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Computational Protein Design (CPD)

Protein = sequence of amino acids (among 20 natural types)
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Protein = sequence of amino acids (among 20 natural types)
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Computational Protein Design (CPD)

Protein = sequence of amino acids (among 20 natural types)

Sequence (1D) Structure (3D) Function

Taken from Zhang's lab website

Diversity of applications
CPD = modifying/creating proteins for a function of interest
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Protein design as a constraint optimization problem

Inverse folding problem: backbone — sequence
Criteria: maximum stability = minimum energy
r* = argmin, E(r)
Score function = Energy + Design objectives
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Protein design as a constraint optimization problem

Inverse folding problem: backbone — sequence
Criteria: maximum stability = minimum energy
r* = argmin, E(r)

Energy function as a graphical model (GM)

One variable X; per amino acid l
Domain D; = amino acid types
Cost functions = energy terms

E(r) = Ex+ Z Ei(ri) + > Eij(ri,ry)

i<j

Goal: estimating a conditional energy from data
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General context: learning a graphical model

Learning constraints from real examples

Proteins: laws of physics

Toy problem: sudoku rules

To be able to use learned constraints on new examples

By interfacing 2 branches of Al:

Deep Learning criteria from examples
Automated reasoning to identify the optimal solution
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Toy example: the sudoku

Learning the rules from sudoku examples

5 T safe]ale]1]3]2]5
2[5 |7 1]as]z]s]so]7]s]s

R E 2 Cost slefs]s|7]s|i]o]e
ALl 5T 15 Ts Neural net functions Toulbar2 Zf::;iﬁzz
N I B e Learns the rules i Solves the problem Tl lelz e
Tz T {(crdi, -~ alsl7]s|2[3]e[5]1
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Toy example: the sudoku

Learning the rules from sudoku examples

5 T safe]ale]1]3]2]5
2[5 |7 1]as]z]s]so]7]s]s

R E 2 Cost slefs]s|7]s|i]o]e
ALl 5T 15 Ts Neural net functions Toulbar2 Zf::;iﬁzz
N I B e Learns the rules i Solves the problem Tl lelz e
Tz T {(crdi, -~ alsl7]s|2[3]e[5]1

N 3 crdj))“J 2 s|u]elofr|e]a]2

3 2 i 9x9 3|8 |91 |afs]e 7|2

Why is it similar to protein design?
Grid = backbone; cell = residue
Pairwise interactions
Cost function depends only on relative coordinates
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Toy example: the sudoku

Learning the rules from sudoku examples

s ANE s[7 s+ [z 1 [z]2]5

2[5] |7 Va2 s ]o]7]e e

2] |5 4 Cost sz (s |3 761 ]5]s
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differentiable non-differentiabl.

Objective:

L = Hamming(y,y) =31 Z 1ly; # yil
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Toy example: the sudoku

Learning the rules from sudoku examples

s ANE s[7 s+ [z 1 [z]2]5
2[5] |7 Va2 s ]o]7]e e
2] |5 4 Cost sz (s |3 761 ]5]s
5| AOOBEEBBBE
13 A Neural net Junctions Toulbar2 GG
T s T Learns the rules ) Solves the problem Tstetelatalits
dONBE {(erd i, | L EEEELED
| 3”‘“ ] 2(s[1e]s7]z 4]
3 2 ! { 9x9 ‘ 3lz|e ] [ala]e]7 ]2
' )
differentiable non-differentiabl.
Objective:

L = Hamming(y,y) =31 Z 1ly; # yi

Difficulty: Discrete objective vs gradient descent
Differentiable relaxation: SATNet (Wang et al. 2019)
Continuous interpolation: Blackbox solver (Pogancic¢ et al. 2019)
Differentiable & informative upper bound: Hinge
loss (Tsochantaridis et al. 2005)
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Results on the toy example

Performance + data-efficiency

Approach Accuracy Train size Reference

Pure DL 966% 180,000 (Palm, Paquet, and Winther. NeurlPS2018)
SATNet * 99.8% 9,000 (Wang et al. ICML2019)

ML =+ tou|bal’2 ].OO% 9,000 (Brouard, Givry, and Schiex. CP2020)

DL + toulbar2 100% 1,000 -

* Much easier dataset
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Results on the toy example

Performance + data-efficiency

Approach Accuracy Train size Reference

Pure DL 966% 180,000 (Palm, Paquet, and Winther. NeurlPS2018)
SATNet * 99.8% 9,000 (Wang et al. ICML2019)

ML =+ tou|bal’2 ].OO% 9,000 (Brouard, Givry, and Schiex. CP2020)

DL + toulbar2 100% 1,000 -

* Much easier dataset

Understanding what is learned:

Checking the rules learned (if known)
Interpreting the rules (reasonable size)

Non-redundant rules of sudoku
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Back to proteins

Objective: reconstruct the natural sequence

gZ' {E, J} toulbar2 VKDGYIVDDVNCTYF..

