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Abstract

In this article, we study the problem of evaluating the expected cost (gen-
eralizing the notion of expected size) of an epidemics spreading over a finite
network of individuals according to a discrete-time SIR dynamics. Studies
from the literature provide results in expectation over random graphs of in-
finite size, or rely on Monte Carlo simulations. Our results are threefold. (i)
We prove that the evaluation problem for a finite graph is #P-complete. (ii)
We propose an exact “divide and conquer” evaluation algorithm, for which
we provide upper bounds on its time complexity. In particular, we prove
that it can be polynomial when the graph is a tree. (iii) We propose an ap-
proximation algorithm, based on the mean field principle, with polynomial
time complexity for any graph. An experimental comparison of the exact
and Monte Carlo evaluations with the results of the mean field algorithm
show that the latter provides a significant gain in computational time while
leading to satisfying approximation quality.
Keywords: divide and conquer algorithm, mean field approxima-
tion.

1 INTRODUCTION

Stochastic spatio-temporal models on graphs offer powerful tools for under-
standing disease propoagation among humans or animals. Two classical
models are the Susceptible-Infected-Susceptible (SIS) and the Susceptible-
Infected-Removed (SIR) models. These models have more often been stud-
ied in their continuous time version (see House and Keeling, 2011, Peyrard
et al., 2008 and references therein). In this article, having in perspective the
question of disease control and the fact that control strategies are often the
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result of successive decisions taken at regular time points (vaccination plans,
public places closings), we consider a discrete representation of time. We also
focus on the SIR model, which provides a reasonable representation of sev-
eral human diseases (Salathé and Jones, 2010), and in particular childhood
diseases (Ferrari et al., 2006).

The objective of this work is to study the problem of evaluating the Ex-
pected Epidemics Cost (EEC) corresponding to the situation where different
costs of infection may be attached to distinct individuals. A particular case is
when all costs are equal, leading to the Expected Epidemics Size (EES) prob-
lem. Under the hypothesis of one-step infection duration, we use similarities
with network reliability computation (Ball, 1980) to establish the computa-
tional complexity of EEC evaluation. Then we address the question of exact
and approximate computation of this quantity, and thus of EES. Exact re-
sults are scarce in literature. For a general SIR model, Newman (2002) has
shown how to compute exactly EES numerically, using tools from percolation
theory. These results are in average over (infinite size) random graphs with
fixed degree distribution. Neal (2003) establishes the asymptotic epidemics
size distribution of a SIR model on a Bernouilli random graph. When dealing
with a concrete interaction network, we are interested in the evaluation of
EEC/EES for this specific network.

We propose an exact algorithm to achieve this task. This algorithm is
defined recursively, and uses the fact that Removed individuals may split the
initial interaction network into disjoint networks with independent spread
dynamics. Then, to be able to handle large graphs, we propose an alternative
to Monte Carlo simulations (Ferrari et al., 2006; Salathé and Jones, 2010),
relying on the mean field principle (Chandler, 1987). When applied to spatio-
temporal models on graph, it amounts to the approximation of the joint
distribution of n individuals by n independent random chains. Usually, in
the mean field approximation the n independent random chains have identical
distributions, or these distributions only depend on the number of neighbors
of each individual in the network. the In order to improve the approximation
quality, we derive a mean field approximation with different distributions for
the n individuals.

The SIR model is described in Section 2. We establish the complexity
of EEC evaluation in Section 3. Then the exact and approximate solution
algorithms are presented in Sections 4 and 5. Their relative performances
are studied and compared to Monte Carlo simulation results in Section 6.
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2 SIR EPIDEMICS ON A GRAPH

A stochastic SIR model on a graph can be used to model the spread of a
disease on a network of individuals. A group of n individuals is considered,
and a random variable X t

i is attached to each one, representing the sanitary
status of individual i at time t. Each individual can be in one of the three
states, Susceptible (S), Infected (I) or Removed (R), so X t

i ∈ X = {S, I, R}.
A directed graph G = (V,E) is used to model the possible transmission

paths between individuals. An individual is represented by a vertex i ∈
V = {1 . . . , n} in the graph. We assume that the graph G is connected.
If (j, i) ∈ E, it means that direct contamination from j to i is possible.
The neighborhood N(i) ⊆ V of a vertex i is the set of vertices which can
contaminate i: N(i) = {j ∈ V, (j, i) ∈ E}.

