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Abstract. In life science, transformation processes are some integrations of mul-
tiple interacting bio-physicochemical phenomena that occur at different scales. It
is very difficult to elaborate mathematical models representing these processes
because knowledge stems from various sources of know-how and is tainted with
uncertainty. In this context, the concept of dynamic Bayesian networks (DBNs)
provides a unifying practical mathematical formalism that makes it possible to
describe complex stochastic dynamical systems. However, the definitionof DBN
parameters or/and network structure requires substantial knowledge which is rarely
the case in the context of food processes. In this paper, we consider the prob-
lem of parameter learning for a given network structure designed by experts and
we present a hybrid approach for learning probabilistic representations from a
combination of empirical observations, human expertise and mechanisticmodels
etc.The idea is to be able to estimate parameters knowing that we may have one
or several sources of knowledge associated with each parameter. Our approach
consists in using the framework of Dirichlet distributions initializing parameters
by Dirichlet priors and update them by using Bayesian inference and expected
a posteriorieach time new or additional information is available. The modelling
of the cheese ripening process, that is still ill-known and complicated to control,
illustrates our approach.

Keywords: Dynamic Bayesian networks, food processing modelling, Dirichlet
distribution, parameter learning.

1 Introduction

In life science, transformation processes are some integrations of multiple unit phe-
nomena which result in a complex system. They consist of a large number of inter-
acting microbiological and/or physicochemical components, whose aggregate activities
are nonlinear and are responsible for the changes of productproperties. Decisions re-
lated to the management of such processes rely on predictivemodels that represent
the available knowledge about involved phenomena and are able to simulate the dif-
ferent transient and equilibrium states over time. Unfortunately, a lot of transformation
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processes are too complex to be modelled in one step [19] and such models remain
difficult and complicated to implement [6] because the causal relationships between
ingredients, physicochemical, microbiological, organoleptic characteristics, on the one
hand, and sensory, nutritional and energy properties, on the other, depending on succes-
sive process operations remain still widely ill-known in many transformation process
technologies. Knowledge stems from various sources of know-how such as expert oper-
ators [1, 17], scientific theory [19, 18], experimental trials etc. It is expressed in different
forms (equations, expert opinions, databases ...), different formats (numeric, symbolic,
linguistic ...) and at different scales (microbiological,physicochemical, organoleptic
...). Moreover, faced with the heterogeneous character of knowledge, information is
tainted with stochastic and epistemic uncertainty such as randomness, incompleteness,
imprecision, vaguenessetc[5, 7, 12]. The treatment of uncertainties has become crucial
in industrial applications and by consequence in decision-making processes. The main
questions is how to formulate and couple human knowledge, data measurements, math-
ematical models into a unifying framework in order to describe the whole system and
provide adequate decision-making tools. With this aim in mind, the concept of dynamic
Bayesian networks (DBNs) [15] provides a unifying practical mathematical formalism
that makes it possible to describe complex stochastic dynamical systems. They are an
extension of Bayesian networks (BNs) [13, 16] and generalise the well-known Hidden
Markov Models (HMMs) [14].However one of the limitations ofdynamic Bayesian net-
works lies in the definition of parameters (i.e. conditional probabilities tables) or/and
network structure that requires substantial knowledge which is rarely the case in the
context of food processes. In this paper, we consider the problem of parameter learn-
ing for a given network structure designed by experts. This paper presents a hybrid
approach for learning probabilistic representations froma combination of empirical
observations, human expertise and mechanistic modelsetc. Our approach aims to (1)
combine multi-sources of knowledge to identify DBN parameters and (2) update our
background knowledge with new or additional information torefine DBN parameters
with a view to improve the whole model. It consists in using the framework of Dirichlet
distributions initializing parameters by using Dirichletpriors that may be assessed from
literature, empirical observations, experts opinions, existing modelsetc. Next, param-
eters are successively updated by using Bayesian inferenceand expecteda posteriori
each time new or additional information is available and canbe formulate into a fre-
quentist form. To illustrate our approach, we consider the framework of the food trans-
formation processes and more specifically the modelling of the Camembert-type soft
mould cheese ripening that is still ill-known and complicated to control [8].In Section
2, we introduce the basic notions about dynamic Bayesian networks. In Section 3, we
present our approach of hybrid learning. In Section 4, we illustrate the hybrid parame-
ter learning for modelling a Camembert-type cheese ripening process.We end the paper
with some concluding remarks and open problems

2 Dynamic Bayesian Networks

DBNs are classical Bayesian networks in which nodes{Xi(t), i = 1 . . . n}, represent-
ing random variables, are indexed by timet. They provide a compact representation of
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the joint probability distributionP for a finite time interval[1, τ ] defined as follows:

