Neural Learning of Graphical Models for Protein Design

ANITI ARDM Workshop

Marianne Defresne (INSA, INRAE, ANITI)

PhD thesis under the supervision of Thomas Schiex (MIAT) and Sophie Barbe (TBI)

June, the 22th 2022

Égalité Fraternité

Computational Protein Design (CPD)

Protein = sequence of amino acids (among 20 natural types)

Taken from Zhang's lab website

Computational Protein Design (CPD)

Protein = sequence of amino acids (among 20 natural types)

Taken from Zhang's lab website

Diversity of applications

Toulouse Biotechnology Institut Bio & Chemical Engineering

Computational Protein Design (CPD)

Protein = sequence of amino acids (among 20 natural types)

Taken from Zhang's lab website

- Diversity of applications
- CPD = modifying/creating proteins for a function of interest

Protein design as a constraint optimization problem

- ► Inverse folding problem: backbone → sequence
 ► Criteria: maximum stability = minimum energy
 - > $r^* = argmin_r E(r)$
 - > Score function = Energy + Design objectives

Protein design as a constraint optimization problem

► Inverse folding problem: backbone → sequence
 ► Criteria: maximum stability = minimum energy

> $r^* = argmin_r E(r)$

Energy function as a graphical model (GM)

- > One variable X_i per amino acid
- > Domain D_i = amino acid types
- > Cost functions = energy terms

$$E(r) = E_{\varnothing} + \sum_{i=1}^{n} E_i(r_i) + \sum_{i < j} E_{i,j}(r_i, r_j)$$

Goal: estimating a conditional energy from data

General context: learning a graphical model

Learning constraints from real examples

> Proteins: laws of physics

> Toy problem: sudoku rules

Why? To be able to use learned constraints on new examples

How? By interfacing 2 branches of AI:

- > Deep Learning criteria from examples
- > Automated reasoning to identify the optimal solution

Learning the rules from sudoku examples

Why is it similar to protein design?

- > Grid = backbone; cell = residue
- > Pairwise interactions
- > Cost function depends only on relative coordinates

Learning the rules from sudoku examples

Objective:

$$L = Hamming(y, \hat{y}) = \frac{1}{81} \sum_{i=1}^{81} \mathbb{1}[y_i \neq \hat{y}_i]$$

Learning the rules from sudoku examples

Objective:

$$L = Hamming(y, \hat{y}) = rac{1}{81} \sum_{i=1}^{81} \mathbb{1}[y_i \neq \hat{y}_i]$$

Difficulty: Discrete objective vs gradient descent
 Differentiable relaxation: SATNet (Wang et al. 2019)
 Continuous interpolation: Blackbox solver (Pogančić et al. 2019)
 Differentiable & informative upper bound: Hinge loss (Tsochantaridis et al. 2005)

Performance + data-efficiency

Approach	Accuracy	Train size	Reference
Pure DL	96.6%	180,000	(Palm, Paquet, and Winther. NeurIPS2018)
SATNet *	99.8%	9,000	(Wang et al. ICML2019)
ML+toulbar2	100%	9,000	(Brouard, Givry, and Schiex. CP2020)
DL + toulbar2	100%	1,000	-

* Much easier dataset

Performance + data-efficiency

Approach	Accuracy	Train size	Reference
Pure DL	96.6%	180,000	(Palm, Paquet, and Winther. NeurlPS2018)
SATNet *	99.8%	9,000	(Wang et al. ICML2019)
ML+toulbar2	100%	9,000	(Brouard, Givry, and Schiex. CP2020)
DL + toulbar2	100%	1,000	-

* Much easier dataset

Understanding what is learned:
 Checking the rules learned (if known)
 Interpreting the rules (reasonable size)

 Non-redundant rules of sudoku

• Objective: reconstruct the natural sequence

¹J. Ingraham et al. (2019). "Generative models for graph-based protein design". In: 33rd Conference on Neural information Processing Systems (NeurIPS 2019).

Back to proteins

Objective: reconstruct the natural sequence

(López-Blanco and Chacón 2019)

> Training alongside toulbar2 too slow

Direct adaptation of the sudoku pipeline to proteins

Pure neural training with likelihood-based loss
 Toulbar2 used for inference (full protein design)

Direct adaptation of the sudoku pipeline to proteins

Pure neural training with likelihood-based loss
 Toulbar2 used for inference (full protein design)

Initial model; in progress

- > Global rotation/translation invariance
- > Taking into account the environment of each residue

Results on proteins

No direct metric to assess the learned GM \rightarrow auxiliary tasks

- Predicting one masked residue
 - > Accuracy: 42%

²Valentin Durante, George Katsirelos, and Thomas Schiex (July 2022). "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: *Thirty-ninth International Conference on Machine Learning*.

