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Problem context

Many estimation models can be expressed as a general stochastic
program

min
β

g(β)
def
= E [f (y , β)] (true problem)

The computation of this expectation requires an infinite
population. In practice, we only have access to a finite number of
observations, leading to the approximation

min
β

ĝN(β)
def
=

1

N

N∑
n=1

[f (yn, β)], (SAA problem)

where yn is the observational vector associated to observation n.

The previous program can be seen as a special application of
sample average approximation (SAA) technique.
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Examples

Least-squares:

min
β

1

N

N∑
n=1

‖f (xn, β)− yn‖2.

Maximum likelihood:

max
β

1

N

N∑
n=1

ln f (yn, β).

Despite the logarithm operator, problems are very similar. We here
focus on maximum likelihood, but many arguments can be applied
to least-squares problems.

Note: the factor 1
N is often ignored.
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Maximum likelihood estimation (MLE): solve

max
β

L̂LN(β) =
1

N

N∑
n=1

ln f (yn|β) (1)

f (Y |β): some probability density function (pdf), defined on
Y , conditioned on a set of parameters β,

y1, . . . , yN are given observations.

(1) is the sample average approximation of the “true” problem

max
β

LL(β) = EY [ln f (y |β)]. (2)

f does not necessarily correspond to the density of Y over the
population, in which case the model is said to be misspecified.
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Convergence of solutions

Under some regularity conditions, when N rises to infinity,

d(Ŝ∗N , S
∗)→ 0 almost surely,

where d is a distance measure, Ŝ∗N and S∗ are the sets of
first-order critical points of (1) and (2), respectively, assuming that
Ŝ∗N and S∗ are not empty (see e.g. Shapiro [9] and Shapiro,
Dentcheva, Ruszczyński [10], Chapter 5).

Moreover, if these sets are singletons, we denote by β̂∗N the
solution of (1) and by β∗ the solution of (2). We then have that

√
N(β̂∗N − β∗)⇒ N (0,Ψ),

where ⇒ designs the convergence in distribution, and N refers to
the normal distribution.
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Convergence of solutions (singletons)

Setting the gradient of the (true) log-likelihood to zero, it can be
shown that

Ψ = H(β∗)−1I (β∗)H(β∗)−1,

where

H(β∗) = EY [∇2
ββf (Y , β∗)],

I (β∗) = EY

[
∇β f (Y ,β∗)∇β f (Y ,β∗)T

f 2(Y ,β∗)

]
.

∇β ln f (Y , β): score

I (β): Fisher information matrix

(see e.g. Newey and McFadden [8])
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Variance-covariance

The asymptotic variance-covariance can therefore be estimated by

Cov(β̂∗N) =
[HN(β̂∗N)]−1IN(β̂∗N)[HN(β̂∗N)]−1

N

where

HN(β̂∗N) =
1

N

N∑
n=1

∇2
ββ ln f (yn, β̂

∗
N)

and

IN(β̂∗N) =
1

N

N∑
n=1

∇β ln f (yn, β̂
∗
N)∇β ln f (yn, β̂

∗
N)

f (yn, β̂∗N)

T

are the sample average estimates of the Hessian and the
information matrix, respectively.
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Information matrix equality

Theorem

If the model is well specified, i.e. f (Y , β∗) is the density of Y over
the population, the Fisher information matrix is equal to the
opposite of the Hessian matrix,

I (β∗) = −H(β∗).

The robust variance-covariance of the maximum likelihood
estimator then becomes

−
[HN(β̂∗N)]−1

N
.

Therefore, the variances and covariances of the estimators are
directly related to the curvature of the log-likelihood.
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Pseudo-likelihood maximization

The information matrix equality still holds if f is not the true
density but f (y , β∗) = g(y) where g(·) is the density of Y .

However, this condition is not easy to guarantee, and even if the
pseudo-maximum likelihood estimators are consistent, the
information matrix equality can be violated.

Example (White [11]) We consider the estimation of the mean and
variance of i.i.d. random variables Yi . We assume Yi ∼ N(µ0, σ

2
0).

The quasi-log-likelihood of an observation is

log f (Yt , µ, σ
2) = log

1√
2πσ

e−
(Yt−µ)2

2σ2

= −log
√

2π − log σ − (Yt − µ)2

2σ2
.
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Pseudo-likelihood maximization (2)

If Y has nonzero variance and finite fourth moment, µ∗ = µ0 and
σ∗ = σ0.

