
Solving large protein design problems
modeled as cost function networks

Guaranteed Discrete Energy Optimization on Large Protein Design Problems.
Journal of chemical theory and computation.

David Simoncini

D. Allouche, S. de Givry,

C. Delmas, S. Barbe (INSA), T. Schiex

May 2016 - The MIAT seminars

What is a protein ? (Thank you wikipedia)

Amino acids, proteins

I Proteins are linear chains of amino-acids (20 natural AAs).

I All AAs share a common “core” and have a variable
side-chain.

Side-chains are
flexible (ARG)

Protein Design

Why ?

I Proteins have various functions in the cell: catalysis, signaling,
recognition, regulation. . .

I Efficient, biodegrable, 106 to 1020 speedups

I Nano-technologies (shape more than function).

I Medecine, cosmetics, food, bio-energies. . .

Protein Design

Protein function linked to its 3D shape through its amino acid
composition.

Protein design’s aim

Identify sequences that have a suitable
function (shape).

Issue
There are 20n proteins of length n.
Impossible to synthesize and test all of
them.

Successes of Protein Design

The CPD problem

Rigid backbone variant

1. Assume a rigid protein backbone.

2. Choose 1 AA among possible ones
at each mutable position.

3. Side-chain flexibility: discretized in
rotamers (Dunbrack).

Search Space

Fully discrete description, defined by a choice of rotamer (AA ×
conformation) for each position.

Pairwise decomposable energy function

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Common approaches to CPD

DEE/A*

Dead End Elimination:

I Removes from the search space rotamers which are
dominated.

I Can possibly remove close to optimal solutions.

A* algorithm:

I Best-first search tree-based algorithm.

I A heuristic gives a lower bound on the cost of each path in
the tree.

Meta-heuristics

I Monte-Carlo Simulated Annealing (Rosetta).

I Genetic Algorithms (EGAD).

I ...

What is a Graphical Model ?

Informal

1. A set of discrete variables, each with a domain

2. We want to define a joint function (energy) on all those
variables

3. We do this by combining small functions involving few
variables

Why “Graphical” ?

1. a vertex per variable, a (hyper)edge per function

2. Allows to describe knowledge on a lot of variables concisely

3. Usually hard to manipulate (NP-hard queries).

What is a Graphical Model ?

Informal

1. A set of discrete variables, each with a domain

2. We want to define a joint function (energy) on all those
variables

3. We do this by combining small functions involving few
variables

Why “Graphical” ?

1. a vertex per variable, a (hyper)edge per function

2. Allows to describe knowledge on a lot of variables concisely

3. Usually hard to manipulate (NP-hard queries).

A Cost Function Network is a Graphical Model

Cost Function Networks

I Variables and domains as usual

I Cost functions W 3 cS : DS → {0, . . . , k} (k finite or not)

I Cost combined by (bounded) addition3 (other: valued CSP14).

cost(t) =
∑

cS∈C

cS (t[S]) c∅ : lower bound

A solution has cost < k. Optimal if minimum cost.

Wooo beautiful artwork

Fixed BB discrete rotamers GMEC as a CFN

Straightforward

I Variables: mutable, flexible residues and rotamers

I Domains: available rotamers

I Cost functions:

E (c) = E∅ +
n∑

i=1

E (ir) +
∑
i<j

E (ir , js)

Just shift all energies to make them non negative.

Finding the GMEC is NP-hard12

Our secret recipe

Four main ingredients

1. Depth First Branch and Bound

2. Good initial upperbound

3. Local consistency filtering induced lower bounds instead of
DEE

4. Treewidth based problem decomposition

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

0

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

0

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

0

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

0

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

0

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

1
2
3

1
2
3

0

1

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

0

1

1

lower
bound

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

0

1

1

1
k=1

lower
bound

1
2
3

1
2
3

k=∞

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Depth First Branch and bound

Initial upper bound k

1. Compute a lower bound on
the GMEC energy

2. is it ≥ k ?