Then SIR dynamics are as follows. If ρji is the probability that the
infection is transmitted from vertex j ∈ N(i) in state I to vertex i in state
S, then, for a given configuration xt

N(i) of X
t
N(i) we have

pi(X
t+1
i = I|X t

i = S,X t
N(i) = xt

N(i)) =

1−
∏

j∈N(i),xt
j=I

(1− ρji).

In other terms, we assume that disease transmission events are independent.
Other transition probabilities are deterministic:

pi(X
t+1
i = R|X t

i = I) = 1, pi(X
t+1
i = R|X t

i = R) = 1

We make the assumption of a one-step duration of infection, which means
that the time unit considered is the period during which an infected vertex
can infect its neighbors. The state R is absorbing.

We are interested in the problem of computing the Expected Epidemics
Size (EES) of a SIR process with one-step infection duration, or more gen-
erally the Expected Epidemics Cost (EEC). Indeed, different costs may be
assigned to infected vertices. We define the cost vector c = {c1, . . . , cn} where
ci ≥ 0 is the cost incurred when X∞

i = R. If we denote by I ⊆ V (resp.
S ⊆ V ) the set of infected (resp. susceptible) vertices at the beginning of
the epidemics (time t = 0, where it is assumed that there are no R vertices),
EEC is equal to

EEC(G, I,S, ρ, c) = E

[

∑

i∈V

ci11[X∞

i
=R] | G, I,S, ρ, c

]

.
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The particular case where all ci are equal to 1 leads to the EES value, the
expected number of R vertices at the end of the epidemics. EES is also equal
to the expected number of vertices which are infected during the course of
the epidemics.

3 COMPUTATIONAL COMPLEXITY OF EEC

EVALUATION

In this section, we study the computational complexity of EEC. An EEC
evaluation problem is defined as a pair < P, EEC >, where P is an instance
of the problem, and EEC(P) is the measure of P, which has to be computed.

EEC Evaluation Problem

• Problem instance P =< G = (V,E), I,S, ρ, c >

• Problem measure:

EEC(P) = E

[

∑

i∈V

ci11[X∞

i =R] | P

]

.

In the following, we show that the epidemics evaluation problem P is
#P -complete, where #P is the counterpart of the complexity class NP for
counting problems. Note that EEC is not an integer-valued function, so it
is not in #P , stricto-sensu. However, it can be easily shown that, provided
that the ρijs and c take rational values only, computing EEC comes down to
computing an integer-valued function. Therefore, it is meaningful to explore
#P -completeness.

3.1 THE EEC EVALUATION PROBLEM IS IN #P

To show the #P membership and hardness of the EEC evaluation problem,
we will use its close similarity to the Source-to-Terminal Reliability problem
(Ball et al., 1992), defined as:

Source-to-Terminal Reliability Problem

• Problem instance Rs,t =< G = (V,E), s, t, p > where:

– G = (V,E) is a directed graph.
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– s ∈ V is a source vertex.

– t ∈ V is a terminal vertex.

– p : E → [0, 1] is a reliability function. p(e) is the probability that
edge e ∈ E does not fail. All edges states (failing or not) are
assumed to be independent.

The reliability function p defines a probability measure Pr over the
set of subgraphs of G: if G′ = (V,E ′) where E ′ ⊆ E, then, under the
assumption of edges states independence, the probability that only the
edges in E ′ do not fail is

Pr(G′) =

(

∏

e∈E′

pe

)





∏

e∈E\E′

(1− pe)



 .

• The problem measure Rel(Rs,t) is the probability that there exists at
least one path from s to t in G which contains only edges which have
not failed:

Rel(Rs,t) =
∑

G′∈Connect(G,s,t)

Pr(G′),

where Connect(G, s, t) is the set of subgraphs of G in which s and t

are connected.

The Source-to-Terminal Reliability problem is #P complete (Ball, 1980).
In order to show that the computation of EEC belongs to #P , we are going to
show that for any P, EEC(P) can be computed by O(|V |) calls to an oracle
computing Rel(Rs,t), for Rs,t instances which are easily (in polynomial time)
computed from a P instance.

Proposition 1 The EEC evaluation problem belongs to #P .

Proof: Let P :< G = (V,E),I,S, ρ, c > be a problem instance. Remark that

EEC(P) =
∑

j∈I

cj +
∑

i∈S

ciE
[

11[X∞

i =R] | P
]

.