E [H(µ0, σ
2
0)] =

(
− 1
σ2
0

0

0 − 1
2σ4

0

)
I [µ0, σ

2
0] =

 1
σ2
0

√
γ1

2σ3
0√

γ1
2σ3

0

γ2−1
4σ4

0


E [H(µ0, σ

2
0)]−1I [µ0, σ

2
0]E [H(µ0, σ

2
0)]−1 =

(
σ20

√
γ1σ

3
0√

γ1σ
3
0 (γ2 − 1)σ40

)

(skewness)
√
γ1 =

E [(Yt − µ0)3]

σ30

(kurtosis) γ2 =
E [(Yt − µ0)4]

σ40
.
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Optimization problem

Is it possible to take advantage of the information matrix equality
during the estimation process?

We face the optimization problem:

max
β

LL(β).

Assumption in this talk: the problem is unconstrained.

More generally, we consider the problem

min
x∈Rn

f (x),

where we assume that f : Rn → R ∈ C 2.
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Newton method: introduction

If f is C 2, we can write the Taylor expansion of order 2:

f (x + d) ≈ f (x) +∇x f (x)Td +
1

2
dT∇2

xx f (x)d .

Note: assume 1
2dT∇2

xx f (x∗)d > 0 if ‖d‖ < ε (sufficient
second-order criticality condition - local strong convexity).

If ∇x f (x∗) = 0, then x∗ is a local minimizer.

Otherwise, we can choose d such that ∇x f (x∗)Td < 0 and x∗ is
not a local minimizer: descent direction.
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Newton method

At iteration k , define (around the current iterate xk)

mk(d) = f (xk) +∇x f (xk)Td +
1

2
dT∇2

xx f (xk)d .

If ∇2
xx f (xk) is positive definite, mk(d) is convex in a neighborhood

of xk and we can minimize mk(d) by computing d such that
∇dmk(d) = 0. In other terms, we compute dk as

dk = −[∇2
xx f (xk)]−1∇x f (xk),

and we set
xk+1 = xk + dk .

If the starting point x0 is close to the solution, the convergence is
quadratic, but if the starting point is not good enough, the method
can diverge!
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Quasi-Newton method

It is often difficult to obtain an analytical expression for the
derivatives, and they may be costly to compute at each iteration,
so we prefer to turn to approximations.

First-order derivatives can be computed by finite differences:

∂f

∂x[i ]
≈ f (x + εei )− f (x)

ε
,

for small ε, and ei =
(
0 0 . . . 0 1 0 . . . 0

)T
is the i th

canonical vector, or central differences:

∂f

∂x[i ]
≈ f (x + εei )− f (x − εei )

2ε
.

This however requires O(n) evaluations of the objective.
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Hessian approximation: BFGS

We can approximate the Hessian with a similar approach, but the
computation cost is then of O(n2), wich is usually too expensive.

An alternative is to construct an approximation of the Hessian that
we will improve at each iteration, using the gained information.
We then speak of quasi-Newton method.

Popular approaches are based on the secant condition

Hk+1dk = wk

where dk = xk+1 − xk and wk = ∇x f (xk+1)−∇x f (xk).
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Other classical updates

A popular approximation is the BFGS (Broyden, Fletcher, Goldfarb
and Shanno):

Bk+1 = Bk +
wkwT

k

w t
kdk

+
Bkdk(Bkdk)T

dT
k Bkdk

.

Another possible choice in trust-region is the symmetric rank-one
(SR1)

Hk+1 = Hk +
(wk − Hkdk)(wk − Hkdk)T

(wk − Hkdk)Tdk

BFGS is always positive definite, not SR1!
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Globalization of the Newton method

Global convergence: the algorithm must converge for any starting
point. BUT it still converges to a local mimimum, not a global
minimum!

So how to ensure global convergence? Globalization of the Newton
method:

linesearch methods;
trust-region methods.

Line-search methods generate the iterates by setting

xk1 = xk + αkdk .

where dk is a search direction and αKdk is chosen so that

f (xk+1) < f (xk).

Linesearch methods are therefore descent methods, and a special
case is the steepest descent method.
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Trust region methods

Principle: at iteration k, approximately minimize a model mk of
the objective inside a region Bk . A typical choice for mk is

mk(xk + s) = f (xk) + sT∇f (xk) +
1

2
sTHks.