3. If yes backtrack

4. Else choose a residue xi

5. Split its domain in subsets

6. For each subset

6.1 Recurse

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

0

1

1

1

lower
bound

1
2
3

1
2
3

k=1

1. When a solution is found, update k to its energy.

2. DFS vs. A∗ (BFS): polynomial space vs. exponential space.

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b Shift 1 to right a
← →x1 x2

3

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

x1 x2

3

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b Shift 1 to right a
← →x1 x2

3

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→

←

Shift 1 from left b

Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

1 3

1

x1 x2

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

1 3

1

x1 x2

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→

←

Shift 1 from left b

Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

1 3

1

x1 x2

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

x1 x2

3 1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

x1 x2

1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k

Improving the bound c∅

Assume that initially c∅ = 0, k = 4

Shift 1 to left b

Shift 1 to right a

←

→

x1 x2

3 1 3

x1 x2

a

b

a

b

1 4

x1 x2

→ ←
Shift 1 from left b Shift 1 from right a

⇓ Shift 1 from x1 to c∅

c∅ = 1

Preserves global energy below k DEE does not

Local consistencies

Optimize transformations to maximize lower bound

1. Arc Consistency13

2. (Full) Directional Arc Consistency9

3. Full Existential Directional Arc Consistency10

4. Virtual Arc Consistency4,5

5. Optimal Soft Arc Consistency (LP)2,5

Tree decomposition

Tree of bags

Decomposition of a problem in a well-formed (RIP) tree of bags of
variables.

Full redesign of 107 short proteins

Why full redesigns

1. Challenging

2. Used on β1 domain of protein G to tune energy function
parameters1.

The designs

1. Structures extracted from the PDB (September 2014)

2. Length from 50 to 100 AA

3. Resolution better than 2 Å

4. Only representants at 30% identity

5. Talaris14 and Dunbrack’s 2010 rotamers

6. PyRosetta: relax + energy matrices

Looking for the Global Minimum Energy Configuration

How

1. Intel Xeon E5-2690 2.9GHz (Q1-2012 CPU)

2. Best of 1000 runs of fixbb Rosetta protocol (Simulated
Annealing)

3. toulbar2: 100 hours limit.

La patate douce

https://bitbucket.org/satsumaimo/ptcfopd

https://bitbucket.org/satsumaimo/ptcfopd

Looking for the GMEC

Looking for the GMEC

toulbar2 (CFN)

1. 98 problems solved to optimality

2. Largest problem solved: 10234, 1.7 GB for energy matrix.

3. Smallest unsolved: 10206.

Rosetta/fixbb

1. Rosetta fixbb found the GMEC on 13 of these problems

2. These 13 problems took 90 hours for fixbb.

3. toulbar2 solved them to optimality in 36 hours.

Looking for the GMEC

toulbar2 (CFN)

1. 98 problems solved to optimality

2. Largest problem solved: 10234, 1.7 GB for energy matrix.

3. Smallest unsolved: 10206.

Rosetta/fixbb

1. Rosetta fixbb found the GMEC on 13 of these problems

2. These 13 problems took 90 hours for fixbb.

3. toulbar2 solved them to optimality in 36 hours.

Exploring Sequence/conformations around of the GMEC

All sequence/conformations in a 0.2 Rosetta unit threshold

1. Same 100h limit

2. Exhausted sequence/conformation space on 92/98 designs.

3. Very fast sampling, but huge spaces (up to 1.42 109)

Exploring Sequence/conformations around of the GMEC

All sequence/conformations in a 0.2 Rosetta unit threshold

1. Same 100h limit

2. Exhausted sequence/conformation space on 92/98 designs.

3. Very fast sampling, but huge spaces (up to 1.42 109)

Exploring Sequence/conformations around of the GMEC

All sequence/conformations in a 0.2 Rosetta unit threshold

1. Same 100h limit

2. Exhausted sequence/conformation space on 92/98 designs.

3. Very fast sampling, but huge spaces (up to 1.42 109)

Diversity of situations

1. No clear tendancy for simulated annealing success/failure
pattern.

2. Not enough successes to see a trend ?

Exploring sequences around the GMEC

Faster exploration of sequences only15

I New “SCP branching” algorithm that explores the sequence
space

I Allows to explore far larger energy gaps.

I Gives just one (sub)optimal conformation per sequence.

Faster exploration of sequences only15

I A number of CFN algorithms injected directly in OSPREY6

I Benefits to continuous/flexible BB design through DEEPer8,
LUTE7.

