day 1 2 3 4 6 R?peni?wg dgay 10 11 12 13 14 15
8
75 7.5 ° o
B s
é s E 7 x X
e £
S e
g 5 A‘/A“A,,_A,,A,»AV-VA-VANAV-VAWVX——A
@ 650 g
;ﬂ ASlmulated Km, learning from data 2 65 Simulated Km, learning from data
= = without constraint nodes C, and C, ,g = without constraint nodes C,, C¢
E 6 ©O Measured Km g 6 © Measured Km
N Simulated Km, learning from data Simulated Km, learning from data
p with constraint nodes C and C¢ x p with constraint nodes C,, C¢
5 Simulated Km, learning from data and model 5 Simulated Km, learning from data and model
> without constraint nodes Cgand Co * without constraint nodes Cq Cq
W2 3 4 5 9 10 11 12 13 14 15 2 3 4 5 9 10 11 12 13 14 15

6 7 8 6 7 8
Ripening day Ripening day

Fig. 3. Measured lactose arfl marxianusconcentrations versus the mean DBN simulation re-
sults according to available knowledge for learning and the taking or noagdount constraint
nodes (5, Cs) for a ripening carried out at’® (at left) and 18C (at right)

ing a qualitative representation of the coupled dynamicsiiefoorganism behaviour
(Kluyveromyces marxiany&m), Geotrichum candiduniGc), Brevibacterium auran-
tiacum(Ba) with their substrate consumptions (lactose (lo), lacf&} influenced by
temperature (T) and involving the sensory changes (Odoudetrind, Coat, Colour
and Humidity) of cheese during ripening (see Fig.1). Nodes .., C7 correspond to
constraint nodes which are conditioned to be treg.(P(C =’ true/|X(t + 1) =
i,X(t) = j) = 0if j > ¢ and 1 otherwise) [4] and allow to represent rules, gen-
erally linked to the physical or/and biological consergatiaws.In a first time, we
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use a Dirichlet priofD(1) for all parameters which are updated from an experimental
databasé), filled in from six cheese ripening experimental trials aagdrbut for tem-
peratures varying from T = 8 to 1&. Parameter®(Km(t+1)|(Km(t), lo(t), T(t)))
andP(lo(t+1)|(Km(t),lo(t), T(t))) are then updated regardless of the rest of network
by using a simulated databaBg (see section 3.2) obtained by Monte-Carlo simulation
[10] (see Fig.2) on the following microbial growth model [18

dKm 0 lo Km — bKm
S dt Klo + lo 13)
(5) dlo B lo Km (

dt (K +lo

wherey (the maximum specific growth rate éfm), K, (the half saturation constant
for growth), b (the decay coefficient) and (the yield coefficient forkK'm on lactose)
are tainted with uncertainty due to the intrinsic varidpibf process. Figure 3 display

Ammoni < ®— 510
)
o
5 Camembert > 8
] 3 7
o ~5
O Mushroont o5 6
]
E W et/
fres t sty
175 9 1817 21 25 29 ™) 5 9 1317 21 2529 33 37 41
Day Day
Strongly wep—4¢—+— o 14
w12
2 g 10
E Wetf O 3 8
5 2 6
T 5 4
8 2
Unwet -0 0
5 9 13
Day

Fig. 4. Predictive mean evolution @&a, la, Odour and Humidity obtained from DBN (in straight
line) versus raw data for three different ripening carried ouf & goted +), 12C (notedo) and
16°C (noted<).

the mean evolutions of simulated |&;m versus raw data for two ripening carried out
at 8C and 168C according to (1) learning from databaBg without constraint nodes
(Cs, Cp); (2) learning from databasP. with constraint nodes and (3) learning from
databasé). and D, without constraint nodes’s, Cs). We see that the two last results
are closed to raw data contrary to results obtained withoositaint nodes. We can
conclude that the coupling of experimental and simulated dowed to simplify the
network structure and to enrich our model. Indeed, althagyiditioning is a method
that comes naturally out of the use of directed graphicaletsydheir introduction to
the network may produce side effects which can distort tlsaltieg distribution [4]
and makes more complex the model. Figure 4 displays, by waexarhple, the average
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evolution of four variables (Ba, la, Odour, Humidity) vessaw data for three ripening
carried out at at8C, 12°C and 16C (not available in learning database) and enables to
highlight the predictive character of model.

5 conclusion

This paper presents a hybrid approach for learning proistibitepresentations from a
combination of empirical observations, human expertigeraachanistic models in the
context of the food transformation processes. With thisridylearning, we enriched
and refined the previously model established in [2] where mig load single sources of
knowledge for different set of nodes. Moreover, the intégreof a mechanistic model
allowed to replace an expert information (represented Imgtraint nodes) and resulted
in a simplification of the network structure. We hope to egtenr approach by inte-
grating incompleteness and imprecision. Indeed, The ftismaof DBNs often does
not allow us to take epistemic uncertainty inherent to fooatpsses into account in a
coherent and relevant way. Faced with partial ignoraneesy#ie of a single probability
measure may introduce information that is not in fact até@as the uniformity when
we use uniform distribution faced a lack of knowledge. Fas thurpose, imprecise
Dirichlet model (initiated by Walley [20]) could be an inésting extension which con-
sists in describing prior uncertainty by a set of Dirichlebps instead of a single one.
To go even further in our approach, studies focusing on treztavorks [3] could be an
other interesting area of research since they generaligedtan networks by allowing
each variable to be associated with sets of joint probghititasures rather than sin-
gle probability measures and can be regarded as sets ofiBaydstworks. This tool
seems to be a natural extension for dynamic Bayesian nedviodeder to integrate our
partial ignorance in the reconstruction of dynamics andiitaeagement of uncertainty.
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