Let us write µi = E
[

11[X∞

i =R] | P
]

: µi is the probability that the infection spreads

from I to vertex i in the directed graph G. Under the one-step infection duration
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hypothesis, µi is exactly the probability that there exists a path composed of
unfailing edges from a vertex in I to i, in the unreliable network G where the edge
reliability function is ρ = p. Indeed, i can get infected if and only if there is a
subset of edges E′ ⊆ E forming a path from I to i, which is actually followed by
the infection. This is equivalent to the fact that edges E′ ⊆ E do not fail in the
unreliable network G. So, the probability of infection of i can be computed by
solving a network reliability problem. The only difference between computing µi

and solving a network reliability problem is that the source is not a single vertex
s, but instead a set of source vertices I.

Let us denote RI,t =< G = (V,E),I, t, p > the problem of computing the
probability that there exists a path composed of unfailing edges from a vertex in
I to vertex t. It can be transformed in polynomial time into a classical reliability
problem Rs,t =< G′ = (V ′, E′), s, t, p′ >, where

• V ′ = (V \ I) ∪ {sI}, where sI is an additional vertex obtained by merging
all vertices in I.

• E′ = E \
{

(j, k) ∈ E, j ∈ I
}

∪
{

(sI , k), where k ∈ V \I and ∃j ∈ I, (j, k) ∈

E
}

. E′ is obtained by merging all edges linking vertices in I to the same

vertex k ∈ V \ I.

• p′ is obtained from p, by letting p′e = pe when e = (i, j) is such that {i, j} ∩
I = ∅, and

∀(sI , j) ∈ E′, p′(sI ,j) = 1−
∏

i∈I,(i,j)∈E

(1− p(i,j)).

p′(sI ,j)
is the probability (given p) that at least one edge linking a vertex in

I to j does not fail.

Obviously, Rel(RsI ,t) = µt. Thus, ∀i ∈ S, µi can be computed by a single call to

a Rs,t oracle, and EEC(P) can be computed in polynomial time, provided that

there exists a polynomial time oracle for computing Rs,t. Thus, the EEC evalua-

tion problem belongs to #P . ✷

3.2 THE EEC EVALUATIONPROBLEM IS #P -COMPLETE

We show that the EEC evaluation problem is #P -hard, by reduction of the
Source-to-Terminal Reliability problem to the EEC evaluation problem.
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Proposition 2 The EEC evaluation problem is #P -hard.

Proof: Consider the following instance Rs,t =< G = (V,E), s, t, p >. The
measure of this instance can be computed from the value of the following instance
P =< G,I,S, ρ, c > of the EEC evaluation problem, where ρ = p, I = {s},
S = V \ {s}, ci = 0,∀i 6= t and ct = 1. Indeed, in that case

EEC(P) = E
[

11[X∞
t =R] | P

]

= Rel(Rs,t).

So, the EEC evaluation problem is #P -hard. ✷

Then, from Propositions 1 and 2:

Proposition 3 The EEC evaluation problem is #P -complete.

4 EXACT COMPUTATION OF EEC

The EEC value can be computed exactly by a recursive divide and conquer
strategy. Let us assume that the configuration of the SIR process at time
t = 0 has the structure shown in Figure 1 (ignoring R vertices, which do not
play any role in the epidemics).

I1 I2

I3

S1 S2

S3

I

PotInf
Cluster 1 Cluster 2

Cluster 3

Figure 1: Divide and conquer strategy for computing the expected epidemics
cost.

In this example, I being given, the remaining set of S vertices can be
partitioned into three clusters of vertices1, Cl1, Cl2, Cl3, such that there exists

1For an arbitrary set I, a partition always exists, but in the worst case, there is a single
cluster.
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no path in the graph G linking two S vertices from distinct clusters without
going through vertices in I. This decomposition will allow us to decompose
the computation of EEC(G, I,S, ρ, c). Indeed, consider PotInf , the set of
vertices which could get infected between t = 0 and t = 1: PotInf = {j ∈
S, N(j) ∩ I 6= ∅}.