Results on proteins

No direct metric to assess the learned GM \rightarrow auxiliary tasks

- Predicting one masked residue
 - > Accuracy: 42%
- Predicting full sequence
 - Inference with a convex relaxation of toulbar2 (Durante, Katsirelos, and Schiex 2022)²
 - > Recovery: 35.6%

²Valentin Durante, George Katsirelos, and Thomas Schiex (July 2022). "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: *Thirty-ninth International Conference on Machine Learning*.

Results on proteins

No direct metric to assess the learned GM \rightarrow auxiliary tasks

- Predicting one masked residue
 - > Accuracy: 42%
- Predicting full sequence
 - > Inference with a convex relaxation of toulbar2 (Durante,
 - Katsirelos, and Schiex 2022)²
 - > Recovery: 35.6%
- Trend of energy vs distance

²Valentin Durante, George Katsirelos, and Thomas Schiex (July 2022). "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: *Thirty-ninth International Conference on Machine Learning*.

Results on proteins: decoy task

KORP dataset (López-Blanco and Chacón 2019)³

- $\,>\,$ Task: Identifying the natural protein among decoys ($\sim 100)$
- > Comparison with state-of-the art statistical potential KORP
- > Correct: 200/200 (vs 193/200 pour KORP)

⁴Hahnbeom Park et al. (2016). "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: *Journal of Chemical Theory and Computation* 12.12, pp. 6201–6212.

³ José Ramón López-Blanco and Pablo Chacón (Jan. 2019). "KORP: knowledge-based 6D potential for fast protein and loop modeling". In: *Bioinformatics* 35.17, pp. 3013–3019. ISSN: 1367-4803.

Results on proteins: decoy task

- ► KORP dataset (López-Blanco and Chacón 2019)³
 - $>\,$ Task: Identifying the natural protein among decoys ($\sim 100)$
 - > Comparison with state-of-the art statistical potential KORP
 - > Correct: 200/200 (vs 193/200 pour KORP)
- Rosetta dataset (Park et al. 2016)⁴
 - > Task: Ranking decoys quality (measured by TM score)
 - > Comparison with **Rosetta** energy function (all-atom)

Approach	Spearman	TM best
Rosetta	0.798	92.2
Effie	0.813	93.0

³José Ramón López-Blanco and Pablo Chacón (Jan. 2019). "KORP: knowledge-based 6D potential for fast protein and loop modeling". In: *Bioinformatics* 35.17, pp. 3013–3019. ISSN: 1367-4803.

⁴Hahnbeom Park et al. (2016). "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: *Journal of Chemical Theory and Computation* 12.12, pp. 6201–6212.

Advantage of the method

- > Quality of the decision
- > Handling output: adding constraints, criteria
- > Interpretable output: understanding what is learned

Advantage of the method

- > Quality of the decision
- > Handling output: adding constraints, criteria
- > Interpretable output: understanding what is learned

Perspectives: production & experimental characterization of designed proteins

- > Hexamer from microbial compartment
- > Nanotech application (spatial organization of enzymes)

Acknowledgment

- Sophie Barbe and Thomas Schiex for supervision
- CALMIP for computational resources
- The organizers of this ARDM workshop

Thanks for your attention!

This work has been supported by the Agence Nationale de la Recherche (ANR) [grant ANR-18-EURE-0021]

References I

Durante, Valentin, George Katsirelos, and Thomas Schiex (July 2022). "Efficient low rank convex bounds for pairwise discrete Graphical Models". In: Thirty-ninth International Conference on Machine Learning.

- Ingraham, J. et al. (2019). "Generative models for graph-based protein design". In: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019).
- López-Blanco, José Ramón and Pablo Chacón (Jan. 2019).
 "KORP: knowledge-based 6D potential for fast protein and loop modeling". In: *Bioinformatics* 35.17, pp. 3013–3019. ISSN: 1367-4803.

References II

- Park, Hahnbeom et al. (2016). "Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules". In: *Journal of Chemical Theory and Computation* 12:12, pp. 6201–6212
- Pogančić, Marin Vlastelica et al. (2019). "Differentiation of blackbox combinatorial solvers". In: *International Conference on Learning Representations*.
- **Tsochantaridis**, **Ioannis** et al. (2005). "Large margin methods for structured and interdependent output variables.". In:

Journal of machine learning research 6.9.

Wang, Po-Wei et al. (Sept. 2019). "SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver". In: *Proceedings of the 36th International Conference on Machine Learning*. Vol. 97. PMLR.

