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Challenges in crop fields mapping with autonomous UAVs

Requirements for UAVs crop fields mapping

An important tool in precision agriculture to manage the production
in crop fields is a map of pest abundance spatial distribution.

Objective: an AI alternative to the expensive human annotators

Remote sensing tools

Autonomous

On-demand usage
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Requirements for UAVs crop fields mapping

An important tool in precision agriculture to manage the production
in crop fields is a map of pest abundance spatial distribution.

Objective: an AI alternative to the expensive human annotators

Remote sensing tools: use of UAVs (operate below cloud cover,
deployed quickly and repeatedly).

Autonomous: on-board computation habilities to exploit dynamic
information and for in-flight optimisation of navigation.

On-demand usage: can be deployed on demand, without heavy
computation machinery.
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Challenges in crop fields mapping with autonomous UAVs

Challenges of an AI sampling-based solution

It is impractical to do a complete and exhaustive mapping.

Sampling plots, and then rebuild the whole map.

How to represent knowledge and spatial correlations?

Selection of the best sites where to sample (quality).

Observe those sites within time and battery constraints.

How to choose an effective sampling strategy that addresses
both criteria?
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Outline for the rest of the talk

1 Challenges in crop fields mapping with autonomous UAVs

2 Coupling AI Planning and Markov Random Field modelling

3 Online update of the MRF

4 Empirical evaluation

5 Novel applications
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Automated Planning: a model-based approach

AI Planning is the model-based approach to decision making

Produces a general purpose solver, given a description of the
environment and its behaviour.

the solution is an action policy.

Information about uncertainty often lacks in planning models.

Spatial phenomena are well described by Graphical Models

Representation of uncertainty about the predictions and of the
expected gain.
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Current approaches

In the context of this adaptive sampling technique for weeds mapping;

(Peyrard et al. 2013) use a greedy approach, updating the more
uncertain sites

rather fast,
but does not optimise resources such as remaining flying time.

(Bonneau et al. 2014) derived a Reinforcement Learning approach
considers the full sampling horizon and sampling budget,
but very long off-line computation time.

(Krause et al 2011) optimization of sensors placement for Hidden
Markov Models

considers correlation between sensors locations
but expects a previous knowledge of available observations

Neither approach fits our requirements of costs management and
deployment on demand.

6 / 14



Current approaches

In the context of this adaptive sampling technique for weeds mapping;

(Peyrard et al. 2013) use a greedy approach, updating the more
uncertain sites

rather fast,
but does not optimise resources such as remaining flying time.

(Bonneau et al. 2014) derived a Reinforcement Learning approach
considers the full sampling horizon and sampling budget,
but very long off-line computation time.

(Krause et al 2011) optimization of sensors placement for Hidden
Markov Models

considers correlation between sensors locations
but expects a previous knowledge of available observations

Neither approach fits our requirements of costs management and
deployment on demand.

6 / 14



Current approaches

In the context of this adaptive sampling technique for weeds mapping;

(Peyrard et al. 2013) use a greedy approach, updating the more
uncertain sites

rather fast,
but does not optimise resources such as remaining flying time.

(Bonneau et al. 2014) derived a Reinforcement Learning approach
considers the full sampling horizon and sampling budget,
but very long off-line computation time.

(Krause et al 2011) optimization of sensors placement for Hidden
Markov Models

considers correlation between sensors locations
but expects a previous knowledge of available observations

Neither approach fits our requirements of costs management and
deployment on demand.

6 / 14



An hybrid approach: coupling MRFs with Planning

Non-greedy approach for sampling in a MRF.

A MRF is an undirected graphical model with a set of random
variables having a Markov property.

For us it represents the probability distribution of the spatial
phenomena.
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An hybrid approach: coupling MRFs with Planning

Non-greedy approach for sampling in a MRF.

We dissociate the problem of selecting the observation sites
from the one of planning their visiting order.

Planner

MRF

UAV Sensing

observation

plan

Knowledge

Planning

expected gains
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Online update of the MRF

The MRF model for abundance map

The joint distribution of the whole map X = (X1, . . . ,XN) is assumed to
be expressed as a pairwise MRF:

∀ x ∈ classesN ,

P(X = x) =
1
Z

N∏
i=1

fi(xi)
∏

(i,j)∈E

fi,j(xi , xj)

The set E is the set of all pairs of neighbours in the grid,
Z is a normalising constant,
fi and fi,j are non negative functions called order 1 and order 2
potential functions.
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Online update of the MRF

Choosing the set of sites to sample

Select n sites to sample that maximise the expected quality gain:

q̄(Xi , xA) = max
k

(∑
i,j

max
xj

P(xj |Xi = k , xA)
)
−
∑
i,j

max
xj

P(xj |xA)

for a set of observations xA, and a variable Xi .
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Online update of the MRF

Choosing the set of sites to sample

Select n sites to sample that maximise the expected quality gain:

q̄(Xi , xA) = max
k

( ∑
dist(i,j)≤r

max
xj

P(xj |Xi = k , xA)
)
−

∑
dist(i,j)≤r

max
xj

P(xj |xA)

for a set of observations xA, and a variable Xi .

Our own implementation of Loopy Belief Propagation:
Update only sensitive perimeter (∼ 1%)
Calculated online, depends on the correlation matrix.
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Online update of the MRF

A replanning-based approach

Classical planner to generate a plan, i.e. a sequence of
locations and expected observations.

Plan guarantees that the physical constraints are not violated.cf.
(Ivankovic et al. 2014)

The plan is executed by the UAV until the number of actual
observations that differ from expected ones exceeds a threshold.

Then, a replanning episode is triggered.