In the next time step, all vertices in I will become R, thus splitting the
problem into three independent problems with disjoint vertices sets: {Clk =
Sk ∪ Ik}k=1...3, where Ik ⊆ PotInf ∩ Clk is the set of vertices in cluster k

which will actually get infected, and Sk = Clk \Ik. Denoting G↓Clk the graph
restricted to vertices in Clk, the expected epidemics cost can be computed
through the following recursive equations:

EEC(G, I,S, ρ, c) = 0 if I = ∅ and else

EEC(G, I,S, ρ, c) = c(I) +
∑

k

∑

Ik⊆PotInf∩Clk
(

p(Ik|I, G)EEC(G↓Clk , Ik, Sk, ρ
↓Clk , c↓Clk)

)

.

where ρ↓Clk and c↓Clk are respectively the restrictions of ρ and c to the sub-
graph Clk. Algorithm 1 is the implementation of this recursive procedure.

Note that the time complexity T (n) of Algorithm 1 can greatly vary with
the graph structure. We show in the Supplementary Material that, in the
case of a single initial infected vertex, T (n) is linear in n if the graph is a tree

, and T (n) = O(2
n(n+1)

2 ) when the graph is a clique. The #P -hardness of the
problem makes the existence of a time-efficient exact solution algorithm very
unlikely. Therefore, in the following we present an approximation algorithm
based on the mean field approximation.

5 MEAN FIELD APPROXIMATION

When applied to the SIR model, the mean field approximation amounts to
replace a Markov chain with n state variables with its best approximation
by n independent Markov chains over a single variable. The quality of the
approximation is measured by the Kullback-Leibler divergence. The solution
of this optimization problem is presented in Section 5.1. However, the com-
putation of this global mean field approximation is too complex. Therefore,
we propose an algorithm which computes an iterative mean field solution
(Section 5.2). This procedure amounts to computing iteratively a local mean
field approximation at each time step of the process.
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Algorithm: SIR EEC Exact

Data : {G = (V,E), I,S, ρ, c}

Result: {EEC}

% Initialization;
EEC ← c(I);
Clusters ← Partition of S into subsets, each subset being
connected to I but disconnected to the others by I vertices;
PotInf ← S vertices which have I vertices as neighbors;
if Clusters 6= ∅ then

for Clk ∈ Clusters do
for Inext ⊆PotInf∩Clk do

EECnext ←
SIR EEC Exact(G↓Clk , Inext, Clk \ Inext, ρ

↓Clk , c↓Clk);
EEC ← EEC + p(Inext|G, I)× EECnext;

end
end

end

Algorithm 1: SIR EEC Exact
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5.1 GLOBAL MEAN FIELD

Let us consider an instance P =< G = (V,E), I,S, ρ, c >, and a vertex i in
S,

E[11{X∞

i =R} | P] = p(X∞
i = R | P)

= p(∃ 1 ≤ t <∞ s.t. X t
i = I | P)

=
∑

1≤t<∞

p(X t
i = I | P) (1)

The last equality holds since events {X t
i = I} are incompatible under the

one-step infection duration assumption. A vertex in S cannot be reached
anymore by the epidemics after a certain number of time steps, bounded by
n. Thus the sum (1) has at most n non-zero terms. Equality (1) shows that
the complexity of the computation of EEC(P) is due to the computation
of the marginal probabilities p(X t

i = I | P). In the following, we build
the mean field approximation of the joint spatio-temporal distribution of the
SIR process, from which we will derive an approximation of these marginals
probabilities.

Let X t = {X t
1, . . . , X

t
n} represent the state of all vertices at time t. In

the SIR model, the joint spatio-temporal distribution of {X0, X1, . . . , XT}
(1 ≤ T ≤ n) is given by: ∀{x0, x1, . . . , xT} ∈ X n×T

p(x0, x1, . . . , xT ) = p0(x0)

T
∏

t=1

n
∏

i=1

pi(x
t
i | x

t−1
i , xt−1

N(i)). (2)

(From now on the conditioning on P is omitted in the notations.) Let Q be
the family of distributions of n independent Markov chains, such that q0(x0)
is equal to the Dirac distribution p0(x0) defined by I and S and transition
probabilities are of the form given in Table 1.

S I R

S 1− qti(X
t
i = I | X t−1

i = S) 0 0
I qti(X

t
i = I | X t−1

i = S) 0 0
R 0 1 1

Table 1: Transition probabilities for distribution q.
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For q ∈ Q, the joint spatio-temporal distribution becomes, ∀{x0, x1, . . . , xT} ∈
X n×T ,

q(x0, x1, . . . , xT ) = q0(x0)

T
∏

t=1

n
∏

i=1

qti(x
t
i | x

t−1
i ). (3)

Note that for distributions in Q, the transition probabilities can depend
on time. We then define the mean field approximation of the joint spatio-
temporal distribution (2) as the distribution q∗ in Q which minimizes the
Kullback-Leibler divergence between q and p: q∗ = argminq∈QKL(q||p),
with

KL(q||p) =
∑

x0,...,xT

q(x0, . . . , xT ) log
q(x0, . . . , xT )

p(x0, . . . , xT )
.