P (X(1), . . . ,X(τ)) =

n
∏

i=1

τ
∏

t=1

P (Xi(t)|Pa(Xi(t))) (1)

whereX(t) = {X1(t), . . . ,Xn(t)}, is called a “slice” and represents the set of all vari-
ables indexed by the same timet. This joint probabilityP (X(1), . . . ,X(τ)) represents
the beliefs about possible trajectories of the dynamic processX(t). DBNs assume the
first-order Markov propertywhich means that the parents of a variable in time slicet
must occur in either slicet − 1 or t :

Pa(Xi(t)) ⊂ (X(t − 1) ∪ X(t)) \Xi(t) (2)

Moreover, the conditional probabilities are time-invariant (first-order homogeneous Markov
property):

P (Xi(t)|Pa(Xi(t))) = P (Xi(2)|Pa(Xi(2))) ,∀t ∈ [2, τ ] (3)

Hence to specify a DBN, we need to define the intra-slice topology (within a time
slice), the inter-slice topology (between two time slices), as well as the parameters (i.e
conditional probabilities, see Equation 3) for the first twotime slices. In our context,
the structure of a model have been explicitly built on the basis of expert knowledge.

3 Hybrid parameter learning

Assume thatXi(t) are all categorical variables given values (xi1, . . . , xici
) whereci

is the number of values that nodei can take on and letθt
ijk be the probability that

Xi(t) = xj , given that its parents have instantiationxk (corresponding itself to a vector
wherek represents the set of parents ofi), i.e. θt

ijk = P (Xi(t) = xj |Pa(Xi(t)) =
xk). As we assume the first-order homogeneous Markov property (see Eq.3), we have:
∀t ∈ [2, τ ], θt

ijk = θijk. The idea of hybrid parameter learning is to be able to estimate
θijk|(D1, . . . ,Dm) whereD1, . . . ,Dm may correspond to new or additional informa-
tion as expert opinions, experimental or simulated dataetc. Our approach consists in
using the framework of Dirichlet distributions [9] initializing variablesθt

ik by Dirichlet
priors and updateθijk by using Bayesian inference and expecteda posteriorieach time
new or additional information is available and can be formulated into a frequentist form.
The Dirichlet prior is the conjugate prior for the multinomial which permits analytical
calculations. The Dirichlet prior distribution,θik ∼ D(αi1k, . . . , αicik) is defined by

P (θik|αik) =
Γ (
∑ci

j=1
αijk)

∏ci

j=1
Γ (αijk)

ci
∏

j=1

θ
αijk−1

ijk (4)

with
∑ci

j=1
θijk = 1, αik > 0 andΓ (x) =

∫ +∞

0
ettx−1dt. If we have an available

databaseD in which event(Xi(t) = xj , Pa(Xi(t)) = xk) occursN t
ijk times, the

posterior variableθik|D follows a Dirichlet distribution:

θik|D ∼ D(αi1k +
∑

t

N t
i1k, . . . , αicik +

∑

t

N t
icik

) (5)
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and the expecteda posteriori(EAP estimate) gives:

θ̂ijk =

∑

t N t
ijk + αijk

∑ci

j=1
(
∑

t N t
ijk + αijk)

(6)

In our case, the values
(

αi1k
∑ci

j=1
αijk

, . . . ,
αicik

∑ci

j=1
αijk

)

represent intuitively thea priori probabilities for the values of the variableθik based in
our past experience.

The quantity
∑ci

j=1
αijk may represent the size of (1) a virtual sampling given by ex-

pert or (2) a simulated sampling given by mathematical modelwhere model parameters
would be tainted with uncertainty. This size can be thus interpreted as a confidence level
on experts or mathematical models compared to the databaseD. That means that more
the size will be important more the belief in expert opinion or mathematical model will
be important compared to the databaseD.

3.1 Assessing Dirichlet priors

Next we give some guidelines for choosing the Dirichlet prior distribution according to
the kind of available knowledge in order to initiate hybrid learning.

1. Assessing without information.
In the case where we have not available knowledge over parameters, we decide to
use the Dirichlet Prior

θik ∼ D(l, . . . , l) (7)

inducing an uniform prior overθik, i.e. θ̂ijk = 1/ci andl corresponds to the impor-
tance that we want to allocate to our ignorance state.

2. Assessing by means of expert opinion.
Assume that expert is capable of providing a probability distribution(pijk)j=1,...,ci

overθik according to its experience. We may then use the following Dirichlet prior:

θik ∼ D(spi1k, . . . , spicik) (8)

wheres corresponds to the confidence level on experts or the imaginary size of
database inducinĝθijk = pijk as expected values. However, it is often beyond the
experts ability to specify a full Dirichlet prior over parameters [11].