Hk : approximation of ∇2
xx f (xk).

We therefore have to solve the subproblem

min
s

mk(xk + s), such that xk + s ∈ Bk .

The solution is the candidate iterate with candidate step sk .

Computing the following ratio:

ρk =
f (xk + sk)− f (xk)

mk(xk + sk)−mk(xk)
.
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Trust region methods (2)

Let η1 and η2 be constants such that 0 < η1 ≤ η2 < 1 (for
instance, η1 = 0.01 and η2 = 0.75).

If ρk ≥ η1, accept the candidate.

If ρk ≥ η2, enlarge Bk , otherwise reduce it or keep it the same.

If ρk < η1, reject the candidate and reduce Bk .

Stop when some criteria are met (e.g. norm of the relative
gradient must be small enough).

The neighborhood where we considere the model as valid is
mathematically defined by a ball centered at xk , and with a radius
∆k :

Bk = {x | ‖x − xk‖k ≤ ∆k}.
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BHHH

Various alternatives to BFGS exist, as the Symmetric-Rank 1
(SR1) that is popular for nonconvex optimzation with trust-region.

For the maximum likelihood, we capitalize on the information
equality:

HN(β) ≈ −IN(β)

The BHHH method, proposed by Berndt, Hall, Hall, Hausman in
1974, simply replaces the Hessian by the opposite of the
information matrix in the quasi-Newton method (or the
information matrix in the minimization form).

Similar to Gauss-Newton for least-squares problems.

Gauss-Newton is known to work when residuals are small, but can
experience issues otherwise.
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Remedies

In the same way, the BHHH can lead to poor numerical
performance if the model is not correctly specified.

Dennis and Schnabel [3] proposed to correct the Gauss-Newton
approximation using standard secant Hessian approximations.

Bunch [2] applied the same idea to maximum likelihood
estimation. While his approach supersedes the standard BHHH
technique, it is often ignored.

We here focus on trust region (TR), while experiments have also
been done with line search (LS) methods.
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Combination of approximations

Remember we consider the problem

max
β

1

N

N∑
n=1

ln f (yn, β).

Then,

∇2
ββ

1

N

N∑
n=1

ln f (yn, β) =
1

N

N∑
n=1

∇2
ββf (yn, β)

f (yn, β)

− 1

N

N∑
n=1

∇βf (yn, β)∇βf (yn, β)T

f (yn, β)2
,

or

∇2
ββ

1

N

N∑
n=1

ln f (yn, β) = −IN(β) +
1

N

N∑
n=1

∇2
ββf (yn, β)

f (yn, β)
.
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Bunch’s approximation

We approximate the Hessian as

∇2
ββ

1

N

N∑
n=1

ln f (yn, β) ≈ −IN(β) + Ak .

It is possible to approximate the second term using some standard
secant update.

Ak = 0→: BHHH method.

Ak 6= 0→: approximations combination.

We can switch between the two cases, depending on the
performance of the model.
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Bunch’s switching method

Bunch considers one switch during during the optimization
process, and does precise exactly when to proceed, except that one
should start with BHHH and when close to the solution, switch to
the corrected

Assuming that at iteration k the matrix Hk is available to
approximate the next Hessian Hk+1, the new approximation can be
obtained by specifying an appropriate secant condition

Hk+1dk = wk ,

We can write
Hk+1 = HBHHH(βk+1) + Ak+1,

where Ak+1 is an approximation of A(βk+1).
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Secant approximations

The secant equation can be rewritten as

(HBHHH(βk+1) + Ak+1)dk = wk ,

and by setting w̄1
k = wk − HBHHH(βk+1)dk , we obtain

Ak+1dk = w̄1
k

A second secant equation is derived by approximating each
individual Hessian matrix ∇2

ββf (yn, β):

∇2
ββf (yn, βk)dk ≈ ∇βf (yn, βk+1)−∇βf (yn, βk).

This gives

A(βk)dk ≈
1

N

N∑
n=1

∇βf (yn, βk+1)−∇βf (yn, βk)

f (yn, βk)

So if we define w̄2
k = 1

N

∑N
n=1

∇β f (yn,βk+1)−∇β f (yn,βk )
f (yn,βk )

, the second
secant approximation is

Ak+1dk = w̄2
k . 25 / 66



Switching ideas

We have many ways to approximate Hessian matrix.