Minimizing this expression over the distribution q is a complex optimization
problem. Indeed, KL(q||p) is equal to:

T
∑

t=1

∑

xt−1,xt

qt−1(xt−1)qt(xt | xt−1) log

(

qt(xt | xt−1)

pt(xt | xt−1)

)

.

Since qt−1(xt−1) can be obtained by marginalization of q(x0, . . . , xt−1) =
q0(x0)

∏t−1
s=1 q

s(xs | xs−1) over the set of variable {x0, . . . , xt−2}, KL(q||p)
is equal to

T
∑

t=1

∑

x0,...,xt

q0(x0)
t
∏

s=1

qs(xs | xs−1) log

(

qt(xt | xt−1)

pt(xt | xt−1)

)

.

From this expression, we can see that the quantity qs(xs | xs−1) is involved
in the last T − s+ 1 terms of the temporal sum. So computing a solution of
the minimization problem would require to mobilize backward algorithms for
continuous optimization. In the following, instead of globally minimizing the
Kullback-Leibler divergence between q and p, we perform several minimiza-
tions of local Kullback-Leibler divergences, at successive time steps, in order
to approximate the transition probabilities, using the fact that KL(q||p) can
be rewritten as:

T
∑

t=1

KL
(

qt−1(.)qt(.|.)||qt−1(.)p(.|.)
)

.

11



5.2 ITERATIVE MEAN FIELD

The iterative mean field procedure is derived from the expression of the global
Kullback-Leibler divergence KL(q||p) by successive minimizations of the first
terms involving qt(xt | xt−1) in the temporal sum, and then replacing this
transition probability with the result of the minimization in the following
terms of the sum:

- t = 0: set q0 = p0

- t = 1: compute q̂1(x1 | x0) solution of

arg min
q1(x1|x0)

∑

x0,x1

q0(x0)q1(x1 | x0) log

(

q1(x1 | x0)

p(x1 | x0)

)

.

- t = 2: compute q̂2(x2 | x1) solution of

arg min
q2(x2|x2)

∑

x1,x2

q̂1(x1)q2(x2 | x1) log

(

q2(x2 | x1)

p(x2 | x1)

)

,

with q̂(x1) =
∑

x0 q0(x0)q̂1(x1 | x0).

- and so on until t = T .

This iterative mean field procedure has already been proposed in Peyrard and
Sabbadin (2006), in the context of controlled processes, in order to approx-
imate a complex spatio-temporal distribution on a graph . In our case, the
simplicity of the SIR model (several transitions have probability 0 or 1 and
there is no control) allows to obtain a simple expression of the solution of the
iterative mean field procedure. The solution q̂t(xt | xt−1) which minimizes

∑

xt−1,xt

q̂(xt−1)qt(xt | xt−1) log

(

qt(xt | xt−1)

pt(xt | xt−1)

)

is (see Supplementary Material and Peyrard and Sabbadin, 2006): ∀xt
i, x

t−1
i ∈

X ,

q̂ti(x
t
i | x

t−1
i ) ∝ exp

(

Eq̂t−1[log pi(x
t
i | x

t−1
i , X t−1

N(i))]
)

, (4)
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where Eq̂t−1 [.] stands for the expectation over the distribution q̂t−1 of X t−1
N(i).

This solution must be normalized. In practice it is classical to switch expo-
nential and expectation operators in (4), to get the approximation:

q̂ti(x
t
i | x

t−1
i ) = Eq̂t−1[pi(x

t
i | x

t−1
i , X t

N(i))] (5)

This is all the more relevant for the SIR model as expression (4) leads to
q̂ti(I | S) = 0 as soon as q̂(xt−1

j = S) > 0, ∀j ∈ N(i) (since log pi(x
t
i = I |

xt−1
i = S,Xj 6= I, ∀j ∈ N(i)) = −∞). For the SIR model, equation (5) leads

to (see Supplementary Material):

q̂ti(X
t
i = I | X t−1

i = S)

= 1−
∑

xN(i)

∏

j∈N(i)

[(1− ρji)
δI (xj)q̂t−1

j (X t−1
j = xj)]

= 1−
∏

j∈N(i)

(1− ρji) q̂
t−1
j (X t−1

j = I)) (6)

with δI(xj) equals 1 if xj = I and zero otherwise. The other transition
probabilities are given in Table 1. Then q̂ti for i ∈ S is obtained as:

q̂ti(I) = q̂ti(I | S)q̂
t−1
i (S),

q̂ti(S) = q̂ti(S | S)q̂
t−1
i (S),

q̂ti(R) = 1− q̂ti(I)− q̂ti(S).

