

Solving large protein design problems modeled as cost function networks

Guaranteed Discrete Energy Optimization on Large Protein Design Problems. Journal of chemical theory and computation.

> David Simoncini D. Allouche, S. de Givry, C. Delmas, S. Barbe (INSA), T. Schiex

May 2016 - The MIAT seminars () () ()

What is a protein ?

Amino acids, proteins

- Proteins are linear chains of amino-acids (20 natural AAs).
- All AAs share a common "core" and have a variable side-chain.

Protein Design

Why?

- Proteins have various functions in the cell: catalysis, signaling, recognition, regulation...
- Efficient, biodegrable, 10⁶ to 10²⁰ speedups
- Nano-technologies (shape more than function).
- Medecine, cosmetics, food, bio-energies...

Protein Design

Protein function linked to its 3D shape through its amino acid composition.

Protein design's aim

Identify sequences that have a suitable function (shape).

Issue

There are 20^n proteins of length *n*. Impossible to synthesize and test all of them.

Successes of Protein Design

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

The CPD problem

Rigid backbone variant

- 1. Assume a rigid protein backbone.
- 2. Choose 1 AA among possible ones at each mutable position.
- 3. Side-chain flexibility: discretized in rotamers (Dunbrack).

Search Space

Fully discrete description, defined by a choice of rotamer (AA \times conformation) for each position.

Pairwise decomposable energy function

$$E(c) = E_{\varnothing} + \sum_{i=1}^{n} E(i_r) + \sum_{i < j} E(i_r, j_s)$$

Common approaches to CPD

DEE/A*

Dead End Elimination:

- Removes from the search space rotamers which are dominated.
- Can possibly remove close to optimal solutions.
- A* algorithm:
 - Best-first search tree-based algorithm.
 - A heuristic gives a lower bound on the cost of each path in the tree.

Meta-heuristics

- Monte-Carlo Simulated Annealing (Rosetta).
- Genetic Algorithms (EGAD).

What is a Graphical Model ?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Informal

- 1. A set of discrete variables, each with a domain
- 2. We want to define a joint function (energy) on all those variables
- 3. We do this by combining small functions involving few variables

What is a Graphical Model ?

Informal

- 1. A set of discrete variables, each with a domain
- 2. We want to define a joint function (energy) on all those variables
- 3. We do this by combining small functions involving few variables

Why "Graphical" ?

- 1. a vertex per variable, a (hyper)edge per function
- 2. Allows to describe knowledge on a lot of variables concisely
- 3. Usually hard to manipulate (NP-hard queries).

A Cost Function Network is a Graphical Model

Cost Function Networks

- Variables and domains as usual
- ▶ Cost functions $W \ni c_S : D^S \to \{0, \ldots, k\}$ (k finite or not)
- Cost combined by (bounded) addition³ (other: valued CSP¹⁴).

$$cost(t) = \sum_{c_S \in C} c_S(t[S])$$
 c_{\varnothing} : lower bound

A solution has cost < k. Optimal if minimum cost.

Wooo beautiful artwork

э

Fixed BB discrete rotamers GMEC as a CFN

Straightforward

- Variables: mutable, flexible residues and rotamers
- Domains: available rotamers
- Cost functions:

$$E(c) = E_{\varnothing} + \sum_{i=1}^{n} E(i_r) + \sum_{i < j} E(i_r, j_s)$$

Just shift all energies to make them non negative.

Finding the GMEC is NP-hard¹²

Four main ingredients

- 1. Depth First Branch and Bound
- 2. Good initial upperbound
- 3. Local consistency filtering induced lower bounds instead of DEE
- 4. Treewidth based problem decomposition

Initial upper bound k

1. Compute a lower bound on the GMEC energy

k=∞

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack

k=∞

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack
- 4. Else choose a residue x_i

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack
- 4. Else choose a residue x_i
- 5. Split its domain in subsets

k=∞

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack
- 4. Else choose a residue x_i
- 5. Split its domain in subsets
- 6. For each subset

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack
- 4. Else choose a residue x_i
- 5. Split its domain in subsets
- 6. For each subset
 - 6.1 Recurse

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack
- 4. Else choose a residue x_i
- 5. Split its domain in subsets
- 6. For each subset
 - 6.1 Recurse

- 1. When a solution is found, update k to its energy.
- 2. DFS vs. A^* (BFS): polynomial space vs. exponential space.