Secant method: BFGS.

Secant method: SR1.

Statistical approximation BHHH.

Combining approximation (update Ak by BFGS or SR1).

Let Hk = {H(i)
k , i = 1, 2...} be a set of Hessian approximations.

1 Trust-region: Consider different quadratic models

m
(i)
k (d) = g(xk) +∇gT

k d +
1

2
dTH

(i)
k d , H

(i)
k ∈ Hk

Choose one as the current sub-problem.
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Model prediction (TRPRED)

At iteration k , we consider the set of Hessian approximation Hk .

The selected matrix (from previous iteration) is used for
sub-problem.

Suppose dk is an approximate solution of the current
subproblem. It the step is accepted, we predict the quadratic
model for the next iteration by solving:

i∗ = arg min
i
||m(i)

k (dk)− g(βk + dk)||.

Update H
(i)
k+1 ∈ Hk+1.
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Multiple subproblems (TRMULTI )

At iteration k :

Compute d
(i)
k is approximately solution of sub-problems:

min
d
{g(βk)+∇gT

k d+
1

2
dTH

(i)
k d , H

(i)
k ∈ Hk}, H

(i)
k ∈ Hk

Suppose

i∗ = arg max
i

(
g(βk)− g(βk + d

(i)
k )
)

→Step d
(i∗)
k is chosen for current iteration.

This approach selects the subproblem providing the largest
objective function reduction, but can be expensive, especially if Hk

is large.
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Application in discrete choice

An agent k has to make a choice among
a discrete set of alternatives Ak .

Given a set of choice observations,
how could be define a behavioral
model?

How to validate the model, and to
make predictions?

We will focus here mainly on model formulation and estimation.

Main assumption: individuals act rationally, and aim to maximize
their (perceived) utility.
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Utility

Given j ∈ Ak , the utility is to supposed to have the form

Uj ,k(β) = Vj ,k(β) + εj ,k .

where

Vj ,k(β): deterministic part, that can be observed.

εj ,k(β): random part.

β: utility parameters.

This reflects that an external observer can only capture part of the
utility, even if the utility is supposed to be perfectly known by the
choice maker.

Consequence: only choice probabilities can be computed.
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Random utility maximization

Therefore, the probability that individual k chooses j

Pj ,k(β) = P[Uj ,k(β) ≥ Uj ,l(β),∀ l ∈ A(k)]

or

Pj ,k(β) = P[Vj ,k(β)− Vj ,l(β) ≥ εj ,l − εj ,k , ∀ l ∈ A(k)]

The explicit form of the random term εj ,k .

It is common to assume that E [εj ,k ] = 0, while since only the
difference of utilities matters, any constant expectation E [εj ,k ] = α
provides the same choice probabilities.
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Logit model

One of the most famous models is the multinomial logit model
(MNL).

Main advantage: analytical form.

The εj ,k are supposed i.i.d. over j and k , and follow a Gumbel law
(also known as Extreme Value Type I). Denoting the mean by µ
and the scale factor by λ, the distribution function is

F (x) = e−e
−λ(x−µ)

.
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Logit model (cont’d)

Following the seminal work of McFadden (1973), we have

Pj ,k(β) =
eλVj,k∑
l eλVj,l

.

Another justification is that if X and Y are Gumbel i.i.d.,
Z = X − Y follows a logistic distribution of zero mean, et scale
factor λ, which has a similar shape to a normal (but with heavier
tails).
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Logistic distribution
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Substitution patterns

A fundamental property of logit models it the independence from
irrelevant alternatives (I.I.A.). Consider the alternatives k1 and k2.
Then,

Pj ,k1

Pj ,k2

=
eλVj,k1

eλVj,k2

= eλ(Vj,k1
−Vj,k2

).

In other words, the ratio of the choice probabilities of two
alternatives does not depend of the other alternatives.

Not realistic if the set of alternatives contains alternatives with
some degree of similarity.

For simplicity, we normalize the utilities to have λ = 1.
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Red/blue buses example (Ben Akiva and Lerman, 1983)

Suppose that two transportation modes are available: car (c) or
red bus (br ), and that the choice probabilities are the same:

Pc = Pbr =
1

2
.

Add the transportation mode blue bus (bb). Then, from the I.I.A.,

Pc = Pbr = Pbb =
1

3
.