A partial MDP policy based on multiple plans.
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Empirical evaluation

Empirical evaluation: the sampling path [ICAPS15]

planning-approach greedy approach
11 / 14



Empirical evaluation

Empirical evaluation in MORSE simulation [ICAPS15]

Quality vs. distance for the isotropic model. 4500m distance limit.
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Empirical evaluation

Empirical evaluation in MORSE simulation [ICAPS15]

Quality vs. distance for the anisotropic model. 4500m distance limit.
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Novel applications

Automated Planning in Precision Agriculture

Good news: There’s room for future work!

Melissa: project to map weeds
Plentiful of other issues that AI Planning can solve:

Modelling (MDPs)
Multicriteria optimization

Cartography (POMDPs, soft
goals)
Diseases tracking and
spreading modeling
Trajectory planning for
machines
. . .
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Novel applications

All good things come to an End

Thank you!
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Novel applications

Sampling and planning

We dissociate the problem of selecting the observation sites
from the one of planning their visiting order.

update of the marginals
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We dissociate the problem of selecting the observation sites
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Novel applications

Sampling and planning

We dissociate the problem of selecting the observation sites
from the one of planning their visiting order.

generation of a path (almost) joining them

7 / 14



Novel applications

Path planning is not TSP

Causal links:

An observation in a site has influences on the overall quality,

and particularly on neighbouring sites,

by lowering considerably the expected quality gain after sensing.

8 / 14



Novel applications

Path planning is not TSP

Causal links:

An observation in a site has influences on the overall quality,

and particularly on neighbouring sites,

by lowering considerably the expected quality gain after sensing.

8 / 14



Novel applications

Path planning is not TSP

Causal links:

An observation in a site has influences on the overall quality,

and particularly on neighbouring sites,

by lowering considerably the expected quality gain after sensing.

TSP planning
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Novel applications

AI Automated (Classical) Planning

Planning is the model-based approach to autonomous behaviour.
Classical planning assume complete information about the
environment:

Classical problem: state model S(P)

1 finite and discrete state space S
2 a known initial state s0 ∈ S
3 a set SG ⊆ S of goal states
4 actions A(s) ⊆ A applicable in each s ∈ S
5 a deterministic transition function s′ = f (a, s) for a ∈ A(s)

6 positive action costs c(a, s)
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Novel applications

Strips: Basic Language for Classical Planning

Models described in suitable planning languages (Strips, PDDL,
PPDDL, . . . ) where states represent interpretations over the language.

Problem in Strips P = 〈F ,A, I,G〉
1 F fluents in P (Boolean variables)
2 A actions
3 I initial situation, conjunction of F -literals
4 G goal situation, conjunction of F -literals

Operators a ∈ A are represented by

the Add list Add(a) ⊆ F

the Delete list Del(a) ⊆ F

the Precondition list Pre(a) ⊆ F
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Novel applications

From Language to Models

A Strips problem P = 〈F ,A, I,G〉 defines a state model S(P)
where the states s ∈ S are collections of atoms from F

(Optimal) solutions for P are (optimal) solutions for S(P)

Planning problem cast as a search problem in the directed graph
associated to S(P)

11 / 14



Novel applications

From Language to Models

A Strips problem P = 〈F ,A, I,G〉 defines a state model S(P)
where the states s ∈ S are collections of atoms from F

(Optimal) solutions for P are (optimal) solutions for S(P)

Planning problem cast as a search problem in the directed graph
associated to S(P)

11 / 14



Novel applications

From Language to Models

A Strips problem P = 〈F ,A, I,G〉 defines a state model S(P)
where the states s ∈ S are collections of atoms from F

(Optimal) solutions for P are (optimal) solutions for S(P)

Planning problem cast as a search problem in the directed graph
associated to S(P)

11 / 14



Novel applications

From Language to Models

A Strips problem P = 〈F ,A, I,G〉 defines a state model S(P)
where the states s ∈ S are collections of atoms from F

(Optimal) solutions for P are (optimal) solutions for S(P)

Planning problem cast as a search problem in the directed graph
associated to S(P)

Various algorithms: Blind search (DFT, BrFS,. . . ) vs. Informed
search (A*, IDA*, . . . )
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Novel applications

From Language to Models

A Strips problem P = 〈F ,A, I,G〉 defines a state model S(P)
where the states s ∈ S are collections of atoms from F

(Optimal) solutions for P are (optimal) solutions for S(P)

Planning problem cast as a search problem in the directed graph
associated to S(P)

a

a

c

b

e

d
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Novel applications

A Classical Planning Model for the navigation task

States: current position, visited sites, battery, accumulated quality
Actions: moving (from→ to ), cost= dist

sensing (¬ visited→
∧

i∈ blanket visitedi ), cost= c
Init: initial pose, nothing visited, zero quality

Goal: all sites visited, battery ≥ 20%.
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Novel applications

Implementation details

Two spatial distribution correlationn models: isotropic M1 and
anisotropic M2, corresponding to the tillage direction.

Loopy BP to calculate marginals (approx method) (Murphy, Weiss &
Jordan 1999)

Serialized Iterated Width algorithm (Lipovetzky & Geffner 2012)

ROS package for the planning module.
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Novel applications

Future Work for Melissa

Real-life tests with an
AscTec Firefly UAV.

A more elaborate image
processing module.

Non-dissociated approach.

3D navigation.
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Future Work for Melissa

Real-life tests with an
AscTec Firefly UAV.

A more elaborate image
processing module.

Non-dissociated approach.

3D navigation.

Application fields:

Adaptive methods for weeds mapping
Monitoring of plant growth
Mapping of illnesses consequences in crops
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Novel applications

Future Work for Melissa

Real-life tests with an
AscTec Firefly UAV.

A more elaborate image
processing module.

Non-dissociated approach.

3D navigation.

Application fields:

In general on-board decision systems combining:
Sensing and Planning
e.g. MORTIMER Project
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