Initial upper bound k

- 1. Compute a lower bound on the GMEC energy
- 2. is it $\geq k$?
- 3. If yes backtrack
- 4. Else choose a residue x_i
- 5. Split its domain in subsets
- 6. For each subset
 - 6.1 Recurse

- 1. When a solution is found, update k to its energy.
- 2. DFS vs. A^* (BFS): polynomial space vs. exponential space.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Assume that initially $c_{\emptyset} = 0, k = 4$

Assume that initially $c_{\emptyset} = 0, k = 4$

Shift 1 to right a

・ロト ・個ト ・モト ・モト

Assume that initially $c_{\emptyset} = 0, k = 4$

Shift 1 from right a

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Downarrow \qquad \text{Shift 1 from } x_1 \text{ to } c_{\varnothing}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $\Downarrow \qquad \text{Shift 1 from } x_1 \text{ to } c_{\varnothing}$

 $c_{\varnothing} = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Downarrow \qquad \text{Shift 1 from } x_1 \text{ to } c_{\varnothing}$

 $c_{\varnothing} = 1$

Preserves global energy below k

 $\Downarrow \qquad \text{Shift 1 from } x_1 \text{ to } c_{\varnothing}$

 $c_{\varnothing} = 1$

Preserves global energy below k

Optimize transformations to maximize lower bound

- 1. Arc Consistency¹³
- 2. (Full) Directional Arc Consistency⁹
- 3. Full Existential Directional Arc Consistency¹⁰
- 4. Virtual Arc Consistency^{4,5}
- 5. Optimal Soft Arc Consistency (LP)^{2,5}

Tree decomposition

Tree of bags

Decomposition of a problem in a well-formed (RIP) tree of bags of variables.

Full redesign of 107 short proteins

Why full redesigns

- 1. Challenging
- 2. Used on $\beta 1$ domain of protein G to tune energy function parameters¹.

The designs

- 1. Structures extracted from the PDB (September 2014)
- 2. Length from 50 to 100 AA
- 3. Resolution better than 2 Å
- 4. Only representants at 30% identity
- 5. Talaris14 and Dunbrack's 2010 rotamers
- 6. PyRosetta: relax + energy matrices

Looking for the Global Minimum Energy Configuration

How

- 1. Intel Xeon E5-2690 2.9GHz (Q1-2012 CPU)
- 2. Best of 1000 runs of fixbb Rosetta protocol (Simulated Annealing)

3. toulbar2: 100 hours limit.

La patate douce

https://bitbucket.org/satsumaimo/ptcfopd

Looking for the GMEC

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Looking for the GMEC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

toulbar2 (CFN)

- $1. \ 98$ problems solved to optimality
- 2. Largest problem solved: 10^{234} , 1.7 GB for energy matrix.
- 3. Smallest unsolved: 10²⁰⁶.

Looking for the GMEC

toulbar2 (CFN)

- 1. 98 problems solved to optimality
- 2. Largest problem solved: 10^{234} , 1.7 GB for energy matrix.
- 3. Smallest unsolved: 10²⁰⁶.

Rosetta/fixbb

- 1. Rosetta fixbb found the GMEC on 13 of these problems
- 2. These 13 problems took 90 hours for fixbb.
- 3. toulbar2 solved them to optimality in 36 hours.

Exploring Sequence/conformations around of the GMEC

All sequence/conformations in a 0.2 Rosetta unit threshold

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Same 100h limit

Exploring Sequence/conformations around of the GMEC

All sequence/conformations in a 0.2 Rosetta unit threshold

- 1. Same 100h limit
- 2. Exhausted sequence/conformation space on 92/98 designs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Exploring Sequence/conformations around of the GMEC

All sequence/conformations in a 0.2 Rosetta unit threshold

- 1. Same 100h limit
- 2. Exhausted sequence/conformation space on 92/98 designs.

3. Very fast sampling, but huge spaces (up to $1.42 \ 10^9$)

Diversity of situations

- 1. No clear tendancy for simulated annealing success/failure pattern.
- 2. Not enough successes to see a trend ?

SAC

Exploring sequences around the GMEC

Faster exploration of sequences only¹⁵

- New "SCP branching" algorithm that explores the sequence space
- Allows to explore far larger energy gaps.
- Gives just one (sub)optimal conformation per sequence.

Faster exploration of sequences only¹⁵

- ► A number of CFN algorithms injected directly in OSPREY⁶
- Benefits to continuous/flexible BB design through DEEPer⁸, LUTE⁷.

Rosetta fixbb protocol: gap to optimality

Blue: best over 1000 runs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

Rosetta fixbb protocol: gap to optimality

Blue: best over 1000 runs

▶ Red: all runs on all designs (worse may be off by 45 RU).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Distance to optimum as a function of space size

Blue: best over 1000 runs

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Distance to optimum as a function of space size

- Blue: best over 1000 runs
- ▶ Red: average over 1 000 runs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Reliability, distance to optimum and size

Blue: probability of finding the GMEC (sorted)

Reliability, distance to optimum and size

- Blue: probability of finding the GMEC (sorted)
- Red: energy gap to GMEC (sorted)

Reliability, distance to optimum and size

- Blue: probability of finding the GMEC (sorted)
- Red: energy gap to GMEC (sorted)
- Histogram: # of unique sequences (x RU gap) (red: lower bound)

What about sequences: Hamming dist. to GMEC

▶ Blue: best energy (2.4% core, 7% boundary, 10% surface).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

What about sequences: Hamming dist. to GMEC

- ▶ Blue: best energy (2.4% core, 7% boundary, 10% surface).
- Red: average over 1 000 runs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Distance to native as we get closer to the GMEC

Native sequence used to tune energy^{1,11}.