Rosetta fixbb protocol: gap to optimality

I Blue: best over 1 000 runs

I Red: all runs on all designs (worse may be off by 45 RU).

Fr
ac

tio
n

Rosetta units

Rosetta fixbb protocol: gap to optimality

I Blue: best over 1 000 runs

I Red: all runs on all designs (worse may be off by 45 RU).

Fr
ac

tio
n

Rosetta units

Distance to optimum as a function of space size

I Blue: best over 1 000 runs

I Red: average over 1 000 runs.

Log10 size of search space

En
er

gy
ga

p

Distance to optimum as a function of space size

I Blue: best over 1 000 runs

I Red: average over 1 000 runs.

Log10 size of search space

En
er

gy
ga

p

Reliability, distance to optimum and size

I Blue: probability of finding the GMEC (sorted)

I Red: energy gap to GMEC (sorted)

I Histogram: # of unique sequences (x RU gap) (red: lower
bound)

0

0,075

0,15

0,225

0,3

2

4

6

8

Protein design problems

Fr
eq

ue
nc

y
G

M
EC

 fo
un

d
Energy gap

Reliability, distance to optimum and size

I Blue: probability of finding the GMEC (sorted)

I Red: energy gap to GMEC (sorted)

I Histogram: # of unique sequences (x RU gap) (red: lower
bound)

0

0,5

1

1,5

2

0

0,075

0,15

0,225

0,3

2

4

6

8

Protein design problems

Fr
eq

ue
nc

y
G

M
EC

 fo
un

d
Energy gap

Reliability, distance to optimum and size

I Blue: probability of finding the GMEC (sorted)

I Red: energy gap to GMEC (sorted)

I Histogram: # of unique sequences (x RU gap) (red: lower
bound)

0

0,5

1

1,5

2

0

0,075

0,15

0,225

0,3

10

10

10

10

2

4

6

8

Protein design problems

Fr
eq

ue
nc

y
G

M
EC

 fo
un

d
Energy gapSize of th

e GMEC neighborhood (sequences)

What about sequences: Hamming dist. to GMEC

I Blue: best energy (2.4% core, 7% boundary, 10% surface).

I Red: average over 1 000 runs.

of mutations

fra
ct

io
n

What about sequences: Hamming dist. to GMEC

I Blue: best energy (2.4% core, 7% boundary, 10% surface).

I Red: average over 1 000 runs.

of mutations

fra
ct

io
n

Distance to native as we get closer to the GMEC

Native sequence used to tune energy1,11.

Type native fixbb best GMEC

Charged 1,795 ↗ 1,996 ↗ 2,097
Aromatic 585 ↗ 616 ↗ 622

Polar 1,817 ↘ 1,730 ↘ 1,662
Hydrophobic 2,585 ↘ 2,440 ↘ 2,401

Cysteines in disulfide bridges: not counted.

Distance to native as we get closer to the GMEC

Native sequence used to tune energy1,11.

Type native fixbb best GMEC

Charged 1,795 ↗ 1,996 ↗ 2,097
Aromatic 585 ↗ 616 ↗ 622

Polar 1,817 ↘ 1,730 ↘ 1,662
Hydrophobic 2,585 ↘ 2,440 ↘ 2,401

Cysteines in disulfide bridges: not counted.

Possible lessons

Monte Carlo sampling

I Fixbb SA becomes quickly unable to reach lowest energy
regions

I Energy gap increases quickly with the number of mutable
residues

Guarantees

I GMEC may be not crucial, but an upper bound on error is
important

I Guaranteed optimum have different composition

I Talaris favorable for guaranteed optimization (but exponential
barrier)

I Exhaustive enumeration can be very fast (but exponential size
output)

Continue to contribute to CPD

1. Injected in OSPREY, contributes to “flexible” modeling

2. Conformational entropy contribution to affinity

3. Improve the “CPD” model

4. beyond pairwise decomposition7

5. multistate (positive/negative)

6. symmetric and fragment design

Continue to contribute to CPD

1. Injected in OSPREY, contributes to “flexible” modeling

2. Conformational entropy contribution to affinity

3. Improve the “CPD” model

4. beyond pairwise decomposition7

5. multistate (positive/negative)