3. Assessing by means of an experimental databaseDe.
When we have an experimental databaseDe, we may use

θik ∼ D(
∑

t

N t
i1k, . . . ,

∑

t

N t
icik

) (9)
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as Dirichlet prior inducing a prior probability distribution on the values ofθik given
by θ̂ijk =

∑

t N t
ijk/

∑

j

∑

t N t
ijk corresponding to the maximum likelihood esti-

mation.

4. Assessing by means of a simulated databaseDs.
Certain physical or/and biological phenomena, notedX, can be well-known and
modelled by mathematical modelṡX = fa(X,T ) providing a richer information
than an experimental database whereX, a andT represent a vector of state vari-
ables, model parameters and control variables respectively. However, certain pa-
rameters and/or variables are tainted with uncertainty dueto the intrinsic variability
of phenomena or/and the lack of knowledge about the precise values of parameters.
Under such a situation, the traditional attitude is to represent each and every ill-
known parameters or inputs by means of probability distributions and to perform
a random sampling by using a Monte-Carlo method [10] in orderto estimate the
uncertainty about model outputs. In this case, we build a simulated databaseDs

and we use
θik ∼ D(

∑

t

M t
i1k, . . . ,

∑

t

M t
icik

) (10)

as Dirichlet prior whereM t
ijk corresponds to the number of times(Xi(t) = xj

, Pa(Xi(t)) = xk) occurs inDs and
∑ci

j=1

∑

t M t
ijk corresponds to the size of

databaseDs which may be interpreted as the confidence level on mathematical
model. We can image to be able to extend this approach by usingand combining
other mathematical models as stochastic expert systems and/or neural networksetc.

3.2 Incremental Bayesian updating

Based on our initial knowledge aboutθik represented by Dirichlet prior distributions,
we attempt to update parametersθijk with new or additional informationD1, . . . ,Dm

by using Bayesian inference and the expecteda posteriori. Based on the same reasoning
leading to Eq. 5, we have

θik|(D1, . . . ,Dm) ∼ D(αik +

m
∑

p=1

∑

t

N t
ik(p)) (11)

where we assumeDm⊥(D1, . . . Dm−1)|θik and eachDp is formulated into a frequen-
tist form, that isDp corresponds to a set of virtual or experimental or calculated data
with countsN t

ik(p). To summarize, we obtain

θ̂ijk =

∑m

p=1

∑

t N t
ijk(p) + αijk

∑ci

j=1
(
∑m

p=1

∑

t N t
ijk(p) + αijk)

(12)

where
∑

t N t
ijk(p) may be corresponds to:

1. 0 when we have no additional information.
2. the probabilityspijk given by expert with

∑

j pijk = 1 ands corresponds to the
virtual size of database.
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3. the counts in an experimental database.
4. the counts in a simulated database.

We illustrate our approach by given two examples.

Time slice t

T(t)

Ba(t) Ba(t+1)

pH(t) pH(t+1)

la(t) la(t+1)

Gc(t) Gc(t+1)

Km(t) Km(t+1)

lo(t) lo(t+1)

la(t)

C1

C2

C3

C4

C5

C6

Time slice t+1

∂Km/ ∂t

∂Gc/ ∂t

∂Ba/ ∂t

Humidity(t+1)

Colour(t+1)

Coat(t+1)

Odour(t+1)

Under-rind(t+1)

Phase(t+1)

Gc(t+1)

pH(t+1)

la(t+1)

C7

Fig. 1. Dynamic Bayesian network repre-
senting the coupled dynamics of micro-
organism growth with their substrate con-
sumptions influenced by temperature and in-
volving the sensory changes of cheese dur-
ing the ripening process. Grey nodes repre-
sent expert constraints
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Fig. 2. A random sampling of eleven (resp.
eight) possible dynamics ofK.marxianus
(resp. lactose) concentrations resulting form
Monte-Carlo simulations at 12oC using the
microbial growth model described by Eq. 13.

– Assume that we are faced with none background knowledge about θik, we then use
a Dirichlet prior distributionD(1, . . . , 1). If we do not have additional information,
Dirichlet prior distribution becomesa posterioriwhich corresponds to a uniform
distribution overθik.

– Assume that we have a simulated databaseDs associated withθik, we define
a Dirichlet prior distributionD(

∑

t M t
i1k, . . . ,

∑

t M t
icik

) where
∑ci

j=1

∑

t M t
ijk

corresponds to the size ofDs. Next, we have two additional information aboutθik

namely a probability distributionpik given by expert and an experimental dataDe.
We deduce thatθij |De, ”expert” follows the Dirichlet distributionD(

∑

t M t
i1k +

∑

t N t
i1k + spi1k, . . . ,

∑

t M t
icik

+
∑

t N t
icik

+ spicik) wheres corresponds to the
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confidence level on expert and
∑ci

j=1

∑

t N t
ijk corresponds to the confidence level

on the databaseDe.