Distance to native as we get closer to the GMEC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Native sequence used to tune $energy^{1,11}$.

Туре	native		fixbb best		GMEC
Charged	1,795	\nearrow	1,996	\nearrow	2,097
Aromatic	585	\nearrow	616	\nearrow	622
Polar	1,817	\searrow	1,730	\searrow	1,662
Hydrophobic	2,585	\searrow	2,440	\searrow	2,401

Cysteines in disulfide bridges: not counted.

Possible lessons

Monte Carlo sampling

- Fixbb SA becomes quickly unable to reach lowest energy regions
- Energy gap increases quickly with the number of mutable residues

Guarantees

- GMEC may be not crucial, but an upper bound on error is important
- Guaranteed optimum have different composition
- Talaris favorable for guaranteed optimization (but exponential barrier)
- Exhaustive enumeration can be very fast (but exponential size output)

1. Injected in OSPREY, contributes to "flexible" modeling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $1. \ \mbox{Injected in OSPREY, contributes to "flexible" modeling}$
- 2. Conformational entropy contribution to affinity

- 1. Injected in OSPREY, contributes to "flexible" modeling
- 2. Conformational entropy contribution to affinity
- 3. Improve the "CPD" model

- 1. Injected in OSPREY, contributes to "flexible" modeling
- 2. Conformational entropy contribution to affinity
- 3. Improve the "CPD" model
- 4. beyond pairwise decomposition 7

- 1. Injected in OSPREY, contributes to "flexible" modeling
- 2. Conformational entropy contribution to affinity
- 3. Improve the "CPD" model
- 4. beyond pairwise decomposition 7
- 5. multistate (positive/negative)

- 1. Injected in OSPREY, contributes to "flexible" modeling
- 2. Conformational entropy contribution to affinity
- 3. Improve the "CPD" model
- 4. beyond pairwise decomposition 7
- 5. multistate (positive/negative)
- 6. symmetric and fragment design

References I

Oscar Alvizo and Stephen L Mayo. "Evaluating and optimizing computational protein design force fields using fixed composition-based negative design". In: *Proc. Natl. Acad. Sci. U.S.A.* 105.34 (2008), pp. 12242–12247.

M C. Cooper, S. de Givry, and T. Schiex. "Optimal soft arc consistency". In: *Proc. of IJCAI'2007*. Hyderabad, India, Jan. 2007, pp. 68–73.

- M C. Cooper and T. Schiex. "Arc consistency for soft constraints". In: Artificial Intelligence 154.1-2 (2004), pp. 199–227.
- Martin C Cooper et al. "Virtual Arc Consistency for Weighted CSP." In: *AAAI*. Vol. 8. 2008, pp. 253–258.

M. Cooper et al. "Soft arc consistency revisited". In: Artificial Intelligence 174 (2010), pp. 449–478.

Pablo Gainza et al. "OSPREY: Protein design with ensembles, flexibility, and provable algorithms". In: *Methods Enzymol.* 523 (2012), pp. 87–107.

Mark A Hallen, Jonathan D Jou, and Bruce R Donald. "LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid-rotamer-like Efficiency". In: *Research in Computational Molecular Biology*. Springer. 2016, pp. 122–136.

References II

Mark A Hallen, Daniel A Keedy, and Bruce R Donald. "Dead-end elimination with perturbations (DEEPer): A provable protein design algorithm with continuous sidechain and backbone flexibility". In: *Proteins* 81.1 (2013), pp. 18–39.

J. Larrosa and T. Schiex. "In the quest of the best form of local consistency for Weighted CSP". In: *Proc. of the 18th IJCAI*. Acapulco, Mexico, Aug. 2003, pp. 239–244.

J. Larrosa et al. "Existential arc consistency: getting closer to full arc consistency in weighted CSPs". In: *Proc. of the 19th IJCAI*. Edinburgh, Scotland, Aug. 2005, pp. 84–89.

A Leaver-Fay et al. "Scientific benchmarks for guiding macromolecular energy function improvement". In: *Methods Enzymol.* 523 (2013), p. 109.

Niles A Pierce and Erik Winfree. "Protein design is NP-hard." In: Protein engineering 15.10 (Oct. 2002), pp. 779–82. ISSN: 0269-2139. URL: http://www.ncbi.nlm.nih.gov/pubmed/12468711.

T. Schiex. "Arc consistency for soft constraints". In: *Principles and Practice of Constraint Programming - CP 2000*. Vol. 1894. LNCS. Singapore, Sept. 2000, pp. 411–424.

References III

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

T. Schiex, H. Fargier, and G. Verfaillie. "Valued Constraint Satisfaction Problems: hard and easy problems". In: *Proc. of the 14th IJCAI*. Montréal, Canada, Aug. 1995, pp. 631–637.

Seydou Traoré et al. "Fast search algorithms for computational protein design". In: *Journal of computational chemistry* (2016).