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Computational Protein Design (CPD)

▶ Protein = sequence of amino acids (among 20 natural types)

Taken from Zhang’s lab website

▶ Diversity of applications

▶ CPD = modifying/creating proteins for a function of interest
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Protein design as a constraint optimization problem

▶ Inverse folding problem: backbone 7→ sequence
▶ Criteria: maximum stability = minimum energy

> r∗ = argminrE (r)
> Score function = Energy + Design objectives

▶ Energy function as a graphical model (GM)

> One variable Xi per amino acid
> Domain Di = amino acid types
> Cost functions = energy terms

E (r) = E∅ +
n∑

i=1

Ei (ri ) +
∑
i<j

Ei ,j(ri , rj)

▶ Goal: estimating a conditional energy from data
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General context: learning a graphical model

▶ Learning constraints from real examples

> Proteins: laws of physics

> Toy problem: sudoku rules

▶ Why? To be able to use learned constraints on new examples

▶ How? By interfacing 2 branches of AI:

> Deep Learning criteria from examples
> Automated reasoning to identify the optimal solution
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Toy example: the sudoku

▶ Learning the rules from sudoku examples

▶ Why is it similar to protein design?

> Grid = backbone; cell = residue
> Pairwise interactions
> Cost function depends only on relative coordinates
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Toy example: the sudoku

▶ Learning the rules from sudoku examples

▶ Objective:

L = Hamming(y , ŷ) =
1

81

81∑
i=1

1[yi ̸= ŷi ]

▶ Difficulty: Discrete objective vs gradient descent
> Differentiable relaxation: SATNet (Wang et al. 2019)

> Continuous interpolation: Blackbox solver (Pogančić et al. 2019)

> Differentiable & informative upper bound: Hinge
loss (Tsochantaridis et al. 2005)
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Results on the toy example

▶ Performance + data-efficiency

Approach Accuracy Train size Reference

Pure DL 96.6% 180,000 (Palm, Paquet, and Winther. NeurIPS2018)

SATNet * 99.8% 9,000 (Wang et al. ICML2019)

ML + toulbar2 100% 9,000 (Brouard, Givry, and Schiex. CP2020)

DL + toulbar2 100% 1,000 -

* Much easier dataset

▶ Understanding what is learned:

> Checking the rules learned (if known)
> Interpreting the rules (reasonable size)

o Non-redundant rules of sudoku
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Back to proteins

▶ Objective: reconstruct the natural sequence

▶ Dataset:
> Split like (Ingraham et al. 2019)1

> 17,000 training proteins, 1,200 for test and 600 for validation

1J. Ingraham et al. (2019). “Generative models for graph-based protein design”. In: 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019).
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Back to proteins

▶ Objective: reconstruct the natural sequence

▶ Difficulties:
> Protein representation: no consensus

o Chose pairwise features (relative distance & orientation)

(López-Blanco and Chacón 2019)

> Training alongside toulbar2 too slow
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Direct adaptation of the sudoku pipeline to proteins

▶ Pure neural training with likelihood-based loss

▶ Toulbar2 used for inference (full protein design)

▶ Initial model; in progress

> Global rotation/translation invariance
> Taking into account the environment of each residue
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Results on proteins

No direct metric to assess the learned GM → auxiliary tasks

▶ Predicting one masked residue
> Accuracy: 42%

▶ Predicting full sequence
> Inference with a convex relaxation of toulbar2 (Durante,

Katsirelos, and Schiex 2022)2

> Recovery: 35.6%
▶ Trend of energy vs distance

2Valentin Durante, George Katsirelos, and Thomas Schiex (July 2022). “Efficient low rank convex bounds for
pairwise discrete Graphical Models”. In: Thirty-ninth International Conference on Machine Learning.
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Results on proteins: decoy task

▶ KORP dataset (López-Blanco and Chacón 2019)3

> Task: Identifying the natural protein among decoys (∼ 100)
> Comparison with state-of-the art statistical potential KORP
> Correct: 200/200 (vs 193/200 pour KORP)

▶ Rosetta dataset (Park et al. 2016)4

> Task: Ranking decoys quality (measured by TM score)
> Comparison with Rosetta energy function (all-atom)

Approach Spearman TM best

Rosetta 0.798 92.2
Effie 0.813 93.0

3José Ramón López-Blanco and Pablo Chacón (Jan. 2019). “KORP: knowledge-based 6D potential for fast
protein and loop modeling”. In: Bioinformatics 35.17, pp. 3013–3019. issn: 1367-4803.

4Hahnbeom Park et al. (2016). “Simultaneous Optimization of Biomolecular Energy Functions on Features from
Small Molecules and Macromolecules”. In: Journal of Chemical Theory and Computation 12.12, pp. 6201–6212.
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Conclusion & Perspectives

▶ Advantage of the method

> Quality of the decision
> Handling output: adding constraints, criteria
> Interpretable output: understanding what is learned

▶ Perspectives: production & experimental
characterization of designed proteins

> Hexamer from microbial compartment
> Nanotech application (spatial organization of enzymes)
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