Design
requirements

[='=)
w
(-]

Dataset: rrotein DATA BANK

Split like (Ingraham et al. 2019)*
17,000 training proteins, 1,200 for test and 600 for validation

“Generative models for graph-based protein design”.
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Back to proteins

Objective: reconstruct the natural sequence

é‘z {E, J} toulbar2 VKDGYIVDDVNCTYF...

Design

Difficulties: requirements
Protein representation: no consensus
Chose pairwise features (relative distance & orientation)

(Lépez-Blanco and Chacén 2019)

Training alongside toulbar2 too slow
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Direct adaptation of the sudoku pipeline to proteins

Pure neural training with likelihood-based loss

Toulbar2 used for inference (full protein design)

20
-~ .
native

Contact s
number | i (i.j) ResMLP £ [ ]IZO sequence
KORP B
features
20
Pl
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ResMLP E”, 20

(N,N,20,20) Loss
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Update net weights

Marianne Defresne m tbl
p. 10

Toulouse Biotechnology Institute

TOULOUSE Bio & Chemical Engineering



Direct adaptation of the sudoku pipeline to proteins

Pure neural training with likelihood-based loss

Toulbar2 used for inference (full protein design)

20
-~ .
native

Contact s
number | i (i.j) ResMLP £ [ ]IZO sequence
KORP B

features

(i)

20 (N,N,20,20) Loss
<
)
ResMLP E”, 20
Update net weights

Initial model; in progress

Global rotation/translation invariance
Taking into account the environment of each residue
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Results on proteins

No direct metric to assess the learned GM — auxiliary tasks

Predicting one masked residue
Accuracy: 42%

2 “Efficient low rank convex bounds for

pairwise discrete Graphical Models”.

Marianne Defresne m tbl
p. 11

Toulouse Biotechnology Institute

TOULOUSE Bio & Chemical Engineering



Results on proteins

No direct metric to assess the learned GM — auxiliary tasks

Predicting one masked residue
Accuracy: 42%
Predicting full sequence
Inference with a convex relaxation of toulbar2 (Durante,
Katsirelos, and Schiex 2022 )2
Recovery: 35.6%

2 “Efficient low rank convex bounds for

pairwise discrete Graphical Models”.
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Results on proteins

No direct metric to assess the learned GM — auxiliary tasks

Predicting one masked residue
Accuracy: 42%
Predicting full sequence
Inference with a convex relaxation of toulbar2 (Durante,
Katsirelos, and Schiex 2022)?
Recovery: 35.6%
Trend of energy vs distance
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2 “Efficient low rank convex bounds for

pairwise discrete Graphical Models”.

- .
Marianne Defresne m tbl

p. 11
Toulouse Biotechnology Institute

TOULOUSE Bio & Chemical Engineering



Results on proteins: decoy task

KORP dataset (Lépez-Blanco and Chacén 2019)3

Task: Identifying the natural protein among decoys (~ 100)
Comparison with state-of-the art statistical potential KORP
Correct: 200/200 (vs 193/200 pour KORP)

3 “KORP: knowledge-based 6D potential for fast
protein and loop modeling”. .

4 “Simultaneous Optimization of Biomolecular Energy Functions on Features from

Small Molecules and Macromolecules”.
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Results on proteins: decoy task

KORP dataset (Lépez-Blanco and Chacén 2019)3
Task: Identifying the natural protein among decoys (~ 100)
Comparison with state-of-the art statistical potential KORP
Correct: 200/200 (vs 193/200 pour KORP)

Rosetta dataset (Park et al. 2016)*

Task: Ranking decoys quality (measured by TM score)
Comparison with Rosetta energy function (all-atom)

Approach Spearman TM best

Rosetta 0.798 02.2
Effie 0.813 93.0

3 “KORP: knowledge-based 6D potential for fast
protein and loop modeling”. .

4 “Simultaneous Optimization of Biomolecular Energy Functions on Features from

Small Molecules and Macromolecules”.
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Conclusion & Perspectives

Advantage of the method
Quality of the decision
Handling output: adding constraints, criteria
Interpretable output: understanding what is learned
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Conclusion & Perspectives

Advantage of the method
Quality of the decision
Handling output: adding constraints, criteria
Interpretable output: understanding what is learned

Perspectives: production & experimental
characterization of designed proteins

Hexamer from microbial compartment

Nanotech application (spatial organization of enzymes)
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