6. symmetric and fragment design

Continue to contribute to CPD

1. Injected in OSPREY, contributes to “flexible” modeling

2. Conformational entropy contribution to affinity

3. Improve the “CPD” model

4. beyond pairwise decomposition7

5. multistate (positive/negative)

6. symmetric and fragment design

Continue to contribute to CPD

1. Injected in OSPREY, contributes to “flexible” modeling

2. Conformational entropy contribution to affinity

3. Improve the “CPD” model

4. beyond pairwise decomposition7

5. multistate (positive/negative)

6. symmetric and fragment design

Continue to contribute to CPD

1. Injected in OSPREY, contributes to “flexible” modeling

2. Conformational entropy contribution to affinity

3. Improve the “CPD” model

4. beyond pairwise decomposition7

5. multistate (positive/negative)

6. symmetric and fragment design

Continue to contribute to CPD

1. Injected in OSPREY, contributes to “flexible” modeling

2. Conformational entropy contribution to affinity

3. Improve the “CPD” model

4. beyond pairwise decomposition7

5. multistate (positive/negative)

6. symmetric and fragment design

References I

Oscar Alvizo and Stephen L Mayo. “Evaluating and optimizing computational
protein design force fields using fixed composition-based negative design”. In:
Proc. Natl. Acad. Sci. U.S.A. 105.34 (2008), pp. 12242–12247.

M C. Cooper, S. de Givry, and T. Schiex. “Optimal soft arc consistency”. In:
Proc. of IJCAI’2007. Hyderabad, India, Jan. 2007, pp. 68–73.

M C. Cooper and T. Schiex. “Arc consistency for soft constraints”. In:
Artificial Intelligence 154.1-2 (2004), pp. 199–227.

Martin C Cooper et al. “Virtual Arc Consistency for Weighted CSP.” In:
AAAI. Vol. 8. 2008, pp. 253–258.

M. Cooper et al. “Soft arc consistency revisited”. In: Artificial Intelligence
174 (2010), pp. 449–478.

Pablo Gainza et al. “OSPREY: Protein design with ensembles, flexibility, and
provable algorithms”. In: Methods Enzymol. 523 (2012), pp. 87–107.

Mark A Hallen, Jonathan D Jou, and Bruce R Donald. “LUTE (Local
Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design
with General Energy Functions and Rigid-rotamer-like Efficiency”. In:
Research in Computational Molecular Biology. Springer. 2016, pp. 122–136.

References II

Mark A Hallen, Daniel A Keedy, and Bruce R Donald. “Dead-end elimination
with perturbations (DEEPer): A provable protein design algorithm with
continuous sidechain and backbone flexibility”. In: Proteins 81.1 (2013),
pp. 18–39.

J. Larrosa and T. Schiex. “In the quest of the best form of local consistency

for Weighted CSP”. In: Proc. of the 18th IJCAI. Acapulco, Mexico, Aug.
2003, pp. 239–244.

J. Larrosa et al. “Existential arc consistency: getting closer to full arc

consistency in weighted CSPs”. In: Proc. of the 19th IJCAI. Edinburgh,
Scotland, Aug. 2005, pp. 84–89.

A Leaver-Fay et al. “Scientific benchmarks for guiding macromolecular energy
function improvement”. In: Methods Enzymol. 523 (2013), p. 109.

Niles A Pierce and Erik Winfree. “Protein design is NP-hard.” In: Protein
engineering 15.10 (Oct. 2002), pp. 779–82. issn: 0269-2139. url:
http://www.ncbi.nlm.nih.gov/pubmed/12468711.

T. Schiex. “Arc consistency for soft constraints”. In: Principles and Practice
of Constraint Programming - CP 2000. Vol. 1894. LNCS. Singapore, Sept.
2000, pp. 411–424.

http://www.ncbi.nlm.nih.gov/pubmed/12468711

References III

T. Schiex, H. Fargier, and G. Verfaillie. “Valued Constraint Satisfaction

Problems: hard and easy problems”. In: Proc. of the 14th IJCAI. Montréal,
Canada, Aug. 1995, pp. 631–637.

Seydou Traoré et al. “Fast search algorithms for computational protein
design”. In: Journal of computational chemistry (2016).