Note: the IIA issue can often be reduced with market
segmentation, for instance if we could identify a population
segment that favor red buses, while the other part prefer blue
buses. But this can be tricky!
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Alternatives sampling

If Ak is large, or even infinite, the computation of the choice
probabilities can be difficult.

Due to the IIA, the model can nevertheless be consistently
estimated on a sample of alternatives [6].

The probability that an individual j chooses alternative k given a
sampled choice set Dj ⊂ Ak is given by

Pj ,k(β|Dn) =
eVj,k (β)+lnπ(Dj |k)∑
l∈Dj

eVj,k (β)+lnπ(Dj |l)
(3)

lnπ(Dj |k) is the correction for sampling bias where π(Dj |k) is the
probability of sampling choice set Dj given that k is the chosen
alternative.
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Alternatives sampling (cont’d)

The correction term is often ignored.

If π(Dk |j) = π(Dk |l) for all l ∈ Dk , this correction term can be
safely discarded (as only the difference of utilities matters).

Otherwise, neglecting this term can lead to serious errors (see
Frejinger [5], in the context of route choice).
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Mixed Logit

The IIA issue leads to the developments on many other models
that could relax this property, while maintaining an analytical
solution: (cross-)nested logit, multivariate extreme value,. . .

The Mixed Multinomial Logit (MMNL), formaly introduced by
McFadden and Train [7], became quite famous in transportation,
and emerges now as popular in revenue management. The main
reason for this success if the flexibility of the model, as (McFadden
and Train, 2000)

Under mild regularity conditions, any discrete choice
model derived from random utility maximization has
choice probabilities that can be approximated as closely
as one pleases by a MMNL model.
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Random-taste coefficients

The main idea is to let the parameters vector β to vary among
individuals.

The parameters β is now a random vector over the population. An
individual is associated to a specification realization βj , unknown
by the observer.

The principle of random utility maximization still applies.

Conditionally to βj , j selects alternative k with probability

Lj(k ,βj) =
eVj,k (βj )∑

l∈A(j) eVj,l (βj )
,

independently of other individuals.
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Random-taste coefficients (cont’d)

Assume that
βq = h(θ,U)

where θ is a vector of parameters and U is a given multivariate
random vector (w.l.o.g. we can consider an uniform random vector
on (0, 1)s .

The unconditional choice probability is

Pj ,k(j ,θ) = E [Lj(k ,β)] =

∫
Rs

Lj(k,β)fθ(β) dβ.

or

Pj ,k(j ,θ) = E [Lj(k , h(θ,U))] =

∫
(0,1)s

Lj(k , h(θ,u))u. .

No more closed form for the choice probabilities!
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Panel

The mixed logit can also explicitely account for sequence of
observations from the same individual.

Assume that individual j delivers Tj observations, associate with a
sequence of correlated realizations βj ,t . The probability of this
sequence is

L
Tj

j (k1, . . . , kTj
,βj ,t1 , . . . ,βj ,Tj

) =

Tj∏
t=1

Lj(kt ,βj ,t),

It is common to represent the individual choices correlations by
letting

βj ,t1 = βj ,t2 = . . . = βj ,Tj
= βj .

In other words, we represent taste variations among the population
only.
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Panel (cont’d)

The unconditional choice probability is now

Pj ,k(j ,θ) = E [L
Tj

j (k , h(θ,U))] =

∫
(0,1)s

L
Tj

j (k, h(θ,u))u. .

where k = (k1, . . . , kTj
).

Panel data have become popular in transportation research,
especially in stated preference data, as they cost less.
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Maximum likelihood

We consider estimation of the model parameters by maximizing
the log-likelihood:

max
θ

LL(θ) =
1

m

m∑
j=1

ln Pj ,k(j ,θ)).

where m is the number of individuals.
The estimation can be done by any continuous optimization
algorithm, but the problem is possibly nonconvex.

Issue for mixed logit: computation of choice probabilities.
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Simulated maximum likelihood

The choice probabilities are approximated using sample average
over U:

P̂n
j ,k(θ) ≈ 1

n

n∑
aj=1

L
Tj

j (k, h(θ, uaj ).

Statistical properties are easy to study in the Monte Carlo setting.

For finite n, the log-likelihood presents some simulation bias due to
the logarithm operator.

