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TimeNexus identifies dynamic pathways
from gene expression time-series data

using temporal networks
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Pathways are the mechanisms behind the cellular responses

Stimulus Pathways Cellular responses
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Pathways are the series of actions leading to a response

Molecule

Interaction
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Pathways are represented as networks

Molecule

Interaction
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They are often represented as static mechanisms, while dynamics
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Time 3



We want a tool to generate dynamic pathways
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Multiple cellular responses are one response evolving over time

Short term Mid term Long term
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But potential interactions do not change at each time

Interactome
Same molecule
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Then, we can map at each time the changes (= the responses)

Changes of gene expression
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We are building a temporal multi-layer network

Time 1
Layer 1

Time 2
Layer 2

Time 3
Layer 3

Time edges
= inter-layer edges
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The pathway is the temporal subnetwork with active nodes

Layer 2

Layer 1

Time edge
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We assume the temporal subnetwork to be the dynamic pathway

Layer 2

Layer 1

Time edge
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Objectives

1. Build a temporal network from yeast data
What data to use?

What are the main features of the network?

How to build the temporal network?

2. Extract temporal subnetworks
What algorithm to use?

How to adapt temporal network to the algorithms?

How to use these algorithms?

3. Get pathways from temporal subnetworks
How to visualize temporal subnetworks?

How to simplify temporal subnetworks?



1. Build a temporal network from yeast data

What data to use?



15

Yeast interactome and core cell-cycle are well known

Interactome: protein-protein + protein-DNA interactions

Yeast: well known and “small” genome

High-time resolution RNA-seq experiments



1. Build a temporal network from yeast data

What are the main features of the network?
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Nodes have a weight calculated from 3 variables

Prior weight (+) transcription factors, (–) [hub – complexes]

Expression weight (+) number of counts

Dysregulation weight (+) log-fold change * -log(p-value)

⇒ Node weight
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Time and interaction edges have two different weights

Interaction edges: confidence of the interaction

Time edges: depend on dysregulation weights of their nodes



1. Build a temporal network from yeast data

How to build the temporal network?
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We combine our Cytoscape app to other apps to run computations

Cytoscape 3 (network-visualization)

TimeNexus app

AnatApp app

PathLinker app

Subnetwork 
extraction

Temporal 
network 
managementAPI



2. Extract temporal subnetworks

What algorithm to use?
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Available apps allowing directed edges use shortest paths

Sources Targets

Artificial
super-source

Artificial
super-target



23

Available apps allowing directed edges use shortest paths

Sources Targets

Artificial
super-source

Artificial
super-target



2. Extract temporal subnetworks

How to adapt temporal network to the algorithms?
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Available algorithms are less flexible than expected

Give paths from source to target ⇒ layer N to layer N+1

No multiple edges between nodes ⇒ aggregate PPIs and PDIs

No node weights ⇒ weights included by edges



2. Extract temporal subnetworks

How to use these algorithms?
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Let’s take our basic temporal network

Layer 1 Layer 2 Layer 3

Gene 1 Gene 1Gene 1
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Aggregate the whole network: remove the edge labels

(Gene 1, L1) (Gene 1, L3)(Gene 1, L2)

Con: need a lot of memory
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Extract independently subnetworks from each layer

Gene 1 Gene 1Gene 1

Network 1 Network 2 Network 3

Con: how to connect back subnetworks?
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Aggregate successively layers T and layers T+1

(Gene 1, L1) (Gene 1, L2)

(Gene 1, L3)(Gene 1, L2)

Con: how to connect 
back subnetworks?



3. Get pathways from temporal subnetworks

How to visualize temporal subnetworks?
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Temporal subnetworks can be fully or partially visualized

Order nodes by layers
(in 3D?)

Display limited number of layers



3. Get pathways from temporal subnetworks

How to simplify temporal subnetworks?
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Nodes at the transitions between layers can be aggregated

Layer 1 Layer 2

A

B

A

B

A

B



35

Patterns can give loops

A A

B B

C C

A

A

B C

Layer 1 Layer 2 Layer 3 Layer 4



Conclusion
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The workflow extracts pathways from data-mapped interactome

Interactome
(PPI+PDI)

Multi-layer 
interactome

Map gene 
expression

Aggregate 
temporal network

Extract subnetwork

Reconstruct temporal 
subnetwork

Simplify

Visualize
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The approach brings more challenges

Computation time is expected be the major drawback

Approach limited to species with well-known interactome

Analyses of networks won’t be easier than currently
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It’d be “network reconstruction” but it is not network inference

Data Interactome

DataInteractome

Network

Modeling Community …

Network
inference

Network
reconstruction

Network
analysis
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General conclusion

1. Temporal networks can integrate a lot of biological data

2. They have to be adapted to standard algorithms

3. Dynamic pathway reconstruction will be challenging
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Differential expression analysis can be done in 2 manners
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Expression weight should be comparable: use CQN normalization

Within-sample
= gene length
+ GC content

Between-sample
= library size

Gene 1
Time 1

Gene 2
Time 1

Gene 1
Time 2

Gene 2
Time 2
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Steiner tree problem seems the most adapted in our context

Between shortest path (2 terminals) and minimum spanning tree (all terminals)

Terminal Steiner node
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Steiner tree problem seems the most adapted in our context

Between shortest path (2 terminals) and minimum spanning tree (all terminals)

Terminal Steiner node
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