4 Application to the food process modelling: cheese ripening

To illustrate our approach, we have focused on the modellingof the Camembert-type
soft mould cheese ripening that is still ill-known and complicated to control [8]. Dur-
ing the ripening process, cheese represents an ecosystem and a bioreactor where re-
lationships exist between microbiological, physicochemical and organoleptic changes
which depend on environmental conditions. From operational and scientific knowl-
edge, baudrit etal. [2] defined the structure of a dynamic Bayesian network provid-
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Fig. 3. Measured lactose andK.marxianusconcentrations versus the mean DBN simulation re-
sults according to available knowledge for learning and the taking or not intoaccount constraint
nodes (C5, C6) for a ripening carried out at 8oC (at left) and 16oC (at right)

ing a qualitative representation of the coupled dynamics ofmicroorganism behaviour
(Kluyveromyces marxianus(Km), Geotrichum candidum(Gc), Brevibacterium auran-
tiacum(Ba) with their substrate consumptions (lactose (lo), lactate(la)) influenced by
temperature (T) and involving the sensory changes (Odour, Under-rind, Coat, Colour
and Humidity) of cheese during ripening (see Fig.1). NodesC1, . . . , C7 correspond to
constraint nodes which are conditioned to be true (e.g.P (C =′ true′|X(t + 1) =
i,X(t) = j) = 0 if j > i and 1 otherwise) [4] and allow to represent rules, gen-
erally linked to the physical or/and biological conservation laws.In a first time, we
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use a Dirichlet priorD(1) for all parameters which are updated from an experimental
databaseDe filled in from six cheese ripening experimental trials carried out for tem-
peratures varying from T = 8 to 16oC. ParametersP (Km(t+1)|(Km(t), lo(t), T (t)))
andP (lo(t+1)|(Km(t), lo(t), T (t))) are then updated regardless of the rest of network
by using a simulated databaseDs (see section 3.2) obtained by Monte-Carlo simulation
[10] (see Fig.2) on the following microbial growth model [18]

(S)











dKm

dt
= µ

lo

Klo + lo
Km − bKm

dlo

dt
= −

µ

β

lo

Klo + lo
Km

(13)

whereµ (the maximum specific growth rate ofKm), Klo (the half saturation constant
for growth),b (the decay coefficient) andβ (the yield coefficient forKm on lactose)
are tainted with uncertainty due to the intrinsic variability of process. Figure 3 display
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Fig. 4. Predictive mean evolution ofBa, la, Odour and Humidity obtained from DBN (in straight
line) versus raw data for three different ripening carried out at 8oC (noted +), 12oC (noted◦) and
16oC (noted3).

the mean evolutions of simulated lo,Km versus raw data for two ripening carried out
at 8oC and 16oC according to (1) learning from databaseDe without constraint nodes
(C5, C6); (2) learning from databaseDe with constraint nodes and (3) learning from
databaseDe andDs without constraint nodes (C5, C6). We see that the two last results
are closed to raw data contrary to results obtained without constraint nodes. We can
conclude that the coupling of experimental and simulated data allowed to simplify the
network structure and to enrich our model. Indeed, althoughconditioning is a method
that comes naturally out of the use of directed graphical models, their introduction to
the network may produce side effects which can distort the resulting distribution [4]
and makes more complex the model. Figure 4 displays, by way ofexample, the average
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evolution of four variables (Ba, la, Odour, Humidity) versus raw data for three ripening
carried out at at 8oC, 12oC and 16oC (not available in learning database) and enables to
highlight the predictive character of model.

5 conclusion

This paper presents a hybrid approach for learning probabilistic representations from a
combination of empirical observations, human expertise and mechanistic models in the
context of the food transformation processes. With this hybrid learning, we enriched
and refined the previously model established in [2] where we only had single sources of
knowledge for different set of nodes. Moreover, the integration of a mechanistic model
allowed to replace an expert information (represented by constraint nodes) and resulted
in a simplification of the network structure. We hope to extend our approach by inte-
grating incompleteness and imprecision. Indeed, The formalism of DBNs often does
not allow us to take epistemic uncertainty inherent to food processes into account in a
coherent and relevant way. Faced with partial ignorance, the use of a single probability
measure may introduce information that is not in fact available as the uniformity when
we use uniform distribution faced a lack of knowledge. For this purpose, imprecise
Dirichlet model (initiated by Walley [20]) could be an interesting extension which con-
sists in describing prior uncertainty by a set of Dirichlet priors instead of a single one.
To go even further in our approach, studies focusing on credal networks [3] could be an
other interesting area of research since they generalize Bayesian networks by allowing
each variable to be associated with sets of joint probability measures rather than sin-
gle probability measures and can be regarded as sets of Bayesian Networks. This tool
seems to be a natural extension for dynamic Bayesian networks in order to integrate our
partial ignorance in the reconstruction of dynamics and themanagement of uncertainty.
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