The estimated parameters are asymptotically unbiased and
consistent if n grows fast enough with m [1].
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Mixed logit datasets

Tests reported for two real datasets for mixed logit, and one for
route choice.

Mixed logit datasets:

1 Cybercal model (SP2): stated preferences dataset collected at
the Baltimore/Washington (Cirillo and Xu, 2010). 8 factors:
3 constant, 1 lognormally distributed, 5 normally distributed.

2 Iris model (IRIS): stated preferences dataset collected in
Brussels, 2002. 18 factors: 11 constant, 5 normally
distributed, 2 normally or lognormally distributed.
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Route choice dataset

Borlänge network which was used in Fosgerau et al.[4].

3077 nodes, 7459 links, 21452 link pairs.

Travel times are assumed static and deterministic.

1832 trips corresponding to simple paths with a minimum of 5
links.

466 destinations, 1420 different origin-destination (OD) pairs
and more than 37,000 link choices .

Tested using sampling of paths [5], without and with a path-size
argument that aims to capture the correlation between paths.
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Summary of datasets

Data set SP2 IRIS PS PSL

observations 2466 (2740) 2602 (871) 1832 (1832) 1832 (1832)
alternatives 2 8 50 50
variables 9 19 4 5
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Compared algorithms

[1] TR-BHHH: Trust region algorithm with the BHHH

[2] TR-BFGS: Trust region algorithm with the BFGS

[3] TR-SR1: Trust region algorithm with the SR1

[4] TR-BUNCH1: Bunch’s switching approach with
BHHHcorr1-BFGS

[5] TR-BUNCH2: Bunch’s switching approach with
BHHHcorr2-BFGS

[6] TR-PRED: Trust region algorithm with the predictive model

[7] TR-MULTI: Trust region algorithm with the
multi-subproblems model

[8] LS-BHHH: Line search algorithm with the BHHH

[9] LS-BFGS: Line search algorithm with the BFGS

[10] LS-PRED: Line search algorithm with the predictive model
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Comparison of algorithms: mixed logit

Algorithms SP2 IN ILN

T
ru
st

re
g
io
n

TR-BHHH 27.0 (27.0) 23.9 (23.9) 37.0∗ (37.0) [9]
TR-BFGS 52.9 (52.9) 155.1 (155.1) 147.6 (147.6)
TR-SR1 42.1 (42.1) 241.5 (241.5) 238.4∗(238.4) [2]
TR-BUNCH1 20.6 (20.6) 33.9 (33.9) 57.4 (57.4)
TR-BUNCH2 20.9 (20.9) 34.5 (34.5) 57.6 (57.6)
TR-PRED 14.2 (14.2) 21.8 (21.8) 54.7 (54.7)
TR-MULTI 46.4 (23.2) 40.4 (20.2) 77.4 (38.4

L
in
e

se
ar
ch

LS-BHHH 28.1 (14.6) 20.1 (17.6) 78.8 (46.2)
LS-BFGS 31.8(15.8) 126.0(98.9) 202.5 (142.0)
LS-PRED 34.7 (15.1) 20.5 (18.1) 70.5 (43.8)

In brackets: number of iterations.
In squared brackets: number of instance with failures.
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Comparison of algorithms: route choice

Algorithms PS PSL

T
ru
st

re
g
io
n

TR-BHHH 40.5 (40.5) 58.2 (58.2)
TR-BFGS 19.6 (19.6) 22.5 (22.5)
TR-SR1 24.5 (24.5) 25.4 (25.4)
TR-BUNCH1 51.3 (51.3) 51.0 (51.0)
TR-BUNCH2 51.3 (51.3) 51.0 (51.0)
TR-PRED 20.6 (20.6) 19.6 (19.6)
TR-MULTI 33.2 (16.6) 31.4 (15.7)

L
in
e

se
ar
ch

LS-BHHH 22.6 (22.1) 22.2 (21.7)
LS-BFGS 19.0 (17.3) 19.1 (17.6)
LS-PRED 22.6 (22.1) 22.2 (21.7)
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Number of switches

Algorithms SP2 IN ILN PS PSL

Trust region
TR-PRED 5.3 4.7 18.4 6.4 5.7
TR-MULTI 6.5 7.8 11.5 8.4 7.7

Line search LS-PRED 1.4 1.0 0.9 1.0 1.0

The trust-region framework is more adapted to the switching
strategy.
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Information matrix test

Reformulate the information matrix equality as

H(β∗) + I (β∗) = 0.