For a vertex i ∈ I, q̂ti(X
t
i = R) = 1, ∀t > 1.

Algorithm 2, SIR EEC MF, is one way to compute the iterative mean
field approximation of EEC. Its time complexity is in O(n2×maxi∈V |N(i)|).

6 EMPIRICAL EVALUATION OF MEAN-

FIELD APPROXIMATION

In order to evaluate the quality of the iterative mean field approximation of
EES, we compare its evaluation, first with the evaluation obtained using the
exact procedure of Section 4 on small graphs (up to 16 vertices), and then
with an evaluation obtained by Monte Carlo simulations for larger graphs
(up to 5000 vertices).
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6.1 SMALL GRAPHS

We considered two families of graphs: random graphs (Newman, 2003) and
stochastic block structures (SBS) graphs (Nowicki and Snijders, 2001). To
generate a random graph, each potential edge between two vertices is con-
sidered in turn and is created with a constant probability p. In a SBS graph,
vertices are grouped into classes (clusters) and the edge creation probabil-
ity pab varies with the classes a and b of the two vertices involved. We ran
experiments on graphs of size 8, 12 and 16, with p = 0.3 in the case of the
random graph model, and {paa = 0.6, pab = 0.2, ∀a 6= b} in the case of the
SBS model, with 3 classes of vertices of identical size. The proportion pI0 of
infected vertices at the beginning of the epidemics was set to 0.3 and the epi-
demic parameters ρij were all identical, equal to 0.2. For each graph model
and graph size, we generated 10 pairs (G, I) for which the exact and mean
field evaluations were computed. Relative and absolute errors are plotted on
Figure ??.

In almost all examples the relative error remains below 15%. Higher
relative errors correspond to small size epidemics and must be put into per-
spective with the corresponding absolute error (expected epidemics size over
estimated by at most 1.2 individuals). The gain in computational time with
the SIR EEC MF algorithm is significant, even for the small graph sizes we
considered (see Table 2). Even though a Monte Carlo evaluation (5000 tra-
jectories) is much faster than the exact algorithm, it requires much more
time than SIR EEC MF.

Cluster. and pour EES

n 8 12 16
Exact 0.0 3.5 3234.9
Monte Carlo 0.4438 0.6061 0.7624
Mean field 0.1729 0.0002587 0.0003596

n 8 12 16
Exact 0.0 39.4045 5006.5
Monte Carlo 0.5373 0.5996 0.7698
Mean field 0.0009 0.0010 0.0011

Table 2: Computational times (in second) for exact, Monte Carlo and mean
field EES evaluations, on small graphs. Top: random graphs, bottom: SBS
graphs.
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Figure 2: Relative and absolute error between exact and mean field EES
evaluations, on graphs of size 8, 12 and 16. Top: random graphs, bottom:
SBS graphs. Left: relative error, right: global error.

6.2 LARGE GRAPHS

To evaluate the quality of the mean field approximation on graphs of larger
size (up to 5000 vertices), we considered more realistic graphs, namely scale-
free graphs. The scale-free distribution of degrees is a feature shared by
many real-world graphs of different domains and in particular by those rel-
evant when studying epidemics spreading (social networks, transportation
networks, Newman, 2003). We followed the algorithm proposed by Klemm
and Eguiluz (2002) to generate these graphs. We set ρij = ρ for all ver-
tices and we generated 10 instances (G, I) for different triples of parameters
(ρ, pI0, n), for which the Monte Carlo (2500 trajectories) and the mean field
evaluations were computed. Exact evaluation is out of reach for the graphs
considered. Results are only reported for the largest tested graphs (5000
vertices).