The sum can be consistently estimated by

IN(β̂∗N) + HN(β̂∗N).

White [11] designed a test statistic based on the jointly normally
asymptotically distributed property of DN(β̂∗N) = IN(β̂∗N) + HN(β̂∗N)

√
NDη

N(β̂∗N)⇒ N (0,VN(β̂∗N)).

Here we note that for a matrix A, vector Aη is defined by taking η
indicators of interest in A.
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Information matrix test (2)

An asymptotic χ2 statistic test is

℘N = NDη
N(β̂∗N)TVN(β̂∗N)−1Dη

N(β̂∗N)⇒ χ2
η

where χ2
η is chi-square distribution with η degrees of freedom. The

value of Dη
N(β̂∗N) and VN(β̂∗N) are defined by

Dη
N(β̂∗N) =

1

N

N∑
n=1

dηn (yn|β̂∗N)

VN(β̂∗N) =
1

N

N∑
n=1

[
ψn(β̂∗N)ψn(β̂∗N)T

] (4)

where

dn(yn|β̂∗N) = [∇β ln f (yn|β̂∗N)][∇β ln f (yn|β̂∗N)]T +∇2
ββ(ln f (yn|β̂∗N))

and ψn(β̂∗N) = dηn (yn|β̂∗N)−∇βDη
N(β̂∗N)HN(β̂∗N)−1∇β ln f (yn|β̂∗N).
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Application: route choice

Given a network defined in terms of links and nodes. A path is
a sequence of links that connects an origin to a destination.

Given a transportation mode and an origin-destination pair
(O-D), what is the chosen path for going from O to D?
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Probabilistic route choice analysis

Given a sample of observations of origins, destinations and
connecting paths.

The objective is to formulate an econometric model for the
choice of path conditional on origins and destinations.

Assigning probabilities to paths over choice set a paths in a
way that is consistent with rational behavior and that model
parameters can be consistently estimated.

Estimation of the parameters based on the observations.

Discrete choice models typically used for this problem.
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Challenges

1 Choice set is unknown (large size of choice set)

Classical approaches: Generating choice sets of paths.
Frejinger et al. (2009): Importance sampling of alternatives
using sampling protocol (PL: Path Logit).
Fosgerau at al. (2013): link-based recursive logit (RL) with
unrestricted choice set.

2 Path utilities may be correlated due to physical overlap in the
network

Correction utilities: Path Size (PS), Link Size (LS),. . .
Nested, Mixed logit models,. . .
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Simulated data

Number of IM test IIA test

observations RL RL-LS PL RL RL-LS PL

18320 - 0 - - 1 -
1832 0 1 0 0 2 0
500 0 3 0 2 2 3
100 3 7 3 6 9 5

Table: Number of type I errors (over 20 samples), 0.05 significance level

Number of IM test IIA test

observations RL PL RL PL

1832 0 0 0 0
500 0 0 0 0
100 20 20 4 4

Table: Number of Type II errors (over 20 samples), 0.05 significance level
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Real data

IM test IIA test

Model χ̄2
η η p-value χ̄2

η η p-value

RL-LS 159.3 15 3.39e-26 74.8 5 1.02e-14
RL 89.16 10 7.86e-15 48.4 4 7.79e-10

PSL 148.3 15 5.24e-24 74.3 5 1.30e-14
PL 63.89 10 6.60e-10 40.1 4 4.13e-8

Table: Test statistic values for IM and IIA tests for models estimated on
real data
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Real data (cont’d)

Data Model Nb. of Estimation Tests

variables BHHH BFGS IM IIA

Simulated
RL-LS 4 0.96 1.32 12.05 3.14

RL 3 0.47 0.81 9.56 2.63
PL 3 0.01 0.02 2.65 3.69

Real

RL-LS 5 2.91 2.42 17.74 3.99
RL 4 1.98 1.60 9.68 2.72

PSL 4 0.05 0.02 2.91 4.05
PL 4 0.03 0.02 2.73 3.77

Table: Computational time, in hours, for estimation and testing
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See you in Montreal?

Summer School on Dynamic Discrete Choice Models: Econometric
Models and Operations Research Methods, June 10-12, 2015,
Universit de Montral:
https://symposia.cirrelt.ca/Summer-School/en
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See you in Montreal!
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