We observed that for a wide range of values of ρ, from low transmission
probability and small size epidemics to high transmission probability almost
complete infection of the population, the mean field estimations of EES are
very close to the Monte Carlo ones (Figure 3 left). As for small size graphs,
we observe large relative errors for low transmission probabilities (Figure 3
right), leading to a small over estimation of the mean field EES estimation.
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Figure 3: Left: Monte Carlo and mean field EES estimations (as a fraction of
the total population of 5000 vertices) for increasing values of ρ. Right: rela-
tive error between Monte Carlo and mean field EES estimation for increasing
values of ρ.

Running the SIR EEC MF algorithm is much faster than performing
Monte Carlo simulations. For a fixed number of nodes, running time of
the former is independent of ρ, while running time of the latter is longer
for intermediate size epidemics (Figure 4 left). In these situations the equi-
librium state takes more time steps to be reached. Let us also note that
the computational times shown for SIR EEC MF could be significantly re-
duced. Indeed, we recall that SIR EEC MF takes as input variable T , an
upper bound on the maximum number of steps before the epidemics ends.
In practice we set T to an arbitrary constant 50. We observed that even for
large graphs, after 50 steps the quantity

∑

1≤t<s q̂
t
i(X

t
i = I) = q̂si (X

s
i = R)

has converged (Figure 4 right). Furthermore, convergence is always reached
very quickly, after less that 20 iterations.

7 CONCLUSION

In this article, we proved the #P-completeness of the problem of evaluation
of the expected cost of an epidemics, spreading on a finite graph according
to discrete-time SIR dynamics. We provided an exact solution algorithm as
well as an approximation algorithm, based on the mean field principle. In
the case of the evaluation of the expected epidemics size, this algorithm was
empirically shown to provide estimates close to the exact or Monte Carlo
values. However, as is classical with mean field approximations, we observed
an overestimation of the epidemics size for low values of transmission proba-
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Figure 4: Left: computational time (in second, logarithm scale) for Monte
Carlo and mean field EES evaluations, for increasing values of ρ (graph of
size 5000). Right: illustration of the evolution of the maximum, over all
vertices, of the absolute difference between q̂ti(X

t
i = R) and q̂t+1

i (X t+1
i = R)

(graph of size 5000).

bility. This behavior could be improved by using higher order approximation
schemes, like Bethe approximation and its Machine Learning implementation
as message passing algorithms (Yedidia et al., 2005). A potential applica-
tion for this work is to exploit the fast mean field approximation to design
approximate epidemics control algorithms, in the spirit of Peyrard and Sab-
badin (2006) for general Markov decision processes on graphs, but taking
advantage of the simplicity of the SIR model.

8 APPENDIX

Time complexity of the divide and conquer algorithm for particu-
lar graphs

We first consider the case where the graph is a tree T , with a single
initially infected vertex i0. In the algorithm SIR EEC Exact, Clusters is
the set of subtrees {Ti, i ∈ Children(T , i0)}, which roots are the children i

of i0. Then,
SIR EEC Exact(T , i0) = c(i0)+
∑

i∈Children(T ,i0)

ρi0iSIR EEC Exact(Ti, i).

By a simple inductive reasoning on the depth of the tree T , it is easy to
show that the time complexity T (n) = O(n). Indeed, epidemics on trees of
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depth 0 (corresponding to networks of size 1) can have their EEC computed
in constant time. The expected cost of an epidemics on a tree of depth 1,
with root vertex infected, can be computed by summing the EEC (weighted
by the ρi0i) of the children vertices, which can be done in O(n) time. For a
tree T of depth d, each of its subtrees Ti, of size ni, has at most depth d− 1,
thus by the induction hypothesis, can be evaluated in time O(ni). The EEC
of T can be computed by summing these values, and so can be computed in
O(1 +

∑

i ni) = O(n).
Now, consider the most unfavorable case for the divide and conquer algo-

rithm, which is the case where the graph is a clique. Let us consider a clique
Cn of size n + 1, with a single initial infected vertex i0. The running time
T (n) of the algorithm SIR EEC Exact, satisfies the recursive equation

T (n) = TC(n) + TP (n) +
∑

I⊆Cn,I 6=∅

T (n− |I|),

T (n) = TC(n) + TP (n) +
n−1
∑

k=0

Ck
nT (k).,

where Ck
n counts the number of subsets of Cn \ i0 of size k. Noting that the

two first terms TC(n) and TP (n), which are the times needed to compute
Clusters and PotInf respectively, are negligible in front of the third one,
we get

T (n) = O

(

n−1
∑

k=0

Ck
nT (k)

)

.

And since T (n) is obviously increasing,

T (n) = O

(

n−1
∑

k=0

Ck
nT (n− 1)

)

= O (2nT (n− 1)) .

Finally, by an easy induction,

T (n) = O
(

2n × 2n−1 × . . .× 21 × T (0)
)

= O
(

2
n(n+1)

2

)

.

Derivation of equation (4):

18



KL(q̂t−1(.)qt(.|.)) | q̂t−1(.)p(.|.)) =
∑

xt−1,xt q̂t−1(xt−1)qt(xt|xt−1) log qt(xt|xt−1)
p(xt|xt−1)

=
∑

xt−1,xt q̂t−1(xt−1)qt(xt|xt−1)
(

∑n

i=1 log q
t
i(x

t
i|x

t−1
i )− log pi(x

t
i|x

t−1
i , xt−1

N(i))
)

=
∑n

i=1

[

∑

xt−1
N(i)

,xt
i
q̂t−1(xt−1

i , xt−1
N(i))q

t
i(x

t
i|x

t−1
i )

(

log qti(x
t
i|x

t−1
i )− log pi(x

t
i|x

t−1
i , xt−1

N(i))
)]

.

We are looking for the minimum ofKL, with respect to the variables qti(x
t
i|x

t−1
i ),

by solving
∂KL

∂qti(x
t
i|x

t−1
i )

= 0.

By derivation, we get

∂KL

∂qti(x
t
i|x

t−1
i )

=
∑

xt−1
N(i)

q̂t−1(xt−1
i , xt−1

N(i))
(

log qti(x
t
i|x

t−1
i )− log pi(x

t
i | x

t−1
i , xt−1

N(i)) + 1
)

.

Since q̂t−1(xt−1
i , xt−1

N(i)) = q̂t−1(xt−1
i )q̂t−1(xt−1

N(i)), under the independance prop-

erty of distributions in Q (independent Markov chains),

∂KL

∂qti(x
t
i|x

t−1
i )

= q̂t−1
i (xt−1

i )







∑

xt−1
N(i)

q̂t−1(xt−1
N(i))

(

log qti(x
t
i|x

t−1
i )− log pi(x

t
i|x

t−1
i , xt−1

N(i)) + 1
)






.

And finally

∂KL

∂qti(x
t
i|x

t−1
i )

= 0⇔ log qti(x
t
i|x

t−1
i ) = Eq̂t−1

[

log pi(x
t
i | x

t−1
i , X t−1

N(i))
]

− 1,

from which we get an iterative mean field solution of the form of equation (4).

Derivation of equation (6):
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q̂ti(X
t
i = I | X t−1

i = S)

= 1−
∑

xN(i)

q̂t−1
N(i)(X

t−1
N(i) = xN(i))(1− ρ)NI(xN(i))

= 1−
∑

xN(i)

∏

j∈N(i)

[(1− ρ)δI (xj)q̂t−1
j (X t−1

j = xj)]

= 1−
∏

j∈N(i)

∑

xj

[(1− ρ)NI(xj)q̂t−1
j (X t−1

j = xj)]

= 1−
∏

j∈N(i)

[(1− ρ)q̂t−1
j (X t−1

j = I)

+q̂t−1
j (X t−1

j 6= I)]

= 1−
∏

j∈N(i)

(1− ρ q̂t−1
j (X t−1

j = I))

where NI(xN(i)) =
∑

j∈N(i) 11{xj=I} is the number of vertices infected in state
xN(i).
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Algorithm: SIR EEC MF

Data : {G = (V,E), I,S, ρ, c, T}

Result: {EEC}

% Initialization;
for i ∈ S do

Q1
i (I)← [1−

∏

j∈N(i)(1− ρji)];

Qt
i(S)← [

∏

j∈N(i)(1− ρji)];

EECi ← Q1
i (I);

end
for i ∈ I do

Q1
i (I)← 0;

end
% Main loop;
for t = 2 to t = T do

for i ∈ S do
Qt

i(I)← [1−
∏

j∈N(i)(1− ρjiQ
t−1
j (I))]Qt−1

i (S);

Qt
i(S)← [

∏

j∈N(i)(1− ρjiQ
t−1
j (I))]Qt−1

i (S);

EECi ← EECi +Qt
i(I);

end
for i ∈ I do

Qt
i(I)← 0;

end
end
EEC ← cI +

∑

i∈S ciEECi ;

Algorithm 2: SIR